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1. Introduction

Electron scattering and transport through quantum dots (QDs) in a semiconductor
nanostructure have been intensively studied (Engel & Loss, 2002; Fransson et al., 2003;
Konig & Martinek, 2003; Koppens et al., 2006; Qu & Vasilopoulos, 2006; Zhang et al., 2002).
The spin-dependent transport properties are of particular interest for its possible applications,
e.g., the QD spin valves (Konig & Martinek, 2003), the quantum logic gates using coupled
QDs, as well as the spin-dependent transport in single-electron devices (Seneor et al., 2007),
etc.. In such systems, the electron-electron exchange potential and the electron spin states
have been utilized and manipulated (Burkard et al., 2000; Gundogdu et al., 2004; Sarma et al.,
2001; Wolf et al., 2001). A thorough quantitative understanding of spin-dependent transport
properties due to electron-electron interaction is therefore important for a successful
construction of these devices. Theoretically the transport through QDs has been studied
by different approaches such as transfer matrix, nonequilibrium Green’s functions, random
matrix theory, as well as those methods built on the Lippmann-Schwinger (L-S) equation
(Castelano et al., 2007a;b).

In this chapter, we develop a theoretical method to study electron scattering through
a quantum dot (QD) of N-electrons embedded in a semiconductor nanostructure. We
construct the scattering equations including electron-electron interaction to represent the
process of a free electron scattered by the QD confined in a two-dimensional (2D) or
in a quasi-one-dimensional (Q1D) semiconductor system. The generalized multichannel
Lippmann-Schwinger equations(Bransden & McDowell, 1977; Joachain, 1975) are solved for
these systems by using the method of continued fractions (MCF). As an example, we
apply this method to a one-electron QD case and obtain scattering cross-sections in 2D and
conductances in Q1D systems resulting from both the singlet- and triplet-coupled continuum
states of two electrons (incident and QD electron) during the electron transport.

This chapter is organized as follows. In Sec. 2 we present our general theoretical approach and
numerical method. In Sec. 3, we describe the electron scattering through a quantum dot in a
2D system. The scattering for a quantum dot confined in a Q1D system is presented in Sec. 4.
In Sections 5 and 6, we show our numerical results for the scattering through a one-electron
QD within both the one-channel and the multichannel models. We conclude in Sec. 7.
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2. Theoretical approach

2.1 The system: Incident electron + quantum dot

The system under investigation consists of an incident free electron and a quantum dot of N
electrons as shown schematically in Fig. 1. The incident electron is scattered by both the QD
potential and by the confined electrons inside the QD. The Schrödinger equation of the system
is given by

(H − Ei)Ψi(τ; rN+1, σN+1) = 0 , (1)

where τ represents collectively the spatial and spin coordinates of the N electrons localized
in the QD and rN+1 = (xN+1, yN+1) and σN+1 denote the spatial and spin coordinates of
the incident electron. The total energy of the system is Ei, where the subscript i represents a
set of quantum numbers required to uniquely specify the initial quantum state of the system.
Explicitly, the total Hamiltonian of the system can be written as

H = H0(rN+1) + HQD(τ) + Vint(r1, r2, ..., rN , rN+1) , (2)

where H0(rN+1) = −h̄2∇2
N+1/2m∗ + VQD(rN+1), HQD(τ) is the Hamiltonian of the QD of N

electrons, and Vint is the interaction potential between the incident electron at rN+1 and the N
electrons in the QD

Vint(r1, r2, ..., rN , rN+1) =
e2

ǫ∗0

N

∑
i=1

1

|rN+1 − ri|
, (3)

where ǫ∗0 is the dielectric constant of the semiconductor material and m∗ is the electron
effective mass. The Hamiltonian for an unperturbed QD is given by

HQD(τ) =
N

∑
i=1

(

− h̄2

2m∗∇
2
i + VQD(ri)

)

+
e2

ǫ∗0

N

∑
i �=j

1

|ri − rj|
, (4)

where the first term in the rhs of Eq. (4) describes N independent electrons in the QD of
confinement potential VQD(r) and the second term gives the Coulomb interactions among
these electrons. The eigenenergy and eigenfunction of this N-electron QD are denoted by εn
and Φn, respectively. They are determined by the following Schrödinger equation

HQD(τ)Φn = εnΦn, (5)

Fig. 1. Representation of the incident electron and the target, which in this case is a quantum
dot containing 3 electrons.
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Electron Scattering Through a Quantum Dot 3

with n = 0, 1, 2, 3... . The ground state of the QD is labeled by n = 0 and the excited states
by n ≥ 1. The eigenstates of the QD can be obtained using, e.g., the restricted or unrestricted
Hartree-Fock (HF) methods (Szabo & Ostlund, 1982).

2.2 Scattering equations including electron-electron interaction

In order to extract scattering properties of the system (QD + incident electron), we can write
the total wave-function Ψi of the system as a superposition of the QD wave-function Φn and
the incident electron wave-function,

|Ψi〉 =
∞

∑
n=0

|A(Φnψni)〉, (6)

where ψni describes the wave-functions of the incident (scattered) electron in the continuum
states corresponding to a quantum transition from an initial state i to a final state n. The
operator A warrants the antisymmetrization property between the QD electrons and the
incident electron, defined by,

A =
1√

N + 1

N+1

∑
p=1

(−1)N+1−pPN+1,p (7)

where PN+1,p is the permutation operator which exchanges the electrons at rN+1 and rp. From
Eqs. (1), (2) and (6), we obtain

∞

∑
n=0

(

− h̄2

2m∗∇
2
N+1 + VQD + HQD + Vint

)

|A(Φnψni)〉 = Ei

∞

∑
n=0

|A(Φnψni)〉. (8)

