
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

2

An Architecture-Centric Approach
for Information System Architecture

Modeling, Enactement and Evolution

Hervé Verjus, Sorana Cîmpan and Ilham Alloui
University of Savoie – LISTIC Lab

France

1. Introduction

Information Systems are more and more complex and distributed. As market is
continuously changing, information systems have also to change in order to support new
business opportunities, customers’ satisfaction, partners’ interoperability as well as new
exchanges, technological mutations and organisational transformations. Enterprise agility
and adaptability leads to a new challenge: flexibility and adaptability of its information
system. Most information systems are nowadays software-intensive systems: they integrate
heterogeneous, distributed software components, large-scale software applications, legacy
systems and COTS. In this context, designing, building, maintaining evolvable and
adaptable information systems is an important issue for which few rigorous approaches
exist. In particular information system architecture (Zachman, 1997) is an important topic as
it considers information system as interacting components, assembled for reaching
enterprise business goals according to defined strategies and rules. Thus, information
system architecture supports business processes, collaboration among actors and among
organizational units, promotes inter-enterprise interoperability (Vernadat, 2006) and has to
evolve as business and enterprise strategy evolve too (Kardasis & Loucopoulos, 1998;
Nurcan & Schmidt, 2009).

During the past twenty years, several works around system architecture have been
proposed: they mainly focus on software system architecture (Bass et al., 2003), enterprise
and business architecture (Barrios & Nurcan, 2004; Touzi et al., 2009; Nurcan & Schmidt,
2009). All of them mainly propose abstractions and models to describe system architecture.
Research on software architecture (Perry & Wolf, 1992; Bass et al., 2003) proposes
engineering methods, formalisms and tools focusing on software architecture description,
analysis and enactment. In that perspective, Architecture Description Languages (ADLs) are
means for describing software architecture (Medvidovic & Taylor, 2000) and may also be
used to describe software-intensive information system architecture. Such ADLs cope with
software system static aspects at a high level of abstraction. Some of them deal with
behavioral features and properties (Medvidovic & Taylor, 2000). Very few of the proposed
approaches are satisfactory enough to deal with software-intensive system architecture
dynamic evolution; i.e., a software-intensive system architecture being able to evolve during
enactment.

Innovative Information Systems Modelling Techniques

18

As an illustrative example of such a dynamically evolving software-intensive information
system, consider the following supply chain information system that entails a manufacturing
enterprise, its customers and suppliers. The supply chain information system is a software-
intensive system comprising several software components. It is governed by an EAI
(Enterprise Application Integration) software solution that itself comprises an ERP system. The
ERP system includes components dedicated to handling respectively stocks, invoices, orders
and quotations. These software elements form the information system architecture. In a
classical scenario, a customer may ask for a quotation and then make an order. The order may
or may not be satisfied depending on the stock of the ordered product. We may imagine
several alternatives. The first one assumes that the information system is rigid (i.e., it cannot
dynamically evolve or adapt): if the current product stock is not big enough to satisfy the
client’s order, a restocking procedure consists in contacting a supplier in order to satisfy the
order. We assume that the supplier is always able to satisfy a restocking demand. Let us now
imagine that the restocking phase is quite undefined (has not been defined in advance – i.e., at
design time) and that it can be dynamically adapted according to business considerations,
market prices, suppliers’ availability and business relationships. Then, the supporting supply
chain information system architecture would have to be dynamically and on-the-fly adapted
according to the dynamic business context. Such dynamicity during system enactment is an
important issue for which an architecture-centric development approach is suitable.

This represents an important step forward in software-intensive information system
engineering domain, as software intensive information systems often lack support for
dynamic evolution. When existing, such support doesn’t ensure the consistency between
design decisions and the running system. Thus, generally first the system model is evolved,
and then the implementation, without necessarily mantaining the consistency between the
two system representations. This leads to undesired situations where the actual system is
not the one intended, or thought by the decision makers.

This chapter presents an architecture-centric development approach that addresses the
above mentioned issues, namely dynamic evolution while preserving the consistency
between the system design and implementation. Our approach entails architectural
description formalisms and corresponding engineering tools to describe, analyze and enact
dynamically evolvable software-intensive information systems.

It presents the overall development approach, briefly introducing the different models and
meta-models involved as well as the different processes that can be derived from the approach
(see section 2). Although the approach supports the entire development cycle, the chapter
focuses on the way dynamic evolution is handled. More precisely it shows how information
systems, described using suitable architecture-related languages (see section 3), can be
architectured so that their dynamic evolution can be handled. Thus section 5 and 6 present the
proposed mechanismes for handling respectively dynamic planned and unplanned evolutions
of the information system architecture. These mechanisms are presented using evolution
scenarios related to a case study which is briefly introduced in section 4. Section 7 presents
related work. We end the chapter with concluding remarks in section 8.

2. On architecture-centric development

Considerable efforts have been made in the software architecture field (Medvidovic &
Taylor, 2000; Bass et al., 2003) (mainly software architecture modeling, architectural property

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

19

expression and checking) that place the architecture in the heart of a software intensive
system life cycle. “Software architecture is being viewed as a key concept in realizing an
organization’s technical and business goals” (Carrière et al., 1999). Software architectures
shift the focus of developers from implementation to coarser-grained architectural elements
and their overall interconnection structure (Medvidovic & Taylor, 2000). In architecture-
centric development approaches, the architecture of the system under construction is considered at
different abstraction levels. Starting with a rather coarse grain representation of the system, the
process stepwise refines this representation producing more detailed representations. At each phase,
architectural properties can be defined and analyzed. Architecture Description Languages (ADLs)
have been proposed as well as architecture-centric development environments, toolkits
(graphical modelers, compilers, analysis/verification tools, etc.) (Schmerl et al., 2004;
ArchStudio) which support software architects’ and engineers’ activities.

