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1. Introduction

The concept of causality is changing as human knowledge changes. Causality as an abstract
notion has been traditionally studied in the field of metaphysics in philosophy. The Greek
philosophers understood the time causality as explanation in general (Aristotle, 350 B.C.).
The search for causes was a search for "first principles", which were meant to be explanatory.
In the more recent philosophy introduced by (Newton, 1687) was causality connected with
determinism. The current experimental science reveals the non-deterministic notion of cause,
which has to be also taken into consideration. The introduction of probability theory into
all scientific disciplines allows to formalize and mathematize the wider conceived notion of
cause.

This paper does not deal with the philosophical approach to causality, to this we refer the
reader for example to the works (Mackie, 1988), (Hume, 1896), (Russo, 2009) or (Pearl, 2000).
Here we deal exclusively with the formal mathematical approaches to detect cause-effect
relationships, namely with Granger causality and transfer entropy and their application in
sciences.

The generally non-deterministic approaches to causality apply various probability
distributions to model the real-world phenomena. The selection of an appropriate or
inappropriate model to fit the real world data has obviously an important influence on the
credibility of the achieved conclusions.

In the present paper we discuss the influence of the selection of a data model for detection
of causal relationships between two or more time series. We focus here on cases when
the Gaussianity of the investigated process can be assumed and when not. The causality
detection methods considered here are Granger causality (Granger, 1969) and transfer entropy
(Schreiber, 2000). We investigated time series with a wider class probability distributions
than Gaussian, the generalized Gaussian probability distributions. These distributions are
given parametrically. We set conditions on their parameters so that one can from their values
decide whether the relationships between the involved time series are unidirectional causal
or whether no causality is present.

Being aware of outstanding philosophical papers on causality in the sciences, for example
(Illari et al., 2011), we are though not aware of any similar publication on mathematically
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conceived causality and their application in natural and social sciences, neither of any analysis
of the probabilistic assumptions about the investigated time series and their influence on
causality detection by Granger causality or transfer entropy.

The paper is organized as follows. The application of various probabilistic models in
natural and social sciences is discussed in Section 2. Granger causality and its application
in natural and social sciences is treated in Section 3. Section 4 deals with transfer entropy,
directionality index and other information-theoretical measures, inclusive their applications.
Section 5 devotes a special attention to causal relationships among Gaussian time series and
generalized Gaussian time series. In Section 6 we presented original and simple criteria for
phenomena having generalized Gaussian distributions given parametrically which decide
about a presence or absence of causality between these phenomena given by concrete time
series. Section 7 discussed the criteria deciding about the applied causality detection method
and concludes with the importance of the achieved results.

We presented original and simple criteria for phenomena having generalized Gaussian
distributions given parametrically which decide about a presence or absence of causality
between these phenomena given by concrete time series.

2. Probabilistic distributions and their application in natural and social sciences

Gaussian, more frequently called "normal" distribution has a special position among all
probability distributions used in data modeling and is the most popular. It has been known
for a relatively long time, is simple and analytically tractable. Its symmetry about its mean
value is one of the basic principles realized in nature as well as in human culture. The bell
shape of its graph makes the normal distribution attractive for modeling of real world data in
many scientific or social disciplines.

Indeed, many common natural or social phenomena show to have normal distribution. For
example, such phenomena as women’s height, Brownian motion of particles, milk production
by cows and random deviations from target values in industrial processes fit a normal
distribution (Limpert et al., 2001). However, many phenomena which fit normal distribution,
have been shown that they fit also log-normal distribution or generalized normal distribution
or, more precisely, fit it even better. What is the difference between normal and log-normal
distribution? Both forms of variability are based on a variety of forces (causes) acting
independently of one another. A major difference is however that the effects can be additive
or multiplicative, thus leading to normal or log-normal distributions, respectively (Limpert et
al., 2001).

The length of spoken words in phone conversation (Herdan, 1958), the length of sentences
(Williams, 1940) have been shown to have log-normal distribution, as well as the age of
marriage (Preston, 1981) or income (Statistical yearbook in Switzerland, 1997). Prices, incomes
or populations, i.e. phenomena which grow exponentially, are often skewed to the right,
and hence may be better modeled by other distributions than by the normal one, such as
the log-normal distribution, Pareto distribution or skewed generalized normal distribution.
Statistical inference using a normal distribution is not robust to the presence of outliers. When
outliers are expected, data may be better described using a heavy-tailed distribution such as
the Student’s t-distribution.
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Generalized normal distribution (generalized Gaussian distribution), first time
mathematically defined in (Nadarajah, 1995) can model for example Brownian motion
of particles or fractional Brownian motion with a better precision than the normal distribution
(Zinde-Walsh & Phillips, 2003). Other experiments have shown a better approximation
precision of the generalized Gaussian distributions than of the Gaussian distributions, for
example (Sharifi & Leon-Garcia, 1995), (Moulin & Liu, 1999) for in image processing and
video analysis, (Bicego et al., 2008) for EEG time series modeling.