The total energy of the system Ei is composed of two parts. The first part is the kinetic energy
of the incident (scattering) electron and the second is the energy of the N-electron QD in a

particular configuration, i.e., Ei = h̄2k2
i

2m∗ + ε i = h̄2k2
n

2m∗ + εn, for different eigenstates of the QD
(i, n = 0, 1, 2, ...) or different scattering channels. These different channels appear because the
incident electron can probably be scattered inelastically, leaving the QD in a different state
from its initial. A projection of Eq. (8) onto a particular QD state |Φm〉 leads to the following
scattering equation for the incident electron,

h̄2

2m∗
(
∇2 + k2

m

)
ψmi(r) =

∞

∑
n=0

Vmn(r)ψni(r) (9)

for i, m = 0, 1, 2, ..., where r = rN+1 and Vmn = Vst
mn + Vex

mn with Vst
mn the static potential and

Vex
mn the exchange potential due the nonlocal interaction, giving by

Vst
mn(r) = VQD(r)δmn +

e2

ǫ∗0

N

∑
j=1

〈Φm| e
−λ|r−rj|

|r − rj|
|Φn〉, (10)

403Electron Scattering Through a Quantum Dot
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and

Vex
mn(r)ψni(r) = (H0(r) − h̄2k2

m
2m∗ )〈Φm|A′(Φnψni)〉 +

e2

ǫ∗0

N

∑
j=1

〈Φm| 1

|r − rj|
|A′(Φnψni)〉, (11)

respectively, where A′ = ∑N
p=1(−1)N+1−pPN+1,p. In Eq. (10) we have introduced a screening

e−λ|r−r′| on the direct Coulomb potential for two reasons: (i) the ionized impurities in
the semiconductor nanostructure and/or the external electrodes screen the direct Coulomb
potential and (ii) at |r| → ∞ limit the scattering potential should decay faster than 1/|r|.
The screening length is given by λ−1. Notice that we do not consider the screening on the
exchange potential because this potential is non-zero inside the QD only. Inclusion of the
screening on the exchange potential in Eq. (11) is possible but it will not affect much our
results and considerably complicates the numerical calculation. The scattering equation is a
system of coupled integro-differential equations. The corresponding generalized L-S equation
for such a multichannel scattering problem is given by

ψmi(r) = ϕi(r)δmi +
∞

∑
n=0

∫
dr′G(0)(km, r, r′)Vmn(r′)ψni(r′), for i, m = 0, 1, 2 . . . (12)

with an incident plane wave ϕi(r) = eiki.r = eikix in the x-direction.

2.3 Method of continued fractions

The method of continued fractions (MCF) (Horacek & Sasakawa, 1984) is an iterative method
to solve the L-S equation. To apply this method for a multi-channel scattering we have firstly
to rewrite Eq. (12) in a matrix form:

Ψ̃ = ϕ̃ + G̃(0)ṼΨ̃. (13)

In the first step to start the MCF, we use the scattering potential Ṽ = V(0) and the free electron

wave-function ϕ̃ = |ϕ(0)〉 in Eq. (13). Afterwards, we define the nth-order weakened potential
as

V(n) = V(n−1) − V(n−1)|ϕ(n−1)〉〈ϕ(n−1)|V(n−1)

〈ϕ(n−1)|V(n−1)|ϕ(n−1)〉
, (14)

where
|ϕ(n)〉 = G̃(0)V(n−1)|ϕ(n−1)〉. (15)

The nth-order correction of the T matrix can be obtained through

T(n) = 〈ϕ(n−1)|V(n−1)|ϕ(n)〉 + 〈ϕ(n)|V(n)|ϕ(n)〉

×
[
〈ϕ(n)|V(n)|ϕ(n)〉 − T(n+1)

]−1
〈ϕ(n)|V(n)|ϕ(n)〉. (16)

Hence, we can stop the iteration when the potential V(N) becomes weaker enough. In the

numerical calculation, we start with T(N+1) = 0 and evaluate T(N), T(N−1), ..., and T(1).

404 Fingerprints in the Optical and Transport Properties of Quantum Dots
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Electron Scattering Through a Quantum Dot 5

Therefore the T matrix is given by

T = 〈ϕ(0)|V(0)|ϕ(0)〉 + T(1) 〈ϕ(0)|V(0)|ϕ(0)〉
〈ϕ(0)|V(0)|ϕ(0)〉 − T(1) . (17)

3. Quantum dot embedded in a two-dimensional system

The Green’s function G(0)(k, r, r′) in 2D is given by

G(0)(k, r, r′) = − 2m∗

h̄2
(i/4)H(1)

0 (k|r − r′|), (18)

where H(1)
0 is the usual zero order Hankel’s function (Morse & Feshbach, 1953).

At |r| → ∞ limit, the asymptotic form of Eq. (12) for the scattered wave-function in a 2D
system is given by

ψmi(r) −→
|r|→∞

eikixδmi +
2m∗

h̄2

√
i

km

e+ikmr
√

r
fkm,ki (θ), (19)

where fkm,ki
(θ) is the scattering amplitude

fkm,ki(θ) = − 1

4

√
2

π
< km|T(E)|ki > (20)

with

< km|T(E)|ki >=
∞

∑
n=0

∫
dr′e−ikm.r′Vmn(r′)ψni(r′).

The momenta of the initial and final states of the incident (scattered) electron are ki and km,
respectively, and θ is the scattering angle between them. It is evident from Eq. (12) and its
boundary condition Eq. (19) that the different scattering channels are coupled to each other
through the interaction potential Vmn.

In the above procedure in dealing with the electron scattering through a QD, both the
electron-electron exchange and correlation interactions are present in this system. However,
a complete correlation effect is difficult to include in a practical calculation. In order to do so,
besides an exact solution for the N-electron QD, a full sum over all the intermediate states n
in the scattering equation [Eq. (9)] is needed, which is a formidable task in a self-consistent
calculation. In an alternative way, the correlation effects can be considered by adding an
effective correlation potential in the scattering equation (Joachain, 1975). In the present
work, we focus on the exchange effects on the scattering process and limit the sum over
n to a few lowest energy levels of the QD. For this reason, we prefer to call the nonlocal
interaction potential Vex

mn in Eq. (11) as exchange potential, though the correlation can be
partially included.

