
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 0

Timed Petri Nets in Performance Exploration

of Simultaneous Multithreading

Wlodek M. Zuberek

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48601

1. Introduction

In modern computer systems, the performance of the whole system is increasingly often
limited by the performance of its memory subsystem [1]. Due to continuous progress in
manufacturing technologies, the performance of processors has been doubling every 18
months (the so–called Moore’s law [2]), but the performance of memory chips has been
improving only by 10% per year [1], creating a “performance gap” in matching processor’s
performance with the required memory bandwidth [3]. More detailed studies have shown
that the number of processor cycles required to access main memory doubles approximately
every six years [4]. In effect, it is becoming more and more often the case that the performance
of applications depends on the performance of the system’s memory hierarchy and it is not
unusual that as much as 60% of time processors spend waiting for the completion of memory
operations [4].

Memory hierarchies, and in particular multi–level cache memories, have been introduced
to reduce the effective latency of memory accesses [5]. Cache memories provide efficient
access to information when the information is available at lower levels of memory
hierarchy; occasionally, however, long–latency memory operations are needed to transfer the
information from the higher levels of memory hierarchy to the lower ones. Extensive research
has focused on reducing and tolerating these large memory access latencies.

Techniques which tolerate long–latency memory accesses include out–of–order execution
of instructions and instruction–level multithreading. The idea of out–of–order execution
[1] is to execute, instead of waiting for the completion of a long–latency operation,
instructions which (logically) follow the long–latency one, but which do not depend
upon the result of this long–latency operation. Since out–of–order execution exploits
instruction–level concurrency in the executed sequential instruction stream, it conveniently
maintains code–base compatibility [6]. In effect, the instruction stream is dynamically
decomposed into micro-threads, which are scheduled and synchronized at no cost in terms
of executing additional instructions. Although this is desirable, speedups using out–of–order

©2012 Zuberek, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 13

2 Will-be-set-by-IN-TECH

execution on superscalar pipelines are not so impressive, and it is difficult to obtain a speedup
greater than 2 using 4 or 8-way superscalar issue [7]. Moreover, in modern processors,
memory latencies are so long that out–of–order processors require very large instruction
windows to tolerate them.

Although ultra–wide out-of-order superscalar processors were predicted as the architecture of
one-billion-transistor chips, with a single 16 or 32-wide-issue processing core and huge branch
predictors to sustain good instruction level parallelism, the industry has not been moving
toward the wide–issue superscalar model [8]. Design complexity and power efficiency
direct the industry toward narrow–issue, high–frequency cores and multithreaded processors.
According to [6]: “Clearly something is very wrong with the out–of–order approach to
concurrency if this extravagant consumption of on–chip resources is only providing a practical
limit on speedup of about 2.”

Instruction–level multithreading [9], [10], [1] is a technique of tolerating long–latency memory
accesses by switching to another thread (if it is available for execution) rather than waiting for
the completion of the long–latency operation. If different threads are associated with different
sets of processor registers, switching from one thread to another (called “context switching”)
can be done very efficiently [11], in one or just a few processor cycles.

In simultaneous multithreading [12], [6] several threads can issue instructions at the same
time. If a processor contains several functional units or it contains more than one instruction
execution pipeline, the instructions can be issued simultaneously; if there is only one pipeline,
only one instruction can be issued in each processor cycle, but the (simultaneous) threads
complement each other in the sense that whenever one thread cannot issue an instruction
(because of pipeline stalls or context switching), an instruction is issued from another thread,
eliminating ‘empty’ instruction slots and increasing the overall performance of the processor.

Simultaneous multithreading combines hardware features of wide-issue superscalar
processors and multithreaded processors [12]. From superscalar processors it inherits the
ability to issue multiple instructions in each cycle; from multithreaded processors it takes
hardware state for several threads. The result is a processor that can issue multiple
instructions from multiple threads in each processor cycle, achieving better performance for a
variety of workloads.