The modeling in linguistics applies mostly Gaussian mixtures. Mixtures of generalized
Gaussian distributions have been recently used in text independent speaker identification
(Sailaja et al., 2010) and showed that it outperforms the earlier existing text independent
speaker identification models. This model was applied for speaker identification like voice
dialing, banking by telephone, telephone shopping information services etc.

Exponential distribution has been frequently used in modeling in astrophysics, for example
the Weinman exponential distribution has been shown to be a good model for dusty galactic
discs (Misiriotis et al., 2000).

To summarize, other probability distributions than the normal one have an important
role in modeling both in natural and social sciences. We will call them non-Gaussian
distributions in the following. The selection of a correct distributions for modeling natural or
social phenomena is of great importance, especially when mutual interactions among these
phenomena are investigated. A crucial question is whether there are causal relationships
among the studied phenomena. This leads to a formal definition of causality and causal
measures.

In the following chapters we define formally two causality detection measures, namely the
Granger causality and transfer entropy.

3. Granger causality

The introduction of the concept of causality into the experimental science, namely into
analyses of data observed in consecutive time instants (time series), is due to C.W.J. Granger
in (Granger, 1969), the 2003 Nobel prize winner in economy. In his Nobel lecture (Granger,
2003) he recalled the inspiration by the Wiener’s work and identified two components of the
statement about causality:

1. The cause occurs before the effect; and

2. The cause contains information about the effect that is unique, and is in no other variable.

As Granger put it, a consequence of these statements is that the causal variable can help to
forecast the effect variable after other data has been first used (Granger, 2003). This restricted
sense of causality, referred to as Granger causality, G-causality thereafter, characterizes the
extent to which a process Xt is leading another process Yt, and builds upon the notion of
incremental predictability. It is said that the process Xt Granger causes another process Yt if future
values of Yt can be better predicted using the past values of Xt and Yt rather then only past
values of Yt. The standard test of G-causality developed in (Granger, 1969) is based on a linear
regression model.

In the following we will define Granger causality by using the notation from (Barnett, 2009).
Let ⊕ denotes concatenation of vectors, so that for x = (x1, . . . , xd) and y = (y1, . . . , ym)
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x ⊕ y is the 1 × (d + m) vector (x1, . . . , xd, y1, . . . , ym). Given jointly distributed multivariate
random variables X and Y i.e. random vectors in Rd, we denote by Σ(X) the d × d matrix of
covariances cov(Xi, Yj) and by Σ(X, Y) the d × m matrix of cross-covariances cov(Xi, Yα). Let
Σ(X|Y) denotes the d × d matrix

Σ(X|Y) = Σ(X)− Σ(X, Y)Σ(Y)−1Σ(X, Y)T (1)

define when Σ(Y) is invertible.

Suppose we have a stationary multivariate stochastic process Xt in discrete time (i.e. marginal

distributions are jointly distributed). Denote X
(p)
t = Xt ⊕ Xt−1 ⊕ · · · ⊕ Xt−p+1 for X along

with p − 1 lags so that X
(p)
t is a 1 × pd random vector for each t. Given the lag p, we use the

shorthand notation X−
t = X

(p)
t−1 for the lagged variable.

Suppose we have three jointly distributed stationary multivariate stochastic processes
Xt, Yt, Zt. Consider the regression models

Xt = αt + (X
(p)
t−1 ⊕ Zr

t−1).A + ǫt (2)

Xt = α′t + (X
(p)
t−1 ⊕ Y

(q)
t−1 ⊕ Z

(r)
t−1).A

′ + ǫ′t (3)

where A and A′ are the matrices of regression coefficients, αt and α′t are the constant terms
and the random vectors ǫ and ǫ′ comprise the residuals, so that so that the predictee variable
X is regressed firstly on the previous p lags of itself plus r lags of the conditioning variable Z
and secondly, in addition, on q lags of the predictor variable Y. By stationarity this expression
does not depend on time t, so we omit t from the notation. The G-causality of Y to X given Z is
a measure of the extent to which inclusion of Y in the second model (3) reduces the prediction
error of the first model (2). The standard measure of G-causality in the literature is defined for
univariate predictor and predictee variables Y and X, and is given by the natural logarithm
of the ratio of the residual variance in the restricted regression (2) to that of the unrestricted
regression (3).