The differential cross-section (DCS) for a scattering from initial state i (i.e. the incident electron

of kinetic energy Ei = h̄2k2
i

2m∗ and the QD in the state ε i) to final state m (i.e. Em = h̄2k2
m

2m∗ and the
QD in the state m) is given by

σmi(θ) =
km

k2
i
| fkm,ki

(θ)|2. (21)

405Electron Scattering Through a Quantum Dot
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The integral cross-section (ICS) which is an energy dependent quantity can be found by

Γmi(Ei) =
∫ 2π

0
σmi(θ)dθ. (22)

When the incident electron is scattered to a state of the same energy and the QD keeps in
the same state (m = i), the scattering is called elastic. Otherwise, the scattering is inelastic.
A possible scattering is the so-called super-elastic scattering (Em > Ei) where the incident
electron is scattered out with a higher energy by an QD initially in an excited state. Because
the different scattering channels are coupled to each other, we have to solve the multichannel
L-S equation to obtain the scattering probabilities through different channels simultaneously
for the same total energy of the system.

3.1 Partial wave expansion

In two dimensions the angular momentum basis is given by (Adhikari, 1986),

Θl(φ) =
√

κl
2π

cos(lφ) (23)

where l = 0, 1, 2, ..., κl = 2 for l �= 0 and κl = 1 for l = 0. In applying the partial
wave expansion in the multi-channel scattering problem Eq. (12), we expand all functions,

i.e., the incident free electron wavefunction ϕi(r), the Green’s function G(0)(km, r, r′), and the
scattered electron wavefunction ψmi(r), in the angular momentum basis as follows,

ϕi(r) =
∞

∑
l,l ′=0

√
κl
2π

il Jl(kr)δll ′Θl(φr)Θl ′(φk), (24)

and

ψmi(r) =
∞

∑
l,l ′=0

ψl,l ′
mi (k, r)Θl(φr)Θl ′(φk), (25)

where φr and φk are the variables due to expansion on the position r and momentum k,
respectively. The expansion on the Green’s function yields the following expression,

G(0)(km, r, r′) = − iπ
2

∞

∑
l=0

√
κl
2π

Jl(kmr<)H(1)
l (kmr>)Θl(φr)Θl(φr′), (26)

where k = ki, r< = min(r, r′), r> = max(r, r′), Jl(kmr) (Yl(kmr)) is the Bessel (Neumann)

function and H(1)
l (kmr) = Jl(kmr) + iYl(kmr) is the Hankel function (Morse & Feshbach, 1953).

Using the partial wave expansion the Lippmann-Schwinger equation can be reduced to a set
of radial equations. The radial Lippmann-Schwinger equation corresponding to Eq. (12) is
given by,

ψl,l ′
mi (k, r) =

√
κl
2π

il Jl(kr)δll ′δmi +
∞

∑
l ′′=0

∞

∑
n=0

∫ ∞

0
r′dr′gl

0(km, r, r′)V l,l ′′
mn (r′)ψl ′′,l ′

ni (r′), (27)

where

gl
0(km, r, r′) =

−iπ
2

√
κl
2π

Jl(kmr<)H(1)
l (kmr>) (28)

406 Fingerprints in the Optical and Transport Properties of Quantum Dots
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and

V l,l ′′
mn (r′) =

∫ 2π

0
dφr′Θl(φr′ )Vmn(r′)Θl ′′(φr′). (29)

We see that, when the partial wave method is used, there is a change in the continuum variable
φ to a partial wave l. Consequently, the wave function ψmi(r) becomes a matrix function with

elements ψl,l ′
mi (k, r).

The partial wave expansion for the exchange potential is a little subtle due to its non-locality.
Here, we show some details about how the partial wave expansion is applied in this case. We
take as an example the exchange potential which couples the channels n and m for a single
electron spin-orbital α [see Eq. (11)],

Vex
mn(r)ψni(r) = − e2

ǫ∗0
ζn

α(r)
∫

dr1ζm∗
α (r1)

1

|r − r1|
ψni(r1). (30)

The partial wave expansion of the spin-orbital function is given by

ζn
α(r) =

∞

∑
l=0

ζ l
nα(r)Θl(φr). (31)

The product of two different functions can also be expanded in the angular momentum basis
as follows,

ψni(r)ζm∗
α (r) = ∑

l,l ′
Πl,l ′

ni;mα(r)Θl(φr)Θl ′(φk), (32)

where

Πl,l ′
ni;mα(r) = ∑

λ,λ′

ψλ,l ′
ni (k, r)ζλ′∗

mα (r)
2
√

2π

√
κλκλ′

κl

(
δl,λ+λ′ + δl,|λ−λ′|

)
. (33)

Using the above relation, we obtain Eq. (30) in the partial wave expansion form,

Vex
mn(r)ψni(r) = − e2

ǫ∗0
ζn

α(r) ∑
l,l ′

Θl(φr)Θl ′ (φk) (34)

×
∫ ∞

0
r1dr1Πl,l ′

ni;mα(r1)
∫ 2π

0

Θl(θ)dθ
√

r2 + r2
1 − 2rr1 cos(θ)

,

where θ = φr − φr1 . To solve the angular integral we use the generating function of the
Legendre Polynomials (Morse & Feshbach, 1953),

1
√

r2 + r2
1 − 2rr1 cos(θ)

=
∞

∑
j=0

r j
<

r j+1
>

Pj(cos θ), (35)

where r< = min(r, r1), r> = max(r, r1) and Pj(cos θ) are the Legendre Polynomials. Thus the
angular integral that we need to solve is

cl,j =
∫ 2π

0
dθΘl(θ)Pj(cos θ). (36)

407Electron Scattering Through a Quantum Dot
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Substituting the Eqs. (35) and (36) into Eq. (34) we finally obtain the exchange potential

Vex
mn(r)ψni(r) = − e2

ǫ∗0
ζn

α(r) ∑
l,l ′

Θl(φr)Θl ′(φk)
∞

∑
j=0

∫ ∞

0
r1dr1Πl,l ′

ni;mα(r1)cl,j
r j
<

r j+1
>

. (37)

In the numerical calculations, we firstly evaluate the coefficients cl,j given by Eq. (36). Then
the integration on r1 in Eq. (37) is performed for each iteration in the MCF. Finally we multiply

the result by − e2

ǫ∗0
ζn

α(r).