The main objective of this work is to study the performance of simultaneously multithreaded
processors in order to determine how effective simultaneous multithreading can be. In
particular, an indication is sought if simultaneous multithreading can overcome the
out–of–order’s “barrier” of the speedup (equal to 2 [13]). A timed Petri net [14] model of
multithreaded processors at the instruction execution level is developed, and performance
results for this model are obtained by event–driven simulation of the developed model.
Since the model is rather simple, simulation results are verified (with respect to accuracy)
by state–space–based performance analysis (for those combinations of modeling parameters
for which the state space remains reasonably small).

Section 2 recalls basic concepts of timed Petri nets which are used in this study. A model
of simultaneous multithreading, used for performance exploration, is presented in Section 3.
Section 4 discusses the results obtained by event–driven simulation of the model introduced in
Section 3. Section 5 contains concluding remarks including a short comparison of simulation
and analytical results.

300 Petri Nets – Manufacturing and Computer Science

Timed Petri Nets in Performance Exploration of Simultaneous Multithreading 3

2. Timed Petri nets

A marked place/transition Petri net M is typically defined [15] [16] as M = (N , m0), where
the structure N is a bipartite directed graph, N = (P, T, A), with a set of places P, a set of
transitions T, a set of directed arcs A connecting places with transitions and transitions with
places, A ⊆ T × P ∪ P × T, and the initial marking function m0 which assigns nonnegative
numbers of tokens to places of the net, m0 : P → {0, 1, ...}. Marked nets can be equivalently
defined as M = (P, T, A, m0).

A place p is an input place of a transition t if the (directed) arc (p, t) is in the set A. A place
is shared if it is an input place to more than one transition. If a net does not contain shared
places, the net is (structurally) conflict–free, otherwise the net contains conflicts. The simplest
case of conflicts is known as a free–choice (or generalized free–choice) structure; a shared place
is (generalized) free–choice if all transitions sharing it have identical sets of input places. A net
is free–choice if all its shared places are free–choice. The transitions sharing a free–choice place
constitute a free–choice class of transitions. For each marking function, and each free–choice
class of transitions, either all transitions in this class are enabled or none of them is. It is
assumed that the selection of transitions for firing within each free–choice class is a random
process which can be described by “choice probabilities” assigned to (free–choice) transitions.
Moreover, it is usually assumed that the random variables describing choice probabilities in
different free–choice classes are independent.

All places which are not conflict–free and not free–choice, are conflict places. Transitions
sharing conflict places are (directly or indirectly) potentially in conflict (i.e., they are in
conflict or not depending upon a marking function; for different marking functions the sets
of transitions which are in conflict can be different). All transitions which are potentially
is conflict constitute a conflict class. All conflict classes are disjoint. It is assumed that
conflicts are resolved by random choices of occurrences among the conflicting transitions.
These random choice are independent in different conflict classes.

In timed nets [14], occurrence times are associated with transitions, and transition occurrences
are real–time events, i.e., tokens are removed from input places at the beginning of the
occurrence period, and they are deposited to the output places at the end of this period.
All occurrences of enabled transitions are initiated in the same instants of time in which
the transitions become enabled (although some enabled transitions may not initiate their
occurrences). If, during the occurrence period of a transition, the transition becomes enabled
again, a new, independent occurrence can be initiated, which will overlap with the other
occurrence(s). There is no limit on the number of simultaneous occurrences of the same
transition (sometimes this is called infinite occurrence semantics). Similarly, if a transition
is enabled “several times” (i.e., it remains enabled after initiating an occurrence), it may start
several independent occurrences in the same time instant.

More formally, a timed Petri net is a triple, T = (M, c, f), where M is a marked net, c
is a choice function which assigns choice probabilities to free–choice classes of transitions
or relative frequencies of occurrences to conflicting transitions (for non–conflict transitions c

simply assigns 1.0), c : T → R0,1, where R0,1 is the set of real numbers in the interval [0,1], and
f is a timing function which assigns an (average) occurrence time to each transition of the net,
f : T → R+, where R+ is the set of nonnegative real numbers.