We consider the architecture-centric information system development as a model-driven

engineering process (Favre et al., 2006). Every process is centered on design models of

systems to develop. Models are used for several purposes: to understand specific aspects of

a system, to predict the qualities of a system, to reason on the impact of change on a system

and to communicate with different system stakeholders (developers, commercials, clients,

end-users, etc.). Among the objectives of such approaches is their ability to provide (at least

partially) enough details to generate an implementation of the information system software

components and their interconnections. Thus, the generated code is, itself, the expression of

a model. In architecture-centric development approaches (Kyaruzi & van Katwijk, 2000)

models represent mainly software architectures, but can also represent some expected

properties or transformations that can be made on such architectures.

The architecture may be defined at several levels of abstraction. The transition from one

level to another is done through a refinement process along which further details are added

to the architecture description until reaching a desired concrete (implementation) level. The

resulting concrete architecture can either be directly executed if the employed ADL has its

own virtual machine or it can be used to generate an executable description for another

target execution environment (e.g., Java, C++, etc.).

As the system software architecture captures early design decisions that have a significant

impact on the quality of the resulting system, it is important if not essential to check those

decisions as early as possible. Software architecture analysis is an ineluctable activity within

the development process. It focuses on structural and/or behavioral properties one can

expect from both system functional and non-functional behaviors (e.g. are architectural

elements always connected? Is the system behavior robust? etc.). Moreover, evolving a

system must be accompanied by checking whether its correctness is still ensured or not after

the changes. In software engineering processes, checking the correctness of a system relies

on analyzing expected properties at either/both design time or/and runtime. This requires

the availability of software tools/support for both checking if the desired properties are

satisfied and detecting those that have been violated with the possibility of reconciling them.

Ideally an approach that aims at considering the evolution along the whole lifecycle should

provide mechanisms for analysis, detection of property violation and its reparation.

The introduction of architecture-centric approaches had as prior intent an improvement of
the software development process, allowing people to gain intellectual control over systems

Innovative Information Systems Modelling Techniques

20

ever more complex and thus providing solutions for a major software engineering concern.
Software-intensive system evolution is another major concern in software engineering
(Andrade & Fiadeiro, 2003, Mens et al., 2003), as human-centric activities are more and more
supported by software applications that have to evolve according to changing requirements,
technologies, business, etc. Software-intensive systems should be able to adapt according to
those changes (Belady & Lehman, 1985). As changes may impact the information system
architecture, the way of evolving the architecture is part of the information system evolution
problem. Moreover, the problem of handling the evolution of a software-intensive
information system taking into account its architecture is closely related to the problem of
keeping the consistency between two layers: the software system concrete (source code,
implementation) architecture, and, the information system conceptual (abstract, design)
architecture as well as continuous switching between these layers (Perry & Wolf, 1992).

We distinguish four types of evolution (Cîmpan & Verjus, 2005) according to two criteria: (i)

the architecture evolution is carried out statically (i.e., while some of the information system

executing software components are stopped) or dynamically (i.e., while the system is being

continuously executing), (ii) has the evolution been planned (i.e., at design time) or not (i.e.,

unplanned, may occur at any time during the information system enactment). A static

evolution, be it planned or not, is de facto supported by all architecture-centric approaches.

It is more or less supported by analysis tools to check the system correctness after the

change implementation. A dynamic evolution is more difficult to handle, in particular if it

has not been planned at the design time. Indeed this requires: (i) mechanisms to provide

change specifications without stopping information system executing software components,

(ii) performing the changes while preserving the information system correctness and (iii)

preserving the consistency between the system implementation and its conceptual

architecture.

As depicted by Figure 1, our architecture-centric approach supports information system
development processes based on software architecture models. Different models and meta-
models are proposed, as well as relations among them. Part of them are platform
independent (PIM, represented in the upper part of the figure), while others are platform
specific (PSM, represented in the lower part of the figure). The approach is suitable to
description languages which have a layered construction. They entail a core, generic (and in
our case enactable) description language as well as extension mechanisms enabling the
description of domain specific languages. The figure gives a complete view of the different
models and meta-models, yet not all of them are mandatorily used. Thus, different
processes can be drawn from this picture. A very simple one would for instance consist in
representing architecture in the core language, and use the associated virtual machine to
enact it. A possible enhancement of this process would consist in defining properties the
architecture should obey and check if it indeed does. This implies the additional use of an
architecture analysis language to define such properties as well as the use of associated tools
to verify whether the properties hold for the given architecture. If the enterprise
environment imposes the use of particular platform, it is also possible that rather then using
the virtual machine (VM), code is generated in a target language, using specific
transformation rules. In this chapter, we do not address exhaustively how such processes
are defined and carried out. Rather we focus on how evolution is supported at system
enactment time.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

21

Fig. 1. Architecture centric development approach and processes

To illustrate how our architecture-centric information system development approach
supports dynamic evolution of software–intensive information system architecture, we use
as modeling language, an ADL allowing us to cope with unpredictable situations and
dynamic changes: ArchWare ADL (Oquendo et al., 2002; Oquendo 2004). This language is
part of the ArchWare (ArchWare 2001) language family and can be used either as a
specification language only or both as a specification and implementation language. In the
first case, a target source code can be generated from specifications using mappings and
adding implementation details related to the target environment. In the second case, an
implementation is a specification, detailed enough, to be interpreted by the ArchWare ADL
virtual machine. In both cases, user-defined expected architectural properties can be
analyzed both at design time and runtime.

3. ArchWare architecture description languages, foundations and design

The ArchWare project (ArchWare, 2001) proposes an architecture-centric software
engineering environment for the development of evolving systems (Oquendo et al., 2004).
The environment provides languages and tools to describe architectures and their
properties, refine them as well as enact them using a virtual machine.

This section introduces part of the ArchWare language family – related to the description of
architectures and their properties. The ArchWare language familly perfectly fits the above
presented approach (cf. Figure 1). The description language family has a layered structure,

Innovative Information Systems Modelling Techniques

22

with a minimal core formal language and an extension mechanism that allows the users to
construct more specific description languages.