Within the one-channel approximation (i = m = n = 0), the calculations can be further
simplified by using the concept of phase shift. Considering a central potential V(r) (l = l ′ =
l ′′), Eq. (27) becomes

ψl(k, r) =
√

κl
2π

il Jl(kr) +
∫ ∞

0
r′dr′gl

0(k, r, r′)V(r′)ψl(k, r′) (38)

where ψl(k, r) = ψl,l
00(k, r). To define the phase-shift we write the asymptotic form of the above

equation as

ψl(k, r) −→
r→∞

Al

√
1

kr
cos(kr − lπ

2
− π

4
− ∆l), (39)

where ∆l is the phase-shift. Comparing the coefficients of eikr and e−ikr of Eq. (39) with the
asymptotic form of Eq. (38) one can obtain the following relations

Al = 2

√
κl
π

ilei∆l , (40)

and

ei∆l sin ∆l =
−π
2il

∫ ∞

0
r′dr′ Jl(kr′)V(r′)ψl(r′). (41)

On the other hand, from the definition of the scattering amplitude in Eq. (19), we can express
the scattering amplitude fk0,k0

in terms of the phase-shift (Adhikari, 1986) ∆l ,

fk0,k0
(θ) = 2

∞

∑
l=0

√
κl
π

ei∆l sin ∆lΘl(θ). (42)

The corresponding DCS is σ00(θ) =
∣∣ fk0,k0

(θ)
∣∣2

/k and the ICS is given by

Γ00 =
4

k

∞

∑
l=0

κl sin2 ∆l . (43)

4. Quantum dot confined in a quasi-one-dimensional structure

In this section, we study the electron scattering through a QD confined in a
quasi-one-dimensional structure. The quantum dot is considered to be confined in the
y-direction and the incident (scattered) electron moves in the x-direction. Far from the QD,
the electron is free to propagate in the x-direction. In this limit, the Schrödinger equation in
the y-direction is given by

[

− h̄2

2m∗
d2

dy2
+ Vc(y)

]

χn(y) = εnχn(y). (44)

408 Fingerprints in the Optical and Transport Properties of Quantum Dots
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Electron Scattering Through a Quantum Dot 9

We choose the confining potential as being parabolic Vc(y) = 1
2 m∗ω2

yy2. The solution of
equation (44) for this potential is given by (Merzbacher, 1970):

χn(y) =
e
− y2

2l2y

(πl2
y)1/4

Hn( y
ly )

√
2n!

(45)

where Hn are the Hermite’s polinomials (Morse & Feshbach, 1953), εn = h̄ωy(n + 1/2), and

ly =
√

h̄/m∗ωy. The eigenfunctions χn(y) are also called transversal modes.

As the basis composed of χn(y) is complete, we are able to expand the wave-function in such
a system on this basis,

Ψi(r) =
∞

∑
n=0

χn(y)ψni(x), (46)

where i refers to the incident wave-vector. By introducing this result into the Schrödinger
equation, multiplying it by χ∗

m(y), and integrating in the y-direction, we find the following
coupled equations:

(
h̄2

2m∗
d2

dx2
+

h̄2k2
n

2m∗

)

ψni(x) =
∞

∑
m=0

Vm,n(x)ψmi(x), (47)

where h̄2k2

2m∗ = h̄2k2
n

2m∗ + εn and

Vm,n(x) =
∫

dyχ∗
m(y)V(r)χn(y). (48)

The Green’s function is defined as being the solution of the equation:
(

h̄2

2m∗
d2

dx2
+

h̄2k2
n

2m∗

)

Gn(x, x′) = δ(x − x′), (49)

which allows to rewrite the solution of Eq. (47) as a Lippmann-Schwinger equation in
one-dimension,

ψni(x) = ϕn(x) +
2m∗

h̄2

∞

∑
m=0

∫
dx′Gn(x, x′)Vm,n(x′)ψmi(x′), (50)

where ϕn(x) = exp(iknx)δn,i/
√

kn. The Green’s function to each sub-band in a Q1D system is
equal to:

Gn(x, x′) =
−i
2kn

eikn|x−x′|. (51)

Because the energy of the incident electron is h̄2k2

2m∗ = h̄2k2
n

2m∗ + εn, there is the possibility of εn >
h̄2k2

2m∗ and of kn being a pure imaginary number. In such a situation, we must replace kn by i|kn|
in Eq. (50) and the eigenfunctions ψni(x) are not localized anymore.

Taking the limit x → ∞ in Eq. (50), we obtain:

ψni(x) −→
x→∞

eiknx
√

kn

[

δni +
m∗

ih̄2

∞

∑
m=0

∫
dx′

e−iknx′

√
kn

Vm,n(x′)ψmi(x′)

]

. (52)

409Electron Scattering Through a Quantum Dot
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The scattering matrix T can be found through the following result

Tni =
∞

∑
m=0

∫ ∞

−∞
dx′

e−iknx′

√
kn

Vm,n(x′)ψmi(x′). (53)

Another quantity that we can obtain is transmission probability tni, which by definition
satisfies the following equation (Vargiamidis et al., 2003):

Ψi(r) −→
x→∞

∞

∑
n=0

tni
eiknx
√

kn
χn(y). (54)

Multiplying Eq. (52) by χn(y), then adding n = 0 to ∞, and comparing the resulting equation
to Eq. (54) we obtain the following expression for tni:

tni = δni +
m∗

ih̄2

∞

∑
m=0

∫ ∞

−∞
dx′

e−iknx′

√
kn

Vm,n(x′)ψm(x′). (55)

So we can relate the matrix T with the scattering transmission probability tni by:

tni = δni +
m∗

ih̄2
Tni. (56)

These quantities are useful to determine the conductance (Fisher & Lee, 1981;
Imry & Landauer, 1999). In the Q1D system with multiple scattering channels, the
conductance can be obtained by using the Landauer-Büttiker equation (Buttiker et al., 1985;
Landauer, 1957; 1970; 1975),

G =
e2

πh̄
Tr(tt†), (57)

where t is the matrix whose elements are exactly given by Eq. (55).