The occurrence times of transitions can be either deterministic or stochastic (i.e., described
by some probability distribution function); in the first case, the corresponding timed nets are

301Timed Petri Nets in Performance Exploration of Simultaneous Multithreading

4 Will-be-set-by-IN-TECH

referred to as D–timed nets [18], in the second, for the (negative) exponential distribution
of firing times, the nets are called M–timed nets (Markovian nets [17]). In both cases, the
concepts of state and state transitions have been formally defined and used in the derivation
of different performance characteristics of the model [14]. Only D–timed Petri nets are used
in this paper.

The firing times of some transitions may be equal to zero, which means that the firings are
instantaneous; all such transitions are called immediate while the other are called timed. Since
the immediate transitions have no tangible effects on the (timed) behavior of the model, it is
convenient to split the set of transitions into two parts, the set of immediate and the set of
timed transitions, and to fire first the (enabled) immediate transitions; only when no more
immediate transitions are enabled, the firings of (enabled) timed transitions are initiated (still
in the same instant of time). It should be noted that such a convention effectively introduces
the priority of immediate transitions over the timed ones, so the conflicts of immediate and
timed transitions should be avoided. Consequently, the free–choice and conflict classes of
transitions must be “uniform”, i.e., all transitions in each such class must be either immediate
or timed, but not both.

Performance analysis of net models can be based on their behavior (i.e., the set of reachable
states) or on the structure of the net; the former is called reachability analysis and the latter
– structural analysis. For reachability analysis, the state space of the analyzed model must
be finite and reasonably small while for structural analysis the model must satisfy a number
of structural conditions. However, since timed Petri net models are discrete–event systems,
their analysis can also be based on discrete–event simulation, which imposes very few
restrictions on the class of analyzed models. All performance characteristics of simultaneous
multithreading presented in Section 4 are obtained by event–driven simulation [19] of timed
Petri net models shown in the next section.

3. Models of simultaneous multithreading

A timed Petri net model of a simple multithreaded processor is shown in Fig.1 (as usually,
timed transitions are represented by solid bars, and immediate ones, by thin bars).

For simplicity, Fig.1 shows only one level of memory; this simplification is removed further in
this section.

Ready is a pool of available threads; it is assumed that the number of of threads is constant
and does not change during program execution (this assumption is motivated by steady–state
considerations). If the processor is idle (place Next is marked), one of available threads is
selected for execution (transition Tsel). Cont, if marked, indicates that an instruction is ready to
be issued to the execution pipeline. Instruction execution is modeled by transition Trun which
represents the first stage of the execution pipeline. It is assumed that once the instruction
enters the pipeline, it will progress through the stages and, eventually, leave the pipeline;
since these pipeline implementation details are not important for performance analysis of the
processor, they are not represented here.

Done is another free-choice place which determines if the current instruction performs a
long–latency access to memory or not. If the current instruction is a non–long–latency
one, Tnxt occurs (with the corresponding probability), and another instruction is fetched
for issuing. Pnxt is a free-choice place with three possible outcomes: Tst0 (with the choice
probability ps0) represents issuing an instruction without any further delay; Tst1 (with the

302 Petri Nets – Manufacturing and Computer Science

Timed Petri Nets in Performance Exploration of Simultaneous Multithreading 5

Td2

Td1Tst0

Tst2

Tst1

Cont

Pnxt

Ready

Tsel

Proc Mem
Tcsw

Pcsw

Mreq

Next

Done

Tmem

Pst2

Pst1

Trun

Tnxt

Tend

Figure 1. Petri net model of a multithreaded processor.

choice probability ps1) represents a single-cycle pipeline stall (modeled by Td1), and Tst2
(with the choice probability ps2) represents a two–cycle pipeline stall (Td2 and then Td1); other
pipeline stalls could be represented in a similar way, if needed.