The core formal language – ArchWare -ADL. The ArchWare project proposes a meta-
model, defined by an abstract syntax and formal semantic (Oquendo et al., 2002). Several
concrete syntaxes are proposed (Verjus & Oquendo, 2003; Alloui & Oquendo, 2003),

ArchWare -ADL (Cîmpan et al., 2002; Morrison et al., 2004) being the textual one. The core

language is a well-formed extension of the high-order typed -calculus (Milner, 1999) that
defines a calculus of communicating and mobile architectural elements. These architectural
elements are defined in terms of behaviors. A behavior expresses in a scheduled way both
an architectural element internal computation and its interactions (sending and receiving
messages via connections that link it to other architectural elements). These actions

(concerning communication as well as internal computing) are scheduled using -calculus
based operators to express sequence, choice, composition, replication and matching.
Composite architectural elements are defined by composing behaviors, communicating

through connections. An architecture is itself an architectural element. Moreover, -ADL
provides a mechanism to reuse parameterised behavior definitions which can be embedded
in abstractions. Such abstractions are instantiated as behaviors by application. As the core
language is Turing complete, a virtual machine (Morissson et al. 2004) enables enactment of
architectures that are defined using this language.

The extension mechanism – is represented in Figure 1 by ASL. The extension mechanism is
based on architectural styles, representing a family of architectures sharing common
characteristics and obeying a given set of constraints. ArchWare ASL (Architectural Sytle
Language) is a meta-model allowing the definition of styles, and hence of domain specific
languages (Leymonerie, 2004). More precisely, architectural element types can be
introduced by a style, forming the style vocabulary. When a style is defined using ASL, it is
possible to associate a new syntax; thus the style provides a domain-specific architecture
description language. Architectural styles and associated languages can then be constructed
using a meta-level tower. If using the nth layer of the language family a style is defined, its
associated syntax constitutes a n+1 layer. By construction, an architecture defined using the
nth layer of the language family, has its corresponding description in the n-1 layer.

The component-connector layer – corresponds to a particular domain language,
dedicated to the definition of component-connector models of software architectures. In
Figure 1, ADSL is the generic term for such domain specific language. Using the extension
mechanism (ASL) a level 1 language has been constructed starting from the core
language (level 0). This language, named ArchWare C&C-ADL is associated to an
architectural style in which architectural elements are either components or connectors
(Cîmpan et al., 2005; Leymonerie, 2004). Components and connectors are first class citizens
and can be atomic or composed by other components and connectors. An architectural
element interface, represented by its connections, is structured in ports. Each port is thus
composed by a set of connections, and has an associated protocol (corresponding to a
behavior projection of the element to which it pertains). Atomic as well as composite
architectural elements may entail attributes used in their parameterisation. A composite
element behavior results from the parallel composition of its composing element
behaviors. The composite element has its own ports, which ports of composing elements
are attached to.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

23

The architecture analysis language – corresponds to AAL in Figure 1. Architectural
properties can be expressed in the ArchWare framework by using a dedicated language:
ArchWare Architecture Analysis Language (AAL) (Alloui et al., 2003; Mateescu & Oquendo,

2006). AAL is a formal language based on first order predicate logic and -calculus
(Bradfield and Stirling, 2001). Predicate logic allows users to express structural aspects while

-calculus provides the expressive power needed for the representation of dynamic aspects
of an evolving system. A property is expressed in AAL using a predicate formula (concerns
the architecture structure, e.g., the existence of a connection among two elements), an action
formula (concerns the architectural element behavior, e.g., a component must have a
recursive behavior), a regular formula (regular expression over actions, e.g., after a certain
number of actions of a given type, an architectural element will perform a given action; the
goal of such regular expressions is not to increase the language expressive power, but rather
to enhance the property readability) or a state formula (state pattern, e.g., a given behavior
leads to an expected state, such as true or false). AAL toolset entails theorem provers
(Azaiez & Oquendo, 2005) and model checkers (Bergamini et al., 2004). User-defined
properties are linked to the description of architectural elements they are about. Their
evaluation/analysis may be carried out at both design time and runtime.

The architecture execution languages – correspond to some concrete runtime architecture-

centric languages. Specific defined transformation rules are applied to architectural models

to generate more concrete and/or detailed architectural models. In the proposed approach

(see Figure 1) either Core ArchWare detailed architectural models are generated for being

executed by the ArchWare Virtual Machine (Morrison et al., 2004), or Java code is produced

to be executed by a Java Virtual Machine (Alloui et al., 2003b), or a Nimrod architectural

model (Verjus 2007) is produced to be interpreted by Nimrod (implemented in Pharo,

www.pharo-project.org).

4. Case study introduction and evolution scenarios

Given the four identified kinds of evolution (cf. section 2) in this chapter we focus on the

dynamic evolution, be it planned or not. To illustrate the mechanisms allowing such

evolutions, we consider a supply chain architecture that entails a manufacturing enterprise,

its customers (clients) and suppliers. The supply chain architecture is governed by an EAI

(Enterprise Application Integration) software solution that itself includes an ERP system.

The ERP system includes components dedicated to handling respectively stocks, invoices,

orders and quotations.

Static evolutions are not considered in this chapter. Such evolutions require the running
system to be stopped before any modification. Then, it is up to the architect to modifiy
statically the system architecture and to launch the system again. Research approaches
dealing with static evolution are manifold and the reader may look closer at works
presented in section 7.

Initial scenario. Whenever a client places an order to the EAI, s/he first asks for a quotation.
In order to simplify the scenario, the decision about order commitment by evaluating the
quotation is not covered here. The ordering system (one may frequently meet the term
component in most ADLs) takes the order and updates the stock according to the demanded
product and quantity). The restocking system may ask for restocking if the current product

Innovative Information Systems Modelling Techniques

24

stock is not big enough to satisfy the client’s order. A restocking procedure consists in
contacting a supplier in order to satisfy the order. We first assume that the supplier is
always able to satisfy a restocking demand.

Dynamic planned evolution. The architecture that supports planned dynamic evolution is a
self-contained architecture that is able to evolve in response to external and anticipated
events. The architecture is able to dynamically and automatically evolve (i.e., its structure
and behavior may evolve – for example in our scenario by adding clients or modifying the
invoicing system) without stopping the system and with no user’s interaction. This kind of
evolution requires anticipation: the evolution strategy is defined and embedded in the
architecture description, before its execution. In our scenarios, the architecture evolves
dynamically in order to support new clients or to change the ERP invoicing system (see
section 5).