5. Applications and numerical results

In the previous sections, we presented a theoretical model that describes the quantum
scattering through a quantum dot with N-electrons confined. However, we apply this model
to the case where only one electron is confined in the quantum dot. Although this is the
simplest case, it reveals basic information for a more complicated system. In this section, we
describe the details of this particular case considering the elastic and inelastic scattering in the
2D system in sub-sections 5.1 and 5.2, respectively. The scattering through a confined QD in
the Q1D system will be discussed in sub-section 5.3.

5.1 Elastic scattering

Here we describe in details how the elastic scattering can be accounted for. To do so, we start
by considering the electron in the ground state of energy ε1. The total Hamiltonian for this
system (incident electron + confined electron) is given by:

H(r1, r2) =
−h̄2∇2

2

2m∗ + VQD(r2) + HQD(r1) + V(r1, r2) (58)

where HQD is the QD Hamiltonian and V(r1, r2) is the Coulomb interaction potential between
the pair of electrons. The total wave function should be written as linear combination of
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Slater determinants, as shown in sub-section 2.2. There are four possible combinations for
two electrons,

|Φ1, ψ11 >=
1√
2

∣∣∣∣
Φ1(r1)β(1) ψ11(r1)β(1)
Φ1(r2)β(2) ψ11(r2)β(2)

∣∣∣∣ , (59)

|Φ1, ψ11 >=
1√
2

∣∣∣∣
Φ1(r1)α(1) ψ11(r1)α(1)
Φ1(r2)α(2) ψ11(r2)α(2)

∣∣∣∣ , (60)

|Φ1, ψ11 >=
1√
2

∣∣∣∣
Φ1(r1)α(1) ψ11(r1)β(1)
Φ1(r2)α(2) ψ11(r2)β(2)

∣∣∣∣ , (61)

|ψ11, Φ1 >=
1√
2

∣∣∣∣
ψ11(r1)α(1) Φ1(r1)β(1)
ψ11(r2)α(1) Φ1(r2)β(2)

∣∣∣∣ , (62)

where Φ1(r) is the wave function of the confined electron in the QD, α(i) and β(i) correspond
to spin-up (↑) and spin-down (↓), respectively. The index (i) denotes to which electron the
spin refers to.

Because the total Hamiltonian (Eq. (58)) commutes with the total spin operator (S2) and its
component in the z-direction (Sz), the Hamiltonian eigenfunctions must be eigenfunctions of
both Sz and S2. The first two determinants of Slater in equations (59 and 60) are eigenfunctions
of Sz and S2, but the equations (61 and 62) are not eigenfunctions of S2. Thus, we have to
construct linear combinations between these Slater determinants (Eqs. (61 and 62)) in order to
obtain eigenfunctions of Sz and S2. These combinations can be written as follows:

|Ψs >=
1√
2

[
|Φ1, ψ11 > +|ψ11, Φ1 >

]
=

=
1√
2

[
ψ11(r1)Φ1(r2) + ψ11(r2)Φ1(r1)

] ( | ↓, ↑> −| ↑, ↓>√
2

)
(63)

and

|Ψt >=
1√
2

[
|Φ1, ψ11 > −|ψ11, Φ1 >

]
=

=
1√
2

[
ψ11(r1)Φ1(r2) − ψ11(r2)Φ1(r1)

] ( | ↓, ↑> +| ↑, ↓>√
2

)
. (64)

Equation (63) corresponds to the wave function of the singlet state and Equation (59, 60 and
64) correspond to wave functions of the triplet states. Since the Hamiltonian (Eq. (58)) does
not have a explicit spin-dependent potential, the state of total spin is conserved before and
after the collision. In such a way, the total wave function of the system (incident electron +
confined electron) can be written as:

Ψ(r1, r2) = Φ1(r1)ψ11(r2) ± Φ1(r2)ψ11(r1), (65)

where the positive (negative) sign refers to the spin singlet (triplet) state. In order to determine
the potential for the scattered electron, we have to calculate the following equation:

< Φ1(r1)|H(r1, r2)|Ψ(r1, r2) >= E < Φ1(r1)|Ψ(r1, r2) >, (66)

where

E = ε1 +
h̄2k2

1

2m∗ . (67)
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The left hand side of Eq. (66) can be rewritten as:

< Φ1|H|Ψ >=< Φ1|H1
QD|Ψ > + < Φ1|H2

QD|Ψ > + < Φ1|V1,2|Ψ >, (68)

where the superscript is related to each electron the operator is operating on. The first term of
Equation (68) is equal to:

< Φ1|H1
QD|Ψ >= ε1

[
< Φ1|Φ1 > ψ11± < Φ1|ψ11 > Φ1

]
. (69)

While the second term of Eq. (68) is given by

< Φ1|H2
QD|Ψ >=< Φ1|Φ1 > H2

QDψ11 ± ε1 < Φ1|Φ1 > ψ11. (70)

The third term of Eq. (68) can be written as:

< Φ1|V1,2|Ψ >=< Φ1|V1,2|Φ1 > ψ11± < Φ1|V1,2|ψ11 > Φ1. (71)

By substituting Eqs.(69, 70, and 71) into Eq. (68), we obtain the following result:

(H2
QD − h̄2k2

1

2m∗ )ψ11+ < Φ1|V1,2|Φ1 > ψ11 ±

±
(

< Φ1|V1,2|ψ11 > Φ1 + (ε1 −
h̄2k2

1

2m∗ ) < Φ1|ψ11 > Φ1

)

= 0. (72)

The previous equation can be further simplified as

− h̄2

2m∗ (∇2 + k2
1)ψ11(r) +

[
Vst(r) ± Vex(r)

]
ψ11(r) = 0, (73)

where

Vst(r) =< Φ1|V1,2|Φ1 > +VQD(r), (74)

and

Vex
11 (r)ψ11(r) = Φ1(r)

[

< Φ1|V1,2|ψ11 > +(ε1 −
h̄2k2

1

2m∗ ) < Φ1|ψ11 >

]

. (75)

Finally, the Lippmann-Schwinger equation corresponding to Eq. (73) is given by

ψ11(r) = ϕ1(r) +
∫

dr′G(0)k1, r, r′)
[
Vst(r′) ± Vex(r′)

]
ψ11(r′), (76)

which can be numerically solved by the method of continuous fractions.