If long–latency operation is detected in the issued instruction, Tend initiates two concurrent
actions: (i) context switching performed by enabling an occurrence of Tcsw, after which a new
thread is selected for execution (if it is available), and (ii) a memory access request is entered
into Mreq, the memory queue, and after accessing the memory (transition Tmem), the thread,
suspended for the duration of memory access, becomes “ready” again and joins the pool of
threads Ready. Tmem will typically represent a cache miss (with all its consequences); cache
hits (at the first level cache memory) are not considered long-latency operations.

The choice probability associated with Tend determines the runlength of a thread, ℓt, i.e.,
the average number of instructions between two consecutive long–latency operations; if this
choice probability is equal to 0.1, the runlength is equal to 10, if it is equal to 0.2, the runlength
is 5, and so on.

Proc, which is connected to Trun, controls the number of pipelines. If the processor contains
just one instruction execution pipeline, the initial marking assigns a single token to Proc as
only one instruction can be issued in each processor cycle. In order to model a processor with
two (identical) pipelines, two initial tokens are needed in Proc, and so on.

The number of memory ports, i.e., the number of simultaneous accesses to memory, is
controlled by the initial marking of Mem; for a single port memory, the initial marking assigns
just a single token to Mem, for dual-port memory, two tokens are assigned to Mem, and so on.

In a similar way, the number of simultaneous threads (or instruction issue units) is controlled
by the initial marking of Next.

Memory hierarchy can be incorporated into the model shown in Fig.1 by refining the
representation of memory. In particular, levels of memory hierarchy can be introduced by
replacing the subnet Tmem–Mem by a number of subnets, each subnet for one level of the
hierarchy, and adding a free–choice structure which randomly selects the submodel according

303Timed Petri Nets in Performance Exploration of Simultaneous Multithreading

6 Will-be-set-by-IN-TECH

Td2

Td1
Tst0

Tst2

Tst1

Cont

Pnxt

Ready

Tsel

ProcTcsw

Pcsw

Mreq

Next

Done

Pst2

Pst1

Trun

Mreq1Tms1

Mreq2Tms2

Mem

Tnxt

Tend

Tmem2

Tmem1

Figure 2. Petri net model of a multithreaded processor with a two–level memory.

to probabilities describing the use of the hierarchical memory. Such a refinement, for two
levels of memory (in addition to the first-level cache), is shown in Fig.2, where Mreq is
a free–choice place selecting either level–1 (submodel Mem–Tmem1) or level–2 (submodel
Mem–Tmem2). More levels of memory can be easily added similarly, if needed.

The effects of memory hierarchy can be compared with a uniform, non–hierarchical memory
by selecting the parameters in such a way that the average access time of the hierarchical
model (Fig.2) is equal to the access time of the non–hierarchical model (Fig.1).

Processors with different numbers of instruction issue units and instruction execution
pipelines can be described by a pair of numbers, the first number denoting the number of
instruction issue units, and the second – the number of instruction execution pipelines. In
this sense a 3-2 processor is a (multithreaded) processor with 3 instruction issue units and 2
instruction execution pipelines.

For convenience, all temporal properties are expressed in processor cycles, so, the occurrence
times of Trun, Td1 and Td2 are all equal to 1 (processor cycle), the occurrence time of Tcsw is
equal to the number of processor cycles needed for a context switch (which is equal to 1 for
many of the following performance analyzes), and the occurrence time of Tmem is the average
number of processor cycles needed for a long–latency access to memory.

The main modeling parameters and their typical values are shown in Table 1.

4. Performance exploration

The model developed in the previous section is evaluated for different combinations of
modeling parameters. Performance results are obtained by event-driven simulation of timed
Petri net models.

The utilization of the processor and memory, as a function of the number of available threads,
for a 1-1 processor (i.e., a processor with a single instruction issue unit and a single instruction
execution pipeline) is shown in Fig. 3.