Dynamic unplanned evolution. In some situations (most real life systems), the evolution cannot
be anticipated and the architecture is not able to self-adapt. We emphasize scenarios (section
6) for which the architecture has to evolve dynamically (i.e., on-the-fly evolution), without
stopping the system execution to support unpredictable situations. We show how the
architect improves the restocking system by adding dynamically new suppliers and
modifying the restocking process. This evolution scenario shows thus how our proposition
addresses challenging topics such the dynamic and unplanned modification of the
architecture structure (introducing new suppliers) and the dynamic and unplanned
modification of the architecture behavior (changing the restocking process).

These evolution scenarios help to demonstrate how our approach supports controlled and
consistent aware architecture dynamic evolution. For both planned and unplanned
situations, the architecture consistency is ensured using architectural formal property
verification.

5. Dynamic planned evolution: mechanisms and illustration using the supply
chain architecture

The layer ArchWare C&C allows to handle dynamic planned evolution. As already

mentioned, the language allows the definition of software architectures in terms of

compositions of interacting components and connectors. The language (Cîmpan et al., 2005)

improves previous propositions, such as Dynamic Wright (Allen et al., 1998), Piccola

(Nierstrasz & Achermann, 2000) and π-Space (Chaudet et al., 2000).

Being based on a process algebra, the language enables a system behavior representation. To

represent architectural dynamic changes the C&C language introduces specific actions, such

as a dynamic element creation and reconfiguration. Moreover, every architectural entity is

potentially dynamic, its definition is used at the dynamic creation of several instances. Thus

such a definition corresponds to a meta entity, a matrix containing an entity definition as

well as information allowing the creation, suppression (dynamic or not) and management of

several occurrences.

Components can be either atomic, either composite, i.e., a composition of components and
connectors. Independently of their atomic or composite nature, architectural elements can
dynamically evolve. Their evolution has nevertheless particularities.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

25

The evolution of atomic (cf. section 5.1) and composite elements (cf. section 5.2) is illustrated
using the supply chain case study, for which the architecture has been defined in terms of
components and connectors using the C&C language.

The Supply Chain architecture is presented in Figure 2. Defined as a composite component,
the supply chain architecture entails two atomic components, a supplier and a client, and a
composite component representing an ERP. The connector between the client and the ERP is
equally represented, the other ones are basic connectors, and not represented in the figure.
The ERP composite component entails four components, to handle respectively quotations,
orders, stock availability and invoices. The quotation system and the order system are
directly connected to one of the composite ports, allowing direct interaction with
components from outside the composite. The stock control and the invoice system are intern
to the composite, and are connected to the order system.

One of the supply chain architecture ports is dedicated to its evolution. Clients communicate
with the ERP essentially for exchanging information related to quotes (quote demands and
propositions) and orders (orders and invoices). Ports are dedicated to this purpose on both
communicating parts.

Fig. 2. The supply chain global architecture

The composite initialization and evolution are handled by its choreographer, as explained in
section 5.2.

Innovative Information Systems Modelling Techniques

26

5.1 Evolution of atomic components and connectors

Atomic component and connectors definitions are structured in three parts, one for
declaring attributes and meta ports, one to define the initial configuration (where instances
of meta ports are created) and one representing the behavior. Component’s behavior is
named computing, while for connectors we use the term routing. The evolution of atomic
components and connectors implies mainly changes in their interface, i.e., addition or
suppresion of ports. This has two implications on the behavior, who’s representation does
not change. The first implication is that part of it will be dedicated to handling the evolution
while the rest of it, which we call nominal behavior, represents the main purpose of the
element. The second implication is that the nominal behavior is generic, so that it can cope
with the dynamic set of ports.

We will illustrate how dynamically evolving atomic architectural elements can be modeled
by the example of the ClientToERP connector. The later has ports dedicated to the
communication with clients and the ERP as well as an evolution port. As with all
architectural elements described using ArchWare C&C-ADL, the declarations correspond to
meta element declarations, meaning that several instances of the same meta element may co-
exist at runtime. Thus, clientQuotationP, erpQuotationP, clientOrderP, erpOrderP as well as
newClientP are meta ports. An instance of each is created in the configuration part.
Additional instances may be created at runtime, as we will see. Meta elements provide an
additional management level between types and instances, allowing to handle the dynamic
evolution of architectures. In the initial configuration, an instance of each meta port is
created (cf. Figure 3). Recursively, the connector has 3 choices: to transmit a
demand/response for a product quotation, transmit a command, or handle an evolution
request. The first two choices represent the nominal behavior. In the case of an evolution
request, the connector creates two new instances of the clientOrderP and clientQuotationP
ports, so that a new client can be connected to the ERP.

The nominal part of the behavior, which handles the quotation and the command
transmissions, is generic, as it takes into account the fact that the number of clients, and
hence the number of instances for clientOrderP and clientQuotationP, is unknown. Each
meta entity (be it connection, port, component or connector) has a list containing its
instances. The ith instance of the meta entity is accessed using its name follwed by #i, while a
random instance is accessed using the name followed by #any. Thus, in the connector
behavior, clientQuotationP#any=i~quotationReq is a reference towards the connection
quotationReq of a random instance of the meta port clientQuotationP, while keeping the
reference in the i variable. Saving the reference towards the connection concerned by the
request allows the connector to identify the request demander, and thus to return the
response to the correct client.

This represention allows the connector between the clients and the ERP to evolve
dynamically to enable the connection of new clients. In the next section we will show how
composite dynamically evolving architectural elements can be described.

5.2 Evolution of composite architectural elements

In this section we have a look at how the arrival of new clients is represented at the supply
chain architectural level. The supply chain is represented as a composite component. Each

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

27

composite element evolution is handled by a dedicated sub-component – the choreographer.
The latter can change the topology whenever needed by: changing the attachments between
architectural elements, dynamically creating new instances of architectural elements,
excluding elements from the architecture, including elements which arrive into the
architecture (coupling them with the rest of the architecture).