(Barnett, 2009) have shown that G-causality can be expressed as

FY→X|Z = ln(
Σ(X|X− ⊕ Z−)

Σ(X|X− ⊕ Y− ⊕ Z−)
) (4)

where ln denotes the natural logarithm.

3.1 Extensions of Granger causality

The linear framework of Granger causality given by equations 2 and 3 has been widely
applied not only in economy and finance (for a comprehensive survey of the literature see i.e.
(Geweke, 1984)), but also in diverse fields of natural sciences, i.e. climatology (see (Triacca,
2005) and references therein) or neurophysiology, where specific problems of multichannel
electroencephalogram recordings were solved by generalizing the Granger causality concept
to multivariate case (Blinowska et al., 2004; Kamiński et. al., 2001). Nevertheless, the limitation
of the present concept to linear relations required further generalizations.

Recent development in nonlinear dynamics (Abarbanel, 1993) evoked lively interactions
between statistics and economy (econometrics) on one side, and physics and other natural
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sciences on the other side. In the field of economy, (Baek & Brock, 1992) and (Hiemstra & Jones,
1994) proposed a nonlinear extension of the Granger causality concept. Their non-parametric
dependence estimator is based on so-called correlation integral, a probability distribution and
entropy estimator, developed by physicists Grassberger and Procaccia in the field of nonlinear
dynamics and deterministic chaos as a characterization tool of chaotic attractors (Grassberger
& Procaccia, 1983).

Another non-linear extension of Granger causality is so called correntropy (Park & Principe,
2008).

A non-parametric approach to non-linear causality testing, based on non-parametric
regression, was proposed in (Bell et al., 1996). Following (Hiemstra & Jones, 1994), (Aparicio
& Escribano, 1998) succinctly suggested an information-theoretic definition of causality which
include both linear and nonlinear dependence.

Another nonlinear extension of the Granger causality approach was proposed by Chen et al.
(Chen et al., 2004) using local linear predictors. An important class of nonlinear predictors
are based on so-called radial basis functions (Broomhead & Lowe, 1988) which were used
for nonlinear parametric extension of the Granger causality concept (Ancona et al., 2004;
Marinazzo, 2006).

In physics and nonlinear dynamics, a considerable interest recently emerged in studying
cooperative behavior of coupled complex systems (Boccaletti et al., 2002; Pikovsky et al., 2001).
Synchronization and related phenomena were observed not only in physical, but also in many
biological systems, i.e. (Schäfer et al., 1998; 1999) or in (Paluš et al., 2001a;b; Quyen et al., 1999;
Schiff et al., 1996; Tass et al., 1998). In such physiological systems it is not only important
to detect synchronized states, but also to identify drive-response relationships and thus the
causality in evolution of the interacting (sub)systems. (Schiff et al., 1996) and (Quyen et al.,
1999) used ideas similar to those of Granger, however, their cross-prediction models utilize
zero-order nonlinear predictors based on mutual nearest neighbors. A careful comparison of
these two papers (Quyen et al., 1999; Schiff et al., 1996) reveals how complex is the problem of
inferring causality in nonlinear systems. While the latter two papers use the method of mutual
nearest neighbors for mutual prediction, (Arnhold, 1999) proposed asymmetric dependence
measures based on averaged relative distances of the (mutual) nearest neighbors.

(Ge et al, 2009) presented a novel approach which is an extension of Granger causal model
and also shares the features of the bilinear approximation of dynamic causal model (David et
al., 2006). The authors demonstrated face discrimination learning-induced changes in inter-
and intra-hemispheric connectivity and in the hemispheric predominance of theta and gamma
frequency oscillations in sheep infero-temporal cortex. The results provide the first evidence
for connectivity changes between and within left and right infero-temporal cortexes as a result
of face recognition learning.

3.2 Application of Granger causality in natural and social sciences

As already said, the Granger causality was introduced by its author in econometry and
applied by him and his followers mainly in econometry, finance and market analysis, for
example in (Granger, 1969), (Poon & Granger, 2003). Other applications in humanities and
social sciences are in linguistics and psychology (Gilbert & Karahalios, 2009) or demography
(Feridun, 2007).
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Granger causality has also been extensively applied in natural sciences, for example in
medicine, especially to neuroscience (Smith et al., 2011) for the functional magnetic resonance
method and (Hesse et al., 2003), analysis of EEG signals or causal interaction in neural
populations (Seth & Edelman, 2007) and in many other papers. Granger causality was applied
as well as in climatology (Kufmann & Stern, 1997), in cognitive and systematical biology, (Kim
et al., 2011), (Fujita et al., 2010) etc.