304 Petri Nets – Manufacturing and Computer Science

Timed Petri Nets in Performance Exploration of Simultaneous Multithreading 7

symbol parameter value

nt number of available threads 1,...,10
np number of execution pipelines 1,2,...
ns number of simultaneous threads 1,2,3,...
ℓt thread runlength 10
tm average memory access time 5
tcs context switching time 1,3
ps1 prob. of one–cycle pipeline stall 0.2
ps2 prob. of two–cycle pipeline stall 0.1

Table 1. Simultaneous multithreading – modeling parameters and their typical values

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

u
ti

li
z
a
ti

o
n

number of available threads

Processor and memory utilization (1-1)

Figure 3. Processor (-o-) and memory (-x-) utilization for a 1-1 processor; lt = 10, tm = 5, tcs = 1,
ps1 = 0.2, ps2 = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

u
ti

li
z
a
ti

o
n

number of available threads

Processor and memory utilization (2-1)

Figure 4. Processor (-o-) and memory (-x-) utilization for a 2-1 processor; lt = 10, tm = 5, tcs = 1,
ps1 = 0.2, ps2 = 0.1

The value of the processor utilization for nt = 1 (i.e., for one thread) can be derived from the
(average) number of unused instruction issuing slots. Since the probability of a single–cycle
stall is 0.2, and probability of a two–cycle stall is 0.1, on average 40 % of issuing slots
remain unused because of pipeline stalls (for all instructions except the first one in each

305Timed Petri Nets in Performance Exploration of Simultaneous Multithreading

8 Will-be-set-by-IN-TECH

thread). Processor utilization for one thread is thus ℓt/(ℓt + (ℓt − 1) ∗ 0.4 + tm) = 10/18.6 =
0.537, which corresponds very well with Fig.3. For a large number of threads processor
utilization is obtained similarly, but with the context switching time, tcs, replacing tm, so it
is ℓt/(ℓt + (ℓt − 1) ∗ 0.4 + tcs) = 0.685.

The utilization of the processor can be improved by introducing a second (simultaneous)
thread which issues its instructions in the slots unused by the first slot. Fig.4 shows the
utilization of the processor and memory for a 2-1 processor, i.e., a processor with two
(simultaneous) threads (or two instruction issue units) and a single pipeline. The utilization
of the processor is improved by almost 50 % and is within a few percent from its upper bound
(of 100 %).

The influence of pipeline stalls (probabilities ps1 and ps2) is shown in Fig.5 and Fig.6. Fig.5
shows that the performance actually depends upon the total number of stalls rather than
specific values of ps1 and ps2; in Fig.5 all pipeline stalls are single–cycle ones, so ps1 = 0.4
and ps2 = 0, and the results are practically the same as in Fig. 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

u
ti

li
z
a
ti

o
n

number of available threads

Processor and memory utilization (1-1-0)

Figure 5. Processor (-o-) and memory (-x-) utilization for a 1-1 processor; lt = 10, tm = 5, tcs = 1,
ps1 = 0.4, ps2 = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

u
ti

li
z
a
ti

o
n

number of available threads

Processor and memory utilization (1-1-1)

Figure 6. Processor (-o-) and memory (-x-) utilization for a 1-1 processor; lt = 10, tm = 5, tcs = 1,
ps1 = 0.2, ps2 = 0

306 Petri Nets – Manufacturing and Computer Science

Timed Petri Nets in Performance Exploration of Simultaneous Multithreading 9

Fig. 6 shows the utilizations of processor and memory for reduced probabilities of pipeline
stalls, i.e., for ps1 = 0.2 and ps2 = 0. As is expected, the utilizations are higher than in Fig.3
and Fig.5.

A more realistic model of memory, that captures the idea of a two–level hierarchy, is shown
in Fig.2. In order to compare the results of this model with Fig.3 and Fig.4, the parameters of
the two–level memory are chosen in such a way that the average memory access time is equal
to the memory access time in Fig.1 (where tm = 5). Let the two levels of memory have access
times equal to 4 and 20, respectively; then the choice probabilities are equal to 15/16 and 1/16
for level–1 and level–2, respectively, and the average access time is:

4 ∗
15

16
+ 20 ∗

1

16
= 5.