 ClientToErpConnector is connector with {
 ports { clientOrderP is OrderPort;
 clientQuotationP is QuotationPort;
 erpOrderP is OrderDemandPort;
 erpQuotationP is QuotationDemandPort;
 newClientP is port with {
 connections {
 createI is connection(Any),
 createO is connection(Any) }
 configuration { new createI; new createO }
 protocol {
 via createI receive;
 via createO send ;
 recurse
 }
 }}
 configuration { new clientOrderP; new clientQuotationP ;
 new erpOrderP; new erpQuotationP ; new newClientP}
 routing {
 choose{
 via clientQuotationP#any=i~quotationReq
 receive product:String, quantity:Integer;
 via erpQuotationP~quotationReq send product, quantity;
 via erpQuotationP~quotationRep receive price:Float;
 via clientQuotationP#i~quotationRep send price; }
 or {
 via clientOrderP#any=i~orderReq
 receive product:String, quantity:Integer;
 via erpOrderP~orderReq send product, quantity;
 via erpOrderP~orderRep receive ack:String;
 via clientOrderP#i~orderRep send ack;
 if (ack==“OK”) then {
 via erpOrderP~invoice receive invoice: String;
 via clientOrderP#i~invoice send invoice;} }
 or {
 via newClientP~createI receive ;
 new clientOrderP; new clientQuotationP;
 via newClient~createO send }

 then recurse }
}

quotation

communication

command

communication

evolution

management

Fig. 3. Connector between clients and the ERP

The SupplyChain choreographer (cf. Figure 4) handles the two evolution scenarios: the

arrival of a new client and the reception of a new invoice system, which is transmitted to the

ERP system. In the first case, the client is inserted into the Client meta component and an

evolution message is sent to the ClientToERP connector, triggering the connector’s evolution

(cf. section 5.1). The SupplyChain choreographer attaches then the connector last created

ports to the last client instance, i.e., to the client that dynamically joined the supply chain.

Innovative Information Systems Modelling Techniques

28

 SupplyChain is component with{
 ports {
 erpEvolveP is ERPEvolutionPort;
 newClientP is ClientPort;}
 constituents {
 clientComponent is Client;
 erpComponent is ERP;
 clientToErp is ClientToErpConnector;}
 configuration {
 new clientComponent; new erpComponent; new clientToErp;
 attach clientComponent~orderP to clientToErp~clientOrderP;
 attach clientToErp~erpOrderP to erpComponent~erpOrderP;
 attach clientComponent~quotationP
 to clientToErp~clientQuotationP;
 attach clientToErp~erpquotationP
 to erpComponent~erpQuotationP;}
 choreographer {
 choose {
 via erpEvolveP~newInvoice
 receive newInvoiceComponent:InvoiceSystem;
 via erpComponent~erpEvolveP~newInvoice
 send newInvoiceComponent;
 via erpComponent~erpEvolveP~ack receive ack:String;}
 or
 { via newClientP~createOut receive c : Client;
 insert component c in Client ;
 via clientToErp~newClientP~createIn send ;
 via clientToErp~newClient~createOut receive ;
 attach clientComponent#last~orderP
 to clientToErp~clientOrderP#last;
 attach clientComponent#last~quotationP
 to clientToErp~clientQuotationP#last;}
 then recurse
 } }

Invoice system

evolution

New client:

Demand the connector to

evolve

Attach the new client to the

connector

Fig. 4. The SupplyChain composite component

The ERP invoice system is replaced dynamically by a new one, and integrated in the ERP

architecture. It is thus possible to change dynamically a system component. This is due, on

the one hand, to the language formal foundations, the higher order -calculus, which allows

architectural elements to transit connections. On the other hand, the choreographer handles

the connectivity among different architectural elements. It is thus possible to detach a

component or to integrate a new one in a composite. The system topology changes in

response to particular events.

New clients join the architecture dynamically; the connector evolves by creating

communication ports for the new clients. This evolution scenario highlights the

choreographer role in the evolution, its capacity to change dynamically the system topology.

Other language mechanisms are used here, such as the management of meta elements’

multiple instances and therefore the description of generic behaviors. The Client number of

instances is unknown, and varies during execution. The Client meta entity handles the

different instances, which can be on-the-fly created or come from outside the architecture. In

this last case, typing constraints are imposed. The connector to which the Client component

is attached has to evolve dynamically its interface (by adding new specific ports) and its

behavior (the behavior definition does not change but is generic, so as to handle whatever

number of clients).

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

29

The two evolution scenarios illustrate how ArchWare C&C-ADL allows the users to define

the architecture of evolving systems. The evolutions presented contain some forms of

mobility, as the new invoice system as well as new clients join the architecture at runtime.

This is possible due to the use of the higher order -calculus in the language foundations.

Nevertheless we do not address other aspects related to mobility, only a rough management

of the architecture state is made.

5.3 Property checking during evolution

Different kinds of properties are checked during the evolution. Some of them concern the

typing and are intrinsically related to the language, and others are specified explicitly in

order to represent domain-related properties to be checked. Concerning typing, for instance,

the newClient connection of the newClientP port is typed so that only elements of type

Client (or one of its sub-types) can transit via the connection. More precisely, in the

previous example a component of type Client has to have two ports of type

QuotationDemandPort and OrderDemandPort, i.e., ports that have the same kind of connections

and the same protocol. This ensures that a new component, to be integrated in the

architecture as a client, is able to correctly interact with the rest of the system.

The explicit properties are more or less specific to the problem (in our case the supply

chain). The main goal is to ensure the system integrity during the evolution, from structural

as well as from behavioral points of view. An example of generic structural property is the

connectivity: each element is connected to at least another element. While the system evolves

the architectural elements have to remain correctly connected. Concerning the behavior, one

can impose that each response to a command corresponds to an order made by a client.

Properties can also combine both structural and behavioral aspects.

The following properties (structural and/or behavioral) are expressed using the ArchWare

AAL analysis language (Alloui et al., 2003a). Let us remind the reader that this language

allows the users to define properties and comes with tools for property checking.