The main drawback of Granger causality and its extensions as a model dependent method
are their instability which can cause a high variability in the final estimation of errors in (2)
and (3). As an alternative, we will present in the following model-free methods whose formal
definitions apply information-theoretic functionals.

4. Information-theoretical causality measures

Using distributions of random processes and their definitions, introduce the
information-theoretic causality measures determinism into the notion of causality.

(Paluš et al., 2001b) proposed to study synchronization phenomena in experimental time
series by using the tools of information theory. Mutual information, an information-theoretic
functional of probability distribution functions, is a measure of general statistical dependence.
For inferring causal relation, conditional mutual information or so called transfer entropy can
be used.

4.1 Transfer entropy

Transfer entropy as a non-linear causality measure was introduced in (Schreiber, 2000). It
is an information-theoretic measure of time-directed information transfer between jointly
dependent processes.

Let us first remind some basic definitions. The differential entropy of a (continuous) random
vector X taking its values in Rd with the probability density function p(x) is defined by

h(X) = −
∫

Rd
p(x) ln p(x)dx. (5)

If X is a discrete (multivariate) random variable given by a set of possible values {x1, . . . , xn}
then the entropy can explicitly be written as

H(X) = −
n

∑
i=1

p(xi) ln p(xi) (6)

where p denotes the probability mass function of X. With Xt, Yt, Zt defined as before, the
transfer entropy of Y to X given Z is defined as the difference between the entropy of X
conditioned on its own past and the past of Z, and its entropy conditioned, in addition, on
the past of Y:

TY→X|Z = H(X|X− ⊕ Z−)− H(X|X− ⊕ Y− ⊕ Z−) (7)

where H(.|.) is the conditional entropy. For stationary variables, similarly as for Granger
causality, the transfer entropy does not depend on t, so we omitted it from labeling. Transfer
entropy is a a Kullback-Leibler distance of transition probabilities.
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It was shown in (Hlaváčková-Schindler et. al., 2007) that with proper conditioning, the
transfer entropy is equivalent to the conditional mutual information (Paluš et al., 2001b).
The latter, however, is a standard measure of information theory (Cover & Thomas, 1991).
More details on the information-theoretic methods for causality detection can be found in our
review paper (Hlaváčková-Schindler et. al., 2007). Marschinski and Kanz in 2002 suggested
so called effective transfer entropy to reduce the bias of transfer entropy on small data sets
(Marschinski & Kantz, 2002).

4.2 Transfer entropy, other information-theoretical measures and their application in natural

and social sciences

Turning our attention back to econometrics, we can follow further development due to (Diks
& DeGoede, 2001). They applied a nonparametric approach to nonlinear Granger causality
using the concept of correlation integrals (Grassberger & Procaccia, 1983) and pointed out the
connection between the correlation integrals and information theory. (Diks & Panchenko,
2005) critically discussed the previous tests of (Hiemstra & Jones, 1994). As the most
recent development in economics, (Baghli, 2006) proposes information-theoretic statistics for
a model-free characterization of causality, based on an evaluation of conditional entropy.

The information-theoretical approaches to causality detection are model free and can detect
non-linear causal relationships, which are their advantages with respect to the approach of
the linear Granger causality.

The nonlinear extension of the Granger causality based the information-theoretic formulation
has found numerous applications in various fields of natural and social sciences. Let us
mention just a few examples.

The Schreiber’s transfer entropy has been used in climatology, i.e. (Mokhov & Smirnov, 2006;
Verdes, 2005), in physiology, i.e. (Verdes, 2005), in neurophysiology, i.e. (Chávez et al., 2003)
and also in analysis of financial data, i.e.(Marschinski & Kantz, 2002).

(Paluš et al., 2001a;b) applied their conditional mutual information based measures in analysis
of electroencephalograms of patients suffering from epilepsy.

Other applications of the conditional mutual information in neurophysiology are due to
(Hinrichs et. al., 2006) and (Pflieger & Greenblatt, 2005).