The results for a 1-1 processor with a two–level memory are shown in Fig.7, and for a 2-1
processor in Fig.8.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

u
ti

li
z
a
ti

o
n

number of available threads

Processor and memory utilization (1-1.2)

Figure 7. Processor (-o-) and memory (-x-) utilization for a 1-1 processor with 2-level memory; lt = 10,
tm = 4 + 20, tcs = 1, ps1 = 0.2, ps2 = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

u
ti

li
z
a
ti

o
n

number of available threads

Processor and memory utilization (2-1-2)

Figure 8. Processor (-o-) and memory (-x-) utilization for a 2-1 processor with 2-level memory; lt = 10,
tm = 4 + 20, tcs = 1, ps1 = 0.2, ps2 = 0.1

307Timed Petri Nets in Performance Exploration of Simultaneous Multithreading

10 Will-be-set-by-IN-TECH

The results in Fig.7 and Fig.8 are practically the same as in Fig.3 and Fig.4. This is the reason
that the remaining results are shown for (equivalent) one-level memory models; the multiple
levels of memory hierarchy apparently have no significant effect on the performance results.

The effects of simultaneous multithreading in a more complex processor, e.g., a processor with
two instruction issue units and two instruction execution pipelines, i.e., a 2-2 processor, can
be obtained in a very similar way. The utilization of the processor (shown as the sum of the
utilizations of both pipelines, with the values ranging from 0 to 2), is shown in Fig.9.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

u
ti

li
z
a
ti

o
n

number of available threads

Processor and memory utilization (2-2)

Figure 9. Processor (-o-) and memory (-x-) utilization for a 2-2 processor; lt = 10, tm = 5, tcs = 1,
ps1 = 0.2, ps2 = 0.1

When another instruction issue unit is added, the utilization increases by about 40 %, as shown
in Fig.10.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

u
ti

li
z
a
ti

o
n

number of available threads

Processor and memory utilization (3-2)

Figure 10. Processor (-o-) and memory (-x-) utilization for a 3-2 processor; lt = 10, tm = 5, tcs = 1,
ps1 = 0.2, ps2 = 0.1

Further increase of the number of the simultaneous threads (in a processor with 2 pipelines)
can provide only small improvements of the performance because the utilizations of both,
the processor and the memory, are quite close to their limits. The performance of the system
can be improved by increasing the number of pipelines, but then the memory becomes the

308 Petri Nets – Manufacturing and Computer Science

Timed Petri Nets in Performance Exploration of Simultaneous Multithreading 11

system bottleneck, so its performance also needs to be improved, for example, by introducing
dual ports (which allow to handle two accesses at the same time). The performance of a 5-3
processor with a dual-port memory is shown in Fig.11 (the utilization of the processor is the
sum of utilizations of its 3 pipelines, so it ranges from 0 to 3).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

u
ti

li
z
a
ti

o
n

number of available threads

Processor and memory utilization (5-3-2)

Figure 11. Processor (-o-) and memory (-x-) utilization for a 5-3 processor with dual–port memory;
lt = 10, tm = 5||2, tcs = 1, ps1 = 0.2, ps2 = 0.1

Fig.11 shows that for 3 pipelines and 5 simultaneous threads, the number of available threads
greater than 6 provides the speedup that is almost equal to 3.

System bottlenecks can be identified by comparing service demands for different components
of the system (in this case, the memory and the pipelines); the component with the maximum
service demand is the bottleneck because it is the first component to reach its utilization
limit and to prevent any increase of the overall performance. For a single runlength (of all
simultaneous threads) the total service demand for memory is equal to ns ∗ tm, while the
service demand for each pipeline (assuming an ideal, uniform distribution of load over the
pipelines) is equal to ns ∗ ℓt/np. For a 4-2 processor, the service demands are equal (such
a system is usually called “balanced”), so the utilizations of both, the processor and the
memory, tend to their limits in a “synchronous” way. For a 5-3 processor with a dual-port
memory, the service demand for the pipelines is greater than the service demand for memory,
so the number of pipelines could be increased (by one pipeline); for more than 4 pipelines, the
memory again becomes the bottleneck.