From Eq. (76), we observe that the exchange potential is different when the two electrons
form a singlet spin state (plus sign) or triplet spin state (minus sign). In order to calculate
the spin-dependent scattering, we have to calculate separately the scattering considering the
singlet state and the triplet state. Moreover, the cross sections are given by

σs
11(θ) =

1

k1
| f s

11(θ)|2, (77)
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for the singlet state, and

σt
11(θ) =

1

k1
| f t

11(θ)|2, (78)

for the triplet state, where

f s
11(θ) = − 1

4

√
2

π

∫
d2r′e−ik′

1.r′ [Vst(r′) + Vex(r′)]ψ11(r′), (79)

f t
11(θ) = − 1

4

√
2

π

∫
d2r′e−ik′

1.r′ [Vst(r′) − Vex(r′)]ψ11(r′). (80)

A quantity that we can obtain is the spin-unpolarized cross section (su-ICS), which is given
by the statistical average of possible configurations, i.e.,

σsu
11 (θ) =

1

4k1
(| f s

11(θ)|2 + 3| f t
11(θ)|2) (81)

where the factor three that multiplies the squared modulus of the scattering amplitude of
the triplet state is due to the existence of three different triplet states, which are scattered with
equal probability. Another quantity that we can extract from the calculation is the spin-flip (sf)
cross-section (da Paixão et al., 1996; Hegemann et al., 1991), which measures the probability of
the incident electron changes its spin after being scattered,

σs f
11 (θ) =

1

4k1
| f t

11(θ) − f s
11(θ)|2 (82)

In the last expression the factor three does not appear because only one of the triplet states can
change its spin 1√

2
(| ↑↓> +| ↓↑>).

5.2 Multi-channel scattering

A very important process that we can study by using the previous formalism is the
multi-channel scattering, which reveals the probability of an incident electron to promote an
excitation or the decay of electrons within the quantum dot. A priori the number of channels of
excitation and decay are infinite, but obviously when doing calculations, this number must be
truncated. In the case of the parabolic potential of a 2D quantum dot, the first excited energy
level is doubly degenerate with an angular momentum l = ± 1. To consider the possible
channels of scattering described by the ground state ǫ1 and by the first excited state ǫ2, we
must consider three coupled channels because the degeneracy of the first excited energy level
must be included in the calculation. As the probability of finding the electron in the ground
state initially is higher and as the excitation to the first excited state is more likely, we consider
only three coupled channels. The calculation details can be found in Ref.(Castelano, 2006).
Here we will present some numerical results in Section 6.2.

5.3 Scattering through the QD confined in the Q1D structure

As already discussed in Section 4, the Lippmann-Schwinger equation for the confined QD
includes several sub-bands. However, as a first example, we consider only the lowest
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transversal sub-band due to the confinement in the y-direction. Thus, the L-S equation for
a single sub-band is given by:

ψ1(x) =
eik1x
√

k1
+

2m∗

h̄2

∫
dx′G1(x, x′)V1,1(x′)ψ1(x′), (83)

where h̄2k2

2m∗ = h̄2k2
1

2m∗ + ε1. The potential and Green’s function for the one sub-band case are
respectively given by

V1,1(x) =
∫

dyχ∗
1(y)V(r)χ1(y), (84)

and

G1(x, x′) =
−i
2k1

eik1|x−x′|. (85)

We also consider only one confined electron in the QD. The electron wave function of the
ground state of the QD can be approximated as

Φ1(x, y) =
1

√
πlxly

exp

(

− x2

2l2
x
− y2

2l2
y

)

, (86)

where lx =
√

h̄/m∗ωx and ly =
√

h̄/m∗ωy. Here we consider the QD confining potential in
the x-direction as a finite parabolic one with confinement frequency ωx. The calculation of
the exchange potential is more complicated in the Q1D system. However, when we use the
wave function of the harmonic oscillator, we can partially obtain analytical expressions for the
exchange potential.

Just as in the elastic scattering in the 2D case without extra confinement, the exchange
potential is different when the two electrons form a singlet or a triple spin state. So, we have to
calculate separately the scattering for the different spin sates. The T matrices can be obtained
by the following equations:

Ts
11 =

∫ ∞

−∞
dx′

e−ik1x′

√
k1

[
Vst

1,1(x′) + Vex
1,1(x′)

]
ψ11(x′), (87)

and

Tt
11 =

∫ ∞

−∞
dx′

e−ik1x′

√
k1

[
Vst

1,1(x′) − Vex
1,1(x′)

]
ψ11(x′), (88)

where

Vst
1,1(x) =

∫
dyχ∗

1(y)Vst(r)χ1(y), (89)

and

Vex
1,1(x)ψ11(x) =

∫
dyχ∗

1(y)Vex(r)χ1(y)ψ11(x). (90)

The static potential Vst
1,1(x) and the exchange potential Vex

1,1(x) are analog to the Eqs. (10) and
(11). The transmission probability for the electrons behaving as singlet and triplet states can
also be obtained, see Section 4.
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6. Results and analysis

In this section, we present the numerical results of scattering of the incident electron through a
quantum dot containing just one confined electron. The first step we have to do is to calculate
the eigenfunctions and the eigenenergies of the Hamiltonian Eq. (4) for N = 1, which has the
following form: [

− h̄2

2m∗∇
2 + VQD(r)

]

Φn = HQDΦn = εnΦn, (91)

where

VQD(r) =
{

1
2 m∗ω2

0(r2 − R2
0), r < R0,

0, r > R0.
(92)

Usually, the QD is modeled by an infinite parabolic potential VQD(r) = 1
2 m∗ω2

0r2. However,

(a) Energy Levels (b) Wave Functions

Fig. 2. (a) Energy levels and (b) wave functions of the infinite (black dashed curves) and
finite (blue solid curves) parabolic potential for R0 =2.37 a0. The indexes (k, l) denote the
radial and angular quantum numbers, respectively.

we are dealing with the scattering processes of an incident electron through the QD, we must
employ a potential that goes to zero at the infinity. Therefore, we use the finite parabolic
potential (Eq. (92)) as the QD potential. We solve Eq. (91) by expanding the wave function Φn

in the Fock-Darwin basis (Darwin, 1930; Fock, 1928). The eigenenergies and eigenfunctions are
determined by diagonalizing the matrix within the Fock-Darwin basis. Figure 2 (a) compares
the energy levels of the infinite and finite parabolic potential. From Figs. 2 (a) and (b) we
can see that the ground state (0, 0) and the first excited state (0,±1) of the finite parabolic
potential are not very different from the infinite parabolic potential for R0 =2.37 a0, where
a0 =

√
h̄/m∗ω0. However, the state (1, 0) is quite different for the two potentials. We also see

that the finite parabolic potential with R0 = 2.37a0 supports three discrete levels only.