The property connectivityOfERPArchitecture expresses that each component has to be

connected to at least another component. In our case study the architect has to verify that

once the invoice system is changed, each component is connected to another component in

the ERP composite component.

 connectivityOfERPArchitecture is property {
-- each component is attached to at least another component
on self.components.ports apply
 forall { port1 | on self.components.ports apply
 exists { port2 | attached(port1, port2) }}
}

The property requestBeforeReplyOfOrderSystem expresses the fact that the order system can

send a response only after receiving a request. This property has to be verified also after the

system evolution, i.e. when the invoice system is changed in the architecture.

Innovative Information Systems Modelling Techniques

30

 requestBeforeReplyOfOrderSystem is property {
-- no reply without a request
 on OrderSystem.instances apply
 forall {os | (on os.actions apply isNotEmpty) implies
 (on os.orderP~orderReq.actionsIn apply
 exists {request | on os.orderP~orderRep.actionsOut apply
 forall {reply | every sequence {(not request)*. reply}
 leads to state {false} } }) } }

This is expressed in AAL by a state formula that leads to false for all replies (belonging to
actionsOut) sent before receiving a request (belonging to actionsIn).

The changes presented here were planned during the architecture design. The property
checking takes place at design time too as the system evolves only in an anticipated way.
That means each time that an architectural element is changed, related properties are
checked on its new architecture description.

In the following section we will show how the unplanned architecture evolution can take
place at runtime and how property checking is enabled before integrating the changes.

6. Dynamic unplanned evolution of the supply chain architecture

Let us go back to the original supply chain architecture. The case we are interested in is the
one where no evolution was planned when the architecture was designed. So the
architecture definition does not entail architectural changes to be triggered when given
events occur (such as it was the case in the previous section) nor it is known what elements
might evolve. Actually, the industrial reality shows that the maintenance and evolution of
complex systems (client-server, distributed, etc.) is handled pragmatically, each case
individually, without a methodical approach (Demeyer et al., 2002).

The architecture proposed up to now (see section 4) responds to the problems the case study

raises, without covering all possible evolution scenarios. What happens when the stocks for

a product are not big enough to answer the demand, and the situation was not anticipated?

What if the invoice system has to be outsourced, or if the supplier–client relation changes at

runtime? The system initial architecture is unable to react to such unexpected events. So it

has to evolve.

The scenario used for the unplanned dynamic evolution is different from the one presented
in the previous section, although both are based on the initial scenario (section 3). More
precisely a new restock system is to be added to the ERP.

6.1 Initial architecture: The supply chain system architecture before its evolution

We illustrate the dynamic unplanned evolution using an example described in the core
language (rather than the C&C-ADL used for illustrating the dynamic planned evolution).

Using the core language (also named -ADL - see sections 2 and 3) enables to look at the
evolution issue in its essence (independently from specific language layers) and to take
advantage of the closeness with the virtual machine1. This induces a change in the architecture

1 The virtual machine can only interpret the core ArchWare ADL language (Morisson et al., 2004)

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

31

structure, as a description in the core language only uses the generic term of architectural
abstraction (components and connectors used in the previous section are defined in terms of
architectural abstractions (Cîmpan et al. 2005)). As the only terms are architectural abstractions,
connected by connections (no ports, components nor connectors) we use a slightly different
graphical notation as it is shown in Figure 5. There the architectural abstractions and their
hierarchical composition for the initial architecture are presented.

Fig. 5. The Supply Chain before its Evolution

The -ADL descriptions for the client and supplier abstractions (cf. Figure 6) are rather

simple. The client’s behavior consists in sequencing the following actions: send a request for

quotation, wait for the response; then, either make a request for quotation again (i.e., when

the previous one was not satisfactory), or place an order and wait for the invoice. The

supplier receives a restocking request and satisfies it. In the initial scenario we chose a basic

client-supplier relationship, in which any restock request is supposed to be satisfied

(contractually this is of the suppliers’ responsibility). The supplier acknowledges the request

when it is ready to restock. We will see later how this relationship evolves.

Innovative Information Systems Modelling Techniques

32

 value client is abstraction(String: quotationRequest, Integer: qty);{
 value quotationReq is free connection(String);
 value quotationRep is free connection(Float);
 value orderReq is free connection(String,Integer);
 value orderRep is free connection(String);
 value invoiceToClient is free connection(String);
 value quotationBeh is behaviour {
 via quotationReq send quotationRequest;
 via quotationRep receive amount:Float;
 unobservable; }
 quotationBeh();
 replicate {
 choose {

 quotationBeh();
 or
 behaviour {
 via orderReq send quotationRequest, qty;
 unobservable;
 via orderRep receive ack:String;
 if (ack == "OK) then {
 via invoiceToClient receive invoice:String; } } } };
 done };
value supplier1 is abstraction(); {
 value restockingOrder1Req is free connection(String, Integer);
 value restockingOrder1Rep is free connection(String);
 replicate {
 via restockingOrder1Req receive wares:String, quantity:Integer;
 unobservable;
 via restockingOrder1Rep send "OK" };
 done };

Fig. 6. Descriptions for Client and Supplier

Building architectures in the core language is done by hierarchically composing
abstractions. The ERP abstraction (cf. Figure 7) is composed by other abstractions. Let us

remind the user that a behavior in the core language is closely related to a -calculus process
(Milner, 1999). Here the ERP abstraction is composed of abstractions representing systems for
handling quotations, orders, invoices and restocks. The ERP abstraction is itself part of
another abstraction, the EAI, itself part of another, and so on. The overall architecture
(scm_arch) represents the supply chain management (cf. Figure 8) and its evolution

capabilities. This abstraction composes the scm and evolver abstractions. In the -calculus
sense the two abstractions are autonomous processes, which are unified using their
connection names and types (Oquendo et al., 2002). Further in the chapter we will see the
role played by each one of these abstractions.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