Simultaneous multithreading is quite flexible with respect to context switching times because
the (simultaneous) threads fill the instruction issuing slots which normally would remain
empty during context switching. Fig.12 shows the utilization of the processor and memory
in a 1-1 processor with tcs = 3, i.e., context switching time 3 times longer than in Fig.3. The
reduction of the processor’s utilization is more than 10 %, and is due to the additional 2 cycles
of context switching which remain empty (out of 17 cycles, on average).

Fig.13 shows utilization of the processor and memory in a 2-1 processor, also for tcs = 3. The
reduction of utilization is much smaller in this case and is within 5 % (when compared with
Fig.4).

309Timed Petri Nets in Performance Exploration of Simultaneous Multithreading

12 Will-be-set-by-IN-TECH

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

u
ti

li
z
a
ti

o
n

number of available threads

Processor and memory utilization (1-1-3)

Figure 12. Processor (-o-) and memory (-x-) utilization for a 1-1 processor; lt = 10, tm = 5, tcs = 3,
ps1 = 0.2, ps2 = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

u
ti

li
z
a
ti

o
n

number of available threads

Processor and memory utilization (2-1-3)

Figure 13. Processor (-o-) and memory (-x-) utilization for a 2-1 processor; lt = 10, tm = 5, tcs = 3,
ps1 = 0.2, ps2 = 0.1

5. Concluding remarks

Simultaneous multithreading discussed in this paper is used to increase the performance
of processors by tolerating long–latency operations. Since the long–latency operations
are playing increasingly important role in modern computer system, so is simultaneous
multithreading. Its implementation as well as the required hardware resources are much
simpler than in the case of out–of–order approach, and the resulting speedup scales well with
the number of simultaneous threads. The main challenge of simultaneous multithreading is to
balance the system by maintaining the right relationship between the number of simultaneous
threads and the performance of the memory hierarchy.

All presented results indicate that the number of available threads, required for improved
performance of the processor, is quite small, and is typically greater by 2 or 3 threads than the
number of simultaneous threads. The results show that a larger number of available threads
provides rather insignificant improvements of system’s performance.

310 Petri Nets – Manufacturing and Computer Science

Timed Petri Nets in Performance Exploration of Simultaneous Multithreading 13

The presented models of multithreaded processors are quite simple, and for small values of
modeling parameters (nt, np, ns) can be analyzed by the explorations of the state space. The
following tables compare some results for the 1-1 processor and 3-2 processors:

number analytical simulated
nt of states utilization utilization

1 11 0.538 0.536
2 52 0.670 0.671
3 102 0.684 0.685
4 152 0.685 0.686
5 202 0.685 0.686

Table 2. A comparison of simulation and analytical results for 1-1 processors.

number analytical simulated
nt of states utilization utilization

1 11 0.538 0.536
2 80 1.030 1.031
3 264 1.384 1.381
4 555 1.568 1.568
5 951 1.655 1.647

Table 3. A comparison of simulation and analytical results for 3-2 processors.

The comparisons show that the results obtained by simulation of net models are very similar
to the analytical results obtained from the analysis of states and state transitions.

A similar performance analysis of simultaneous multithreading, but using a slightly different
model, was presented in [20]. All results presented there are very similar to results presented
in this work which is an indication that the performance of simultaneous multithreaded
systems is insensitive to (at least some) variations of implementation.

It should also be noted that the presented model is oversimplified with respect to the
probabilities of pipeline stalls and does not take into account the dependence of stall
probabilities on the history of instruction issuing. In fact, the model is “pessimistic” in this
regard, and the predicted performance, presented in the paper, is worse than the expected
performance of real systems. However, the simplification effects are not expected to be
significant.

Acknowledgement

The Natural Sciences and Engineering Research Council of Canada partially supported this
research through grant RGPIN-8222.