6.1 Elastic scattering

The differential cross sections (DCS) for elastic scattering are shown in Figs. 3 (a), (b), and

(c) for different incident electron energies E0 = h̄2k2
0/2m∗= 0.6 meV, 1.7 meV, and 4.2 meV,

respectively . In order to understand the role of the electron spin in the scattering, we compare
the DCS due to the static potential (blue solid curve) with the spin unpolarized scattering
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16 Will-be-set-by-IN-TECH

Fig. 3. The elastic DCS’s obtained within the one-channel model for electron scattering by the
one-electron QD of h̄ω0 = 5 meV and r0 = 35 nm. The incident electron energies are
indicated in the figures. (a) The spin-unpolarized DCS with (the dashed curves) and without
(the solid curves) the exchange potential; (b) The DCS due to the singlet state (the dashed
curves) and the triplet state (the solid curves); and (c) The spin-flip DCS.

(black dashed curve) in Figure 3 (a). It is evident that the electron spin is of significant
contribution to low energy (E0=0.6 meV) and/or small scattering angles. The exchange effect
on the scattering originates from the two different coupling states between the incident and
the QD electron (i.e., the singlet and the triplet states) during the collision. The difference due
to the spin states for low-energy and small scattering angles is evident in Figure 3 (b), which
compares the DCS of the singlet (orange dashed curve) to that of the triplet (green solid curve)
state. For higher energies E0=1.7 meV and E0=4.2 meV, the DCS for singlet and for triplet are
similar. We observe that the spin-flip DCS in Figure 3 (c) reaches to maximum for angles close
to π/2 for E0=0.6 meV, while for E0=1.7 meV and E0=4.2 meV its maximum appears at angles
close to zero.

Figure 4 (a) shows the integral cross section (ICS) for the elastic scattering by static potential
(blue solid curve) and spin unpolarized (black dashed curve). Once again, the importance
of the dependence on the spin emerges at low energies. The ICS without including the
exchange potential is very different from that considering the electron exchange effects for
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Fig. 4. The elastic ICS as a function of the incident electron energy. (a) The spin-unpolarized
ICS with (the dashed curves) and without (the solid curves) the exchange potential; (b) The
ICS due to the singlet state (the dashed curves) and the triplet state (the solid curves); and (c)
The spin-flip ICS. The parameters for the QD are h̄ω0 = 5 meV and r0 = 35 nm

small incident electron energy. However, the ICS is dominated by the static potential at higher
energies.

The integral cross section for the singlet (orange dashed curve) and for the triplet (green solid
curve) are shown in Figure 4 (b). Note that in the both cases, as well as in the ICS of the static
potential (Fig. 4 (a)), a resonant scattering occurs. These resonances can be explained by the
analyzing the phase shifts as shown in Figs. 6 (a), (b), and (c). Generally, the phase shifts are
functions that smoothly vary as a function of energy. However, under certain circumstances
a sudden change of the phase shifts happens in a energy range and a dramatic change in
the cross section takes places for these energies, as can be verified by Eq.(43). A physical
explanation to this fact can be found when we consider the Schrödinger equation for a central
potential, in the basis of angular momentum (equivalent to Eq. (38)),

[
1

r
d
dr

(
r

d
dr

)
+

l2

r2
+

2m∗

h̄2
V(r)

]
ψl,l(k, r) + k2ψl,l(k, r) = 0. (93)

We may identify in Eq. (93) an effective potential Ve f = l2

r2 + 2m∗

h̄2 V(r), for each different

angular momentum l. Figure 5 shows this effective potential as a function of r for V(r) =
VQD(r). By assuming that there is a metastable state with energy Er, as sketched in Figure
5, one can prove that when the electron energy E0 reaches Er, a rapidly varying phase shift
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Fig. 5. The effective potential as a function of r is represented by the solid curve. Also, we
plot the QD potential (dotted curve) and centrifugal barrier (dashed curve).

occurs and a resonance appears in the ICS (Joachain, 1975). Because this resonance depends
on the potential’s shape V(r), it is usually called shape resonance.

So, the resonance that appears in the ICS for the static potential (Fig. 4 (a)) with energy E0 =
1.22 meV corresponds to the rapid fluctuation of the phase shift ∆2 shown in Figure 6 (a). In
this case ∆2 ≈ π/2 for the value of the energy E0 = 1.22 meV. We also note the appearance of
another broader resonance at E0 = 6.14 meV, which corresponds to the rapid increasing of ∆3

seen in Figure 6 (a). The singlet resonance (E0 =1.72 meV) and the triplet resonance (E0 =0.57
meV) shown in Fig. 4 (b) are also resulting from the rapidly varying ∆2 plotted in Figs.6 (b)
and (c).

In Figure 4 (c) we present the integral elastic spin-flip cross section. The spin-flip cross section
depends on the scattering amplitudes of the singlet and the triplet as shown by equation (82).
As the ICS modulus (the square of the scattering amplitudes) of singlet and triplet states are
very distinct at small energies, the spin-flip cross section is of maximum at the same energy
range, as shown in Figure 4 (c).

Figure (7) shows the elastic ICS varying the size of the QD, for the scattering by the static
potential (Coulomb without exchange). When the radius R0 is increased, the potential of QD
becomes more negative and the resonance energy Er (Fig. 5) decreases. Thus, we see that
the resonance peak in Fig. (7) shifts to lower energy values when R0 increases. Therefore,
the potential becomes deeper and the metastable state Er decreases, consequently, the shape
resonance shifts to lower energies. The shape resonance may disappear when the radius
is further increased. In this situation, the state Er becomes a real bound state instead of a
metastable sate.