Causality or coupling directions in multimode laser dynamics is another diverse field where
the conditional mutual information was applied (Otsuka et al., 2004). (Paluš & A. Stefanovska,
2003) adapted the conditional mutual information approach (Paluš et al., 2001b) to analysis of
instantaneous phases of interacting oscillators and demonstrated suitability of this approach
for analyzing causality in cardio-respiratory interaction (Paluš et al., 2001b). The later
approach has also been applied in neurophysiology (Brea et al., 2006).

More recent applications of information-theoretical functionals in natural sciences (medicine)
are for example in (Van Dijck et al., 2007), inferring and quantifying causality in neuronal
networks (Chicharro et al., 2011), (Vicente et al., 2010), in the computer simulation of
human-robot interaction in (Sumioka et al., 1997) or in the relationship of predator-prey in
etiology (Bochmann, 2007).

The information-theoretical functionals applied in social sciences are mostly in financial
applications: i.e. application of transfer entropy to the information flow between various
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financial time series (Dimpfl et al., 2011) or analysis of the Korean stock market by transfer
entropy (Baek et al., 2006). Applications of transfer entropy in linguistics can be found in the
book (Baeyer, 2005).

Social media (for example Twitter or Facebook) serves to researches as an important source for
studying social interactions. One important problem is the characterization and identification
of influentials, which can be defined as users who influence the behavior of large number
of other users. To characterize influence (in other words a causal relationship) in Twitter,
researchers have suggested number of followers, mentions, and retweets (Cha et al., 2010), and
Pagerank of follower network (Kwak at al., 2010). (Ver Steeg et al., 2011) however argue that
the purely structural measures of influence (causality) can be misleading (Ghosh & Lerman,
2010) and high popularity does not necessarily imply high influence (Romero et al., 2010; Ver
Steeg et al., 2011).

More recent work has used the size of the cascade trees (Bakshy et al., 2011) and
influence-passivity score (Romero et al., 2010). One serious drawback of existing methods
is that they are based on explicit causal knowledge (i.e., A responds to B), whereas for many
data sets such knowledge is not available. (Ver Steeg et al., 2011) suggest a model-free transfer
entropy approach to detect causal relationships and identifying influential users based on
their capacity to predict the behavior of other users.

Having reviewed the relevant literature and also after extensive practical experience, we can
state that the information-theoretic approach to the Granger causality plays an important, if
not a dominant role in analyses of causal relationships in nonlinear systems.

In the following we define a practical criterium for detection of causal relationships among
time series by means of transfer entropy.

4.3 Directionality index

To measure causal structure on small data sets and to allow conclusions about the dominant
direction of the information flow, the (causal) directionality index was defined for transfer
entropy or conditional mutual information by Paluš in (Paluš & A. Stefanovska, 2003) and
analogically in (Rosenblum & Pikovsky, 2001). It is given by

DI(Y → X|Z) =
TY→X|Z − TX→Y|Z
TY→X|Z + TX→Y|Z

, (8)

where X, Y, Z are time series. Paluš et al. in Paluš & A. Stefanovska (2003) consider special
cases for Z, the so called phase increments of X and Y:

DI(Y → X) =
TY→X − TX→Y

TY→X + TX→Y
, (9)

where TY→X = H(X|X− ⊕ ∆X−) − H(X|X− ⊕ Y− ⊕ ∆X−) and ΔX = X(n + k) − X(n) and
similarly TX→Y = H(Y|Y− ⊕ ∆Y−)− H(Y|Y− ⊕ X− ⊕ ∆Y−) and ΔY = Y(n + k)− Y(n).

The index varies between −1 and 1, where negative values imply that the information flow
from X to Y dominates and positive vales indicate a large information flow from Y to X.

The definitions in the literature on the concrete subintervals are unfortunately not united. As
well as there exist other modifications of the causal directionality index in the literature. We
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will use the following definitions. The case when the index equals to −1 or 1 respectively
we call explicit unidirectional causality from Y to X or X to Y respectively. The case when the
directional index is in interval < −1, 0) we call it a prevailing unidirectional causality from X
to Y (and analogically when the directional index is in interval (0, 1 > we call it a prevailing
unidirectional causality from Y to X). In case the directionality index equals to 0, we call it an
absence of unidirectional causality.

5. Gaussianity and causal relationships

To avoid any misunderstanding, we assume that the investigated random processes are given
by time series with a finite number of data (a discrete case). We assume that one knows the
probability (density) distribution of the processes which the time series represent, and these
we define for a continuous case by explicit analytical formulas. By terms a probability density
function or probability distributions which will be used in the text we mean a probability
density distribution function.