Author details

Wlodek M. Zuberek
Memorial University, St.John’s, Canada,
University of Life Sciences, Warsaw, Poland

311Timed Petri Nets in Performance Exploration of Simultaneous Multithreading

14 Will-be-set-by-IN-TECH

6. References

[1] Patterson, D.A., Hennessy, J.L. (2006). Computer architecture – a quantitative approach (4-th
ed.); Morgan Kaufmann.

[2] Hamilton, S. (1999). “Taking Moore’s law into the next century”; IEEE Computer, vol.32,
no.1, pp.43-48.

[3] Wilkes, M.V. (2001). “The memory gap and the future of high-performance memories”;
ACM Architecture News, vol.29, no.1, pp.2-7.

[4] Sinharoy B. (1997). “Optimized thread creation for processor multithreading”; The
Computer Journal, vol.40, no.6, pp.388-400.

[5] Baer, J-L. (2010). Microprocessor architecture: from simple pipelines to chip multiprocessors;
Cambridge University Press.

[6] Jesshope, C. (2003). “Multithreaded microprocessors – evolution or revolution”; in
Advances in Computer Systems Architecture (LNCS 2823), pp.21-45.

[7] Tseng, J. & Asanovic, K. (2003). “Banked multiport register files for high–frequency
superscalar microprocessor”; Proc. 30-th Int. Annual Symp. on Computer Architecture, San
Diego, CA, pp.62-71.

[8] Burger, D. & Goodman, J.R. (2004). “Billion–transistor architectures: there and back
again”; IEEE Computer, vol.37, no.3, pp.22-28.

[9] Byrd, G.T. & Holliday, M.A. (1995). “Multithreaded processor architecture”; IEEE
Spectrum, vol.32, no.8, pp.38-46.

[10] Dennis, J.B. & Gao, G.R. (1994). “Multithreaded architectures: principles, projects, and
issues”; in Multithreaded Computer Architecture: a Summary of the State of the Art, Kluwer
Academic, pp.1-72.

[11] Ungerer, T., Robic, G. & Silc, J. (2002). “Multithreaded processors”; The Computer Journal,
vol.43, no.3, pp.320-348.

[12] Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L. & Tullsen, D.M. (1997).
“Simultaneous multithreading: a foundation for next-generation processors”; IEEE
Micro, vol.17, no.5, pp.12-19.

[13] Mutlu, O., Stark, J., Wilkerson, C. & Patt, Y.N. (2003). “Runahead execution: an effective
alternative to large instruction windows”; IEEE Micro, vol.23, no.6, pp.20-25.

[14] Zuberek, W.M. (1991). “Timed Petri nets – definitions, properties and applications”;
Microelectronics and Reliability (Special Issue on Petri Nets and Related Graph Models),
vol.31, no.4, pp.627-644.

[15] Murata, T. (1989). “Petri nets: properties, analysis, and applications”; Proceedings of the
IEEE, vol.77, no.4, pp.541-580.

[16] Reisig, W. (1985). Petri nets – an introduction (EATCS Monographs on Theoretical
Computer Science 4); Springer-Verlag.

[17] Zuberek, W.M. (1986). “M–timed Petri nets, priorities, preemptions, and performance
evaluation of systems”; in Advances in Petri Nets 1985 (LNCS 222), Springer-Verlag,
pp.478-498.

[18] Zuberek, W.M. (1987). “D–timed Petri nets and modelling of timeouts and protocols”;
Transactions of the Society for Computer Simulation, vol.4, no.4, pp.331-357.

[19] Zuberek, W.M. (1996). “Modeling using timed Petri nets – discrete–event simulation”;
Technical Report #9602, Department of Computer Science, Memorial University, St.
John’s, Canada A1B 3X5.

[20] Zuberek, W.M. (2007). “Modeling and analysis of simultaneous multithreading”;
Proc. 14-th Int. Conf. on Analytical and Stochastic Modeling Techniques and Applications
(ASMTA-07), a part of the 21-st European Conference on Modeling and Simulation (ECMS’07),
Prague, Czech Republic, pp.115-120.

312 Petri Nets – Manufacturing and Computer Science