6.2 Multi-channel scattering

When we consider the three-channel scattering, we have nine possibilities of scattering, i.e.,
the incident electron has initially energy E0 = h̄2k2

i /2m∗ and can be scattered with the energy
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(a) Static potential (b) Singlet state

(c) Triplet state.

Fig. 6. The phase shift ∆l as a function of the incident electron energy for the partial waves
with angular momentum l =0, 1, 2, 3, and 4.

h̄2k2
f

2m = h̄2k2
i

2m + ε i − ε f , with i and f =1, 2, and 3. If ε f = ε i the scattering is elastic and if ε f > ε i
there is a excitation. Finally, if ε f < ε i there is a decay.

In our case, as ε2 = ε3 the probability of exciting or decaying for either of one of these
two states is exactly the same. Thus, we calculate the cross section considering elastic and
inelastic scattering ε1 → ε2. Fig. 8 shows the ICS for the elastic channel (a) and for the
excitation channel (b). The black (blue) solid curve represents the spin-unpolarized potential
(static), while the dashed curves represent the respective ICS when only one channel is
considered. For E0 ≈7 meV, we notice that the ICS for the excitation channel in Fig. 8 (b)
has a maximum, while the elastic channel in Fig. 8(a) exhibits a minimum, which is obvious
from the probability current conservation. For E0 >8 meV, the behavior of the ICS shown in
Fig. 8 (a) is very similar to the results considering the elastic scattering (dashed curves).

In Figure 9, the ICS is shown for scattering by three-channels, where the green (orange) solid
curve represents the scattering by the potential of the triplet (singlet) and the dashed curves
represent their ICS when only one channel is considered. In the case of scattering for the triplet
state, we verify that when E0 >9 meV the elastic scattering (Figure 9 (a)) for three-channels
is equal to one-channel and therefore, the probability of excitation is practically null (Figure
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Fig. 7. The elastic ICS as a function of the incident electron energy, considering the static
potential for different sizes (R0) of the QD with h̄ω0 = 5 meV.

Fig. 8. The ICS for the three-channel scattering as a function of electron energy (R0 =35 nm
and h̄ω0 = 5 meV). (a) Elastic channel and (b) excitation channel from the ground state to the
first excited state (l = ±1). Black (blue) curve shows the ICS for the spin-unpolarized (static)
scattering. Dashed curves are the respective ICS within the one-channel scattering
approximation.
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Fig. 9. The same as Fig.8 but now the orange (green) curve shows the ICS for the triplet
(singlet) spin state. Dashed curves are the respective ICS within the one-channel scattering
approximation.

Fig. 10. The same as Fig.8 but now for the spin-flip ICS. The dashed curve is the respective
spin-flip ICS within the one-channel approximation.

9 (b)). In the case of the singlet state, the behavior is contrary, i.e., when E0 >9 meV the
excitation probability begins to increase (Fig 9 (b)), thus showing that the scattering may be
completely different depending on the spin state of electrons.
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In Figure 10, the spin-flip ICS is shown considering three-channels of scattering, where the
solid curve represents the scattering from (a) elastic and (b) excitation channel. The dashed
curve represents the spin-flip ICS considering only one channel of scattering. The spin-flip
ICS for one-channel presents a maximum for E0 ≈ 8 meV and a minimum in the same energy
range for the excitation channel. We also found that for E0 > 9 meV, the spin-flip cross section
of three-channels is similar to the elastic scattering (dashed curve).

6.3 Scattering in the quasi-one-dimensional system

In this section, we apply the MCF to solve the Lippmann-Schwinger equation for the electron
scattering through the QD confined in the Q1D structure. The convergency of MCF is very
accurate in this case and achieves a precision of 10−4 for the transmission probability in
approximately 20 interactions. To probe our numerical method, we consider one electron
confined in the QD with radius R0=45 nm. Moreover, two different cases for confined
potential in x-direction with h̄ωx =5 meV and h̄ωx =3 meV are tested. The obtained
results are shown in Fig. 11. In both cases, the screening length is fixed as λ−1 = lx and
the confinement frequency the y-direction is set different from that in the x-direction with
ωy = 1.7ωx. In Fig. 11 (a) and (b), we plot the transmission probability as a function of
the incident electron energy assuming different scattering situations: (i) the QD potential
only (black dotted curve), (ii) the static potential (red dash-dotted curve), (ii) the singlet state
(orange dashed curve), and (iv) the triplet state (green solid curve). From the results, we see
that the confinement potential (or frequency ωx) of the QD strongly affects the transmission
probability through the QD. Furthermore, the Coulomb potential alters considerably the
scattering. The electron-electron exchange potential splits the resonant peak into two due to
different spin states of the system. It shows that, when the incident electron has anti-parallel
(parallel) spin with the confined electron in the QD, the transmission probability is enhanced
(suppressed) significantly at low energy. This is a kind of spin filter effect if we could control
the spin state of the confined electron.

(a) h̄ωx = 3 meV (b) h̄ωx = 5meV.

Fig. 11. Transmission probability as a function of the incident electron’s energy assuming
different scattering situations: only the QD potential (black dotted curve), the static potential
(red dash-dotted curve), the singlet state (orange dashed curve), and the triplet state (green
solid curve).
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7. Conclusion remarks

We presented a theoretical approach to calculate the electron scattering and transport
through an N-electron QD embedded in a 2D and a Q1D semiconductor structure. The
multichannel L-S equations are solved numerically using the iterative method of continued
fractions considering the electron-electron interactions. From this method, we can study the
multichannel scattering including the excited states of the QD. The electron transport property
due to elastic and inelastic scattering, as well as its dependence on the spin states of the system
can be obtained in great precision.

We applied this method to the case where only one electron is confined in the QD. The results
indicate a rapid convergency of the numerical method for the electron scattering in both 2D
and 1D systems. We found that the electron-electron exchange effects are relevant when the
kinetic energy of incident electron is small. For a QD of more electrons, we need firstly to
find the eigenstates of the QD with electron-electron interactions. In principal, the scattering
processes can be calculated according to the total wave-function defined by Eq. (6).
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