(Barnett, 2009) recently proved that if all processes (time series) X, Y, Z defined by (4)
are jointly Gaussian then Granger causality and transfer entropy are equivalent (up to a
multiplication constant of 2). This result provides for the first time a unified framework for
data-driven causal inference that bridges information-theoretic and autoregressive methods.
For practice it means that in the complexity sense cheaper linear test can be applied for
detection of causality, when one knows the time series are Gaussian.

We investigated in our paper (Hlaváčková-Schindler, 2011) the question, to which other
multivariate probability distributions of the time series can be the equivalence (up to a
multiplicative constant) of the two causality measures extended. In the same paper we
extended the equivalence of these two measures to the generalized normal distribution, to
the log-normal distribution and Weinman exponential distribution. Since a lot of phenomena
in nature and social areas have these distributions, have our results practical implications for
studying causal relationships among those phenomena.

In the following we will further investigate generalized Gaussian distributions given
parametrically and causal relationships among them. Let us recall their definition.

5.1 Generalized Gaussian distributions

Generalized Gaussian distributions which was defined in 1995 by Nadarajah in (Nadarajah,
1995) is a parametrical class of distributions containing all Gaussian and Laplacian
distributions as special cases.

Generalized Gaussian density (GGD) is defined as

p(x; α, β) =
β

2αΓ(1/β)
e−(|x|/α)β

(10)

where Γ(.) is the Gamma function Γ(z) =
∫ ∞

0 e−ttz−1dt, z > 0. The parameter α, the scale
parameter, models the width of the pdf peak (standard deviation) and β, the shape parameter,
is inversely proportional to the decreasing rate of the peak.

The generalized Gaussian distribution for β = 2 is the Gaussian distribution and for β = 1 the
Laplacian distribution.
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5.1.1 Special subclasses of generalized Gaussians and their Kullback-Leibler divergence

Let us recall that the Kullback -Liebler distance (KLD) of two parametrical (general)
probability density functions p(x, θp) and q(x, θq) is defined as

D(p(x, θp)||q(x, θq)) = ∑
x

p(x, θp) log
p(x, θp)

q(x, θq)
(11)

where θp and θq are parameters of probability distributions p and q respectively and x ∈ R.

It can be easily shown that for two probability density functions which are generalized
Gaussians p(x, α1, β1), p(x, α2, β2), the Kullback-Leibler divergence can be expressed as

D(p(x, α1, β1)||p(x, α2, β2)) = log
(

β1α2Γ(1/β2)

β2α1Γ(1/β1)

)

+

(

α1

α2

)β2 Γ((β2 + 1)/β1)

Γ(1/β1)
− 1

β1
. (12)

A subclass of generalized Gaussians where the shape parameter β is fixed is defined as

Pβ(α) = {pβ(x; α), α ∈ R+|pβ(x; α) =
β

2αΓ(1/β)
e−(|x|/α)β}. (13)

The Kullback-Leibler divergence between two pdfs from Pβ(α) is

D(pβ(x, α1)||pβ(x, α2)) = log
(

α2

α1

)

+

(

α2

α1

)β 1
β
− 1

β
. (14)

For β = 1 it is a Laplacian distribution. In this case is the Kullback -Liebler distance between
two Laplacian distributions

D(p1(x, α1)||p1(x, α2)) = log
(

α2

α1

)

+

(

α1

α2

)

− 1. (15)

For two Gaussian functions with parameter α1 and α2 and β1 = β2 = 2 holds

D(p2(x, α1)||p2(x, α2)) = log
(

α2

α1

)

+
1
2

(

α1

α2

)

− 1
2

. (16)

5.2 Transfer entropy as a conditional Kullback-Leibler divergence

Define p(X) := {p(x)|x ∈ X} and similarly p(X, Y) := {p(x, y)|x ∈ X, y ∈ Y} for
joint probability distributions. Kullback-Leibler divergence D between two joint probability
density functions p(X, Y) and q(X, Y) can be expressed as

D(p(X, Y)||q(X, Y)) = D(p(X)||q(X)) + D(p(Y|X)||q(Y|X)) (17)

(the chain rule from Cover (Cover & Thomas, 1991).) Similarly, the conditional
Kullback-Leibler divergence can be expressed as

D(p(X, Y|Z)||q(X, Y|Z) = D(p(X|Z)||q(X|Z)) + D(p(Y|X, Z)||q(Y|X, Z)) (18)

where

D(p(X|Z)||q(X|Z)) = ∑
x∈X,z∈Z

p(x, z) log
p(x|z)
q(x|z) . (19)
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Transfer entropy can be in terms of Kullback-Leibler divergence rewritten as

Tx→y|z = D(p(xn+1|x(k)n , y
(l)
n , z

(k)
n )||p(x

(k)
n+1|z

(k)
n ), (20)

where x
(k)
n = (x1

n, . . . , xk
n), z

(k)
n = (z1

n, . . . , zk
n), and y

(l)
n = (y1

n, . . . , yl
n).