33

 value quotationSystem is abstraction(Float: price); {...}
value orderSystem is abstraction();{...}
value stockControl is abstraction(Integer: stock); {...}
value restockingSystem is abstraction();{...}
value invoiceSystem is abstraction();{...}
value erp is abstraction(Float: price, Integer: stock); {
 compose { quotationSystem(price)
 and orderSystem()
 and invoiceSystem()
 and stockControl(stock)
 and restockingSystem() } };
value eai is abstraction(Float: price, Integer: stock); {
 compose { supplier1(20)
 and
 erp(price, stock) } } };

Fig. 7. The ERP abstraction

 value scm_arch is abstraction(); {
 compose { scm()
 and
 evolver()} };

Fig. 8. The Supply Chain Abstraction (named scm_arch)

6.2 Language mechanisms for supporting dynamic unplanned evolution

The -ADL evolution mechanisms are based on the -calculus mobility (Milner, 1999). In -

ADL, an abstraction C (a behavior /process) can be sent from an abstraction A to another

abstraction B. The latter can then dynamically apply it and may behave as the received

abstraction C. As a consequence, the abstraction B has dynamically evolved, its current

behavior might be radically different from the previous one (Verjus et al., 2006). Such

evolution is (1) dynamic because the new behavior (abstraction C) is dynamically received

and (2) unplanned as the abstraction definition is unknown in advance. An architect can

provide the abstraction definition at runtime, and thus represent the unplanned evolution

(as opposed to the planned evolution illustrated in section 5).

To illustrate the evolution mechanisms let us consider a simple abstraction my_abst (cf.

Figure 9). It receives a boolean (evolution) and an abstraction (evol_arch_part) on its

connection evolRep. If the boolean value is true, my_abst behaves as the evol_arch_part

abstraction definition received and applied. Otherwise (the boolean value is false), my_abst

behaves in accordance to its initial description (// some code in Figure 9).

Thus, my_abst abstraction can be dynamically modified; such modification is unplanned as

the evol_arch_part abstraction definition is unknown at design time and is provided at

runtime by the evolver abstraction. The latter plays an important role in the evolution: it is

always connected to the abstraction that is expected to evolve (the my_abst in this example).

Innovative Information Systems Modelling Techniques

34

 value my_abst is abstraction(); {
 value evolReq is free connection();
 value evolRep is free connection(Boolean, abstraction());
 . . . // some code
 via evolReq send;
 via evolRep receive evolution:Boolean,
 evol_arch_part:abstraction(...);
 if (evolution) then {
 evol_arch_part(...) }
 else {
 . . .//some code } };

The new current abstraction’s behaviour: the

received abstraction is applied at runtime

Fig. 9. Abstraction Dynamic Evolution

 value evolver is abstraction(); {
 value evolReq is free connection();
 value evolRep is free connection(Boolean, abstraction);
 value checkReq is free connection(abstraction);
 value checkRep is free connection(Boolean);
 evol_arch_part is ARCH-EVOLUTION;
 iterate{

via evolReq receive;
 via checkReq send evol_arch_part;
 via checkRep receive propertyVerification : Boolean;
 if (propertyVerification)
 via evolRep send true, evol_arch_part ;
 }
};

Fig. 10. The Evolver Abstraction

The evolver abstraction is the communication means between the virtual machine and the
external world i.e., the architect who decides to evolve the architecture. As unplanned
changes are to be implemented dynamically in the system, an important issue is the
property preservation. Property verifications are made on the evol_arch_part abstraction,
which represents (all) the evolved architecture (see section 6.4 for some insights on the
evolved architecture according to the evolver abstractions’ location(s)). This abstraction is
sent using the mechanism we introduced to enable the on-the-fly exchange of abstractions:
the use of a special abstraction type, ARCH-EVOLUTION. At design time, the evol_arch_part
abstraction is declared of type ARCH-EVOLUTION (inside the evolver). This special type entails
the evolution strategy, which can consist in using files, user’s interfaces, etc. An example of
such a strategy consists in using a file containing the new abstraction definition, at a place
known by the virtual machine. The architect can place the evol_arch_part abstraction
definition in this file. When the evolver sends the evol_arch_part abstraction, its definition
is dynamically loaded by the virtual machine from the file.

However this is done only if property verification results are true, i.e., the properties remain
satisfied if changes contained in evol_arch_part are applied to the executing architecture.
This verification is even more crucial than in the case of anticipated evolution since the
content of evol_arch_part is not known in advance. The earlier property violations are
detected, the lower the maintenance cost is. Thus the decision to evolve or not is taken in the
evolver, depending on whether the properties are still verified after the evolution. Property

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

35

verifications are made on the evol_arch_part abstraction, which represents the evolved
architecture and which is sent by the evolver to the property checker, also represented by an
abstraction. The checker verifies the properties attached to the abstraction to be evolved
tacking into account the changes contained in the evol_arch_part abstraction. It sends then a
boolean value (propertyVerification) to the evolver: true if the properties still hold, false
otherwise. If the properties hold, then the evolver sends the evol_arch_part abstraction to
the abstraction to be evolved. Other strategies can be implemented, such as prompting the
architect with the analysis results. The architect’s choice to proceed or not is then reflected
on the boolean value. Finally the changes are implemented on the running system taking
into account the architecture execution state (Balasubramaniam et al., 2004).

6.3 Illustration of the dynamic unplanned evolution

This evolution scenario is interesting: on the one hand it implies evolving the system
architecture structure by adding a second and new supplier; on the other hand, it enforces to
change dynamically the restocking process to take into account that a restocking request
may not be satisfied; in this case, a new supplier is appearing and the initial restocking
request has to be split (with some quantity computations) among the two suppliers. The
system behavior has to be changed dynamically according to the new configuration and
process (Figure 11 and Figure 12).

The new architecture description is presented in Figure 12.