We will use the statements from Sections 5.1. and 5.2 in proofs of our results in Section 6.

6. Causality in time series with generalized Gaussian distributions: our results

The time series having generalized Gaussian distributions given parametrically allow to
study and to express the relationships between them by means of their parameters. In the
framework of definition of the directionality index introduced in section 4.3, we investigated
the cases of the prevailing unidirectional causality, the explicit unidirectional causality and
the absence of causality.

In the following we consider generalized Gaussian distributions given parametrically with
the same shape parameter β. We give conditions on the relationships between the parameters
of the involved probability distributions so that causal relationships between them can be
detected by the directionality index.

Theorem 1. Assume that times series X, Y have generalized Gaussian distributions given

parametrically by pX(x, αx, β) =
β

2αxΓ(1/β)
e−(|x|/αx)β

and pY(y, αy, β) =
β

2αyΓ(1/β)
e−(|y|/αy)β

,

αx, αy, β > 0. Then

(i) there is a prevailing unidirectional causality from Y to X, if for the parameters of both distributions

pX(x, αx, β) and pY(y, αy, β) holds
β log( αx

αy
)2+Γ( 1

β )[(
αy
αx
)β−( αx

αy
)β ]

Γ( 1
β )[(

αy
αx
)β+( αx

αy
)β ]−2

∈ (0, 1 >.

(ii) there is a prevailing unidirectional causality from X to Y, if for the parameters of both distributions

pX(x, αx, β) and pY(y, αy, β) holds
β log( αx

αy
)2+Γ( 1

β )[(
αy
αx
)β−( αx

αy
)β ]

Γ( 1
β )[(

αy
αx
)β+( αx

αy
)β ]−2

∈< −1, 0).

(iii) there is an explicit unidirectional causality from Y to X, if for the parameters of both distributions
pX(x, αx, β) and pY(y, αy, β) holds β log( αx

αy
)2 = ( αx

αy
)β[1 + Γ( 1

β )]− 2.

(iv) there is an explicit unidirectional causality from X to Y, if for the parameters of both distributions

pX(x, αx, β) and pY(y, αy, β) holds β log( αx
αy
)2 = 2 − 2Γ( 1

β )(
αy

αx
)β.

(v) there is an absence of unidirectional causality between time series X and Y, if for the parameters of

both distributions pX(x, αx, β) and pY(y, αy, β) holds β log( αx
αy
) = − 1

2 Γ( 1
β [(

αy

αx
)β − αx

αy
)β] and

[(
αy

αx
)β + αx

αy
)β] �= 2.

Proof: The items (i) -(v) can be proven by a direct application of the directionality index and
the expression of transfer entropy by means of Kullback-Leibler divergence for generalized

Gaussian distributions D(X||Y) = 2βαxαy log
αy
αx
+α2

x−α2
y

(αx−αy)2 .
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6.1 Causality detection between two Laplacian distributions

For the Laplacian distributions holds β = 1, which simplifies the conditions set in Theorem 1
for the remaining parameters. Theorem 1 ist then for the remaining parameters reformulated
as follows.

Corollary 1. Assume that times series X, Y have Laplacian distributions given parametrically by

pX(x, αx) =
1

2αx
e−(|x|/αx) and pY(y, αy) =

1
2αy

e−(|y|/αy), αx, αy > 0. Then

(i) there is a prevailing unidirectional causality from Y to X, if for the parameters of both distributions

holds αx
αy

− 1 ≥ log( αx
αy
) >

α2
x−α2

y

2αxαy
.

(ii) there is a prevailing unidirectional causality from X to Y, if for the parameters of both distributions

holds
2 log(

αy
αy
)+

αy
αx
− αx

αy
αy
αx
+ αx

αy
−2

∈< −1, 0).

(iii) there is an explicit unidirectional causality from Y to X, if for the parameters of both distributions
holds log αx

αy
= αx

αy
− 1.

(iv) there is an explicit unidirectional causality from X to Y, if for the parameters of both distributions

holds log αy

αx
=

αy

αx
− 1.

(v) there is an absence of unidirectional causality between time series X and Y, if for the parameters of

both distributions pX(x, αx) and pY(y, αy) holds log αx
αy

= − 1
2 [

αy

αx
− αx

αy
] and

α2
y+α2

x

αxαy
�= 2αxαy.

Proof: The items (i) -(v) can be proven by a direct application of the directionality index and
the expression of transfer entropy by means of Kullback-Leibler divergence for Laplacian
distributions.

6.2 Causality detection between two Gaussian distributions

For the Gaussian distributions holds β = 2 and Theorem 1 for the remaining parameters
simplifies into the following corollary.

Corollary 2. Assume that times series X, Y have Gaussian distributions given parametrically by

pX(x, αx) =
1

αx

√
π

e−(|x|/αx)2
and pY(y, αy) =

1
αy

√
π

e−(|y|/αy)2
, αx, αy > 0. Then

(i) there is a prevailing unidirectional causality from Y to X, if for the parameters of both distributions

pX(x, αx) and pY(y, αy) holds
4 log( αx

αy
)+

√
π[(

αy
αx
)2−( αx

αy
)2]

√
π)[(

αy
αx
)2+( αx

αy
)2]−2

∈ (0, 1 >.

(ii) there is a prevailing unidirectional causality from X to Y, if for the parameters of both distributions

holds
4 log( αx

αy
)+

√
π[(

αy
αx
)2−( αx

αy
)2]

√
π)[(

αy
αx
)2+( αx

αy
)2]−2

∈< −1, 0).

(iii) there is an explicit unidirectional causality from Y to X, if for the parameters of both distributions

holds log( αx
αy
) =

√
π

4 [( αx
αy
)2 + ( αx

αy
)2]− 1

2 .

(iv) there is an explicit unidirectional causality from X to Y, if for the parameters of both distributions

holds log( αx
αy
) = 1 −√

π(
αy

αx
)2.
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(v) there is an absence of unidirectional causality between time series X and Y, if for the parameters

of both distributions pX(x, αx) and pY(y, αy) holds log αx
αy

= −
√

π
4 [(

αy

αx
)2 − ( αx

αy
)2] and (

αy

αx
)2 +

( αx
αy
)2 �= 2√

π
.

Proof: The items (i) -(v) can be proven by a direct application of the directionality index
and the expression of transfer entropy by means of Kullback-Leibler divergence for Gaussian
distributions.

In praxis, for time series given by finite number of observations, one can apply methods for
finding parameters of corresponding generalized Gaussian distributions, which these data
sets interpolate. Knowing these parameters, the statements in our theorem and corollaries
provide simple decision criteria about a presence or absence of causality between two time
series.

7. Conclusion

In this paper we presented linear and non-linear methods on causality detection among
time series, namely Granger causality and transfer entropy, respectively. We discussed their
applications both in natural and social sciences. For the purpose of selecting a method for
causality detection among time series, the approach of using statistical hypothesis testing
techniques, applied in G-causality has several difficulties. The issue of multiple testing which
is being done sequentially in general does not provide an optimal solution. In addition, there
is no objective guideline for the choice of the input of the individual test (i.e. the size of
the time series interval) and it is unclear how would such a choice influence the detection of
causality. The main drawback of model dependent methods for causality detection is their
instability. As expected, with a small or moderate number of observations, models close to
each other are often hard to distinguish and the values of the model selection criterion are
usually close to each other. A small change on the data may result in a choice of a different
hypothesis. As a consequence, the causality detection based on the selected hypothesis may
have a high variability (ill-posedness of the problem). The main conceptual advantage of the
Granger causality model over the information-theoretical approaches to causality detection
is its linearity and its straightforward generalization for multivariate time series testing. The
main conceptual drawback of Granger causality is its inability to detect eventual non-linear
causal relationships.

For the reasons stated above, in this paper we focused on causality detection by transfer
entropy. We dealt with the Gaussian and some non-Gaussian distributions of natural
phenomena as well of phenomena occurring in social sciences. We presented original
and simple criteria for finite time series having generalized Gaussian distributions given
parametrically representing natural or social phenomena which decide about a presence or
absence of causality between them.

Our results can considerably simplify current more computationally demanding data
processing methods applied in natural and social sciences for detection of causal relationships.
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Hlaváčková-Schindler, K. (2011) Equivalence of Granger causality and transfer entropy: A
generalization. Applied Mathematical Sciences 5(73) 3637-3648.

Hume, D. (1896) A Treatise of Human Nature. Selby-Bigge, ed., Clarendon Press.
Illari, P.M., Russo, F. & Williamson, J. (2011) Causality in the Sciences. Oxford University Press.
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