Fig. 11. The Evolved Architecture

Innovative Information Systems Modelling Techniques

36

 value scm is abstraction(); {
 value evolReq is free connection();
 value evolRep is free connection(Boolean, abstraction()
);
 compose {
 behaviour {
 via evolReq send;
 via evolRep receive evolution:Boolean,
 evol_arch_part:abstraction(Float,Integer);
 if (evolution) then {
 evol_arch_part(100.00, 32) }
 else { eai(100.00, 32) }}
 and
 client("rollings", 12) } };

value scm_arch is abstraction(); {
 compose { scm()
 and evolver()

and cheker()}
 };

The received
abstraction is
dynamically

applied

Fig. 12. The evolved architecture (scm abstraction description)

Changes between the initial architecture (before evolution – Figure 5) and the modified
architecture (after evolution – Figure 11) take place in the scm abstraction. The scm

abstraction definition contains -ADL code that manages the evolution: the scm abstraction
behavior includes and applies both the eai and client abstractions (before evolution), and
both the evol_arch_part and client abstractions (when the evolution occurs). Thus, when
the evolution occurs, the evol_arch_part abstraction substitutes the eai abstraction. The
evolver abstraction is unified with the abstraction that is supposed to evolve (scm). As
explained in section 6.2, the evol_arch_part abstraction is dynamically received and then
applied after property verification by the property checker.

As in the case of planned evolution, architectural properties may hold on both the structure
and behavior of the system. Note that in the present case, the properties are expressed in
AAL using the core ADL concepts; this is because the virtual machine can only interpret the
core language (Morisson et al., 2004). Examples of properties are:

Structural:

 connectivity: all architecture elements must be connected (no isolated element) in
scm_arch;

 cardinality: there must be at least one supplier in scm_arch;

Behavioral :

 no regression of services provided within the architecture: client’s request must always
be satisfied;

 no regression of behavior safety: a supplier must first receive a request before any other
action.

These properties are formalised using ArchWare-AAL as follows.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

37

Architecture connectivity

In scm_arch, each architectural element (abstraction) abst1 is connected to at least another
architectural element abst2 (non empty intersection of their connection sets).

 connectivityOfscm_arch is property {
-- each abstraction must be connected to at least another one

on self.abstractions apply
forall { abst1 | on self.abstractions apply
exists { abst2 | (abst2 <> abst1) and ((abst2.connections
 apply intersection(abst1.connections)) apply isNotEmpty) } } }

Supplier cardinality

In scm_arch, there must be at least one abstraction supp of type Supplier.

 atLeastOneSupplierInscm_arch is property {
-- there must be at least one supplier within the system

on self.abstractions apply
exists { sup | (sup.type=”Supplier”) } }

Client’s request satisfaction

Every client’s request must be satisfied (through receiving an OK reply on orderReq
connection). This property is expressed using a state formula on client’s actions: every
request followed by zero or more non OK reply followed by an OK reply is the expected
behavior (leads to state True).

 clientRequestSatisfaction is property {
-- the client must always have his(her) request satisfied

 on Client.instances apply
 forall {c | (on c.orderReq.actionsOut apply
 forall {request | on c.orderRep.actionsIn apply
 exists {reply | (reply = “OK”) AND

(every sequence { request.(not reply)*.reply }
 leads to state {true}) } }) } }

Supplier’s safe behavior

Each supplier must receive a request before any other action. This is expressed by a state
formula on supplier’s actions: every sequence starting with zero or more actions that are not
of the restocking order type (i.e., couple (wares, quantity)) and ending by a reply, is not an
expected behavior (leads to state false).

Innovative Information Systems Modelling Techniques

38

 requestBeforeReplyForSupplier is property {
-- no reply action before receiving a request

 on Supplier.instances apply
 forall {s |
 (on s.restockingOrderReq.actionsIn apply

exists {request | (request.type=’(String, Integer)’)
AND (on s.restockingOrderRep.actionsOut apply

 forall {reply |
every sequence {(not request)*. reply}

 leads to state {false} }) }) } }

Before implementing changes contained in ARCH-EVOLUTION, user-defined properties are

analyzed taking into account those changes. In our scenario, the four properties remain

satisfied when introducing a second supplier: (a) the connectivity is still ensured, (b) there

is still at least one supplier, (c) the client’s request can be satisfied by supplier1 and if

needed with the help of supplier2, (d) the supplier1’s behavior and now the supplier2’s

behavior must remain safe. Consequently evolving the scm_arch this way does not a priori

threaten the stability of the system architecture as unexpected behaviors are detected during

property analysis.

Once the property verification successfully performed by the property checker and the

evol_arch_part abstraction applied, the scm abstraction adopts a new behavior,

defined dynamically by the architect, according to the adopted evolution strategy. This

behavior adds a new supplier (supplier2) and the restocking process in the ERP is

changed taking into account this new supplier. The Figure 13 does not show non-modified

abstractions (for conciseness and clarity purposes). One can note that the new supplier

(supplier2) does not behave as the existing supplier (supplier1) (i.e., both suppliers

are different): the evolution we introduced (see section 4) requires two different suppliers;

we assume that a restocking request to the new supplier (supplier2) will only be

satisfied if the requested quantity is less or equal to the supplier2’s stock quantity (for

a given product). The restocking process takes now into account the existence of a new

supplier, and the initial demand may be split (according to the quantity requested) and

handled respectively by the two suppliers.

We have shown in this section that: (i) the system is able to dynamically evolve with

architectural elements that are dynamically and on-the-fly provided (not known in

advance), (ii) required changes are transmitted to the executing architecture through a

particular abstraction (evolver), (iii) the architect can check the architecture before and/or

after the evolution using user-defined properties that are expressed in a dedicated

architecture property definition language, (iv) changes are applied according to the results

of the property verification.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

39

 value supplier2 is abstraction(Integer capacity); {
 value restockingOrder2Req is free connection(String, Integer);
 value restockingOrder2Rep is free connection(String, Integer);
 via restockingOrder2Req receive wares:String, quantity:Integer;
 unobservable;
 if (quantity > capacity) then {
 via restockingOrder2Rep send "NOK",capacity; }
 else { via restockingOrder2Rep send "OK",capacity; }
 done };
value restockingSystem is abstraction(); {
 value restockingReq is free connection(String, Integer);
 value restockingOrder2Req is free connection(String, Integer);
 value restockingOrder2Rep is free connection(String, Integer);
 value restockingOrder1Req is free connection(String, Integer);
 value restockingOrder1Rep is free connection(String);
 via restockingReq receive wares:String, quantity:Integer;
 via restockingOrder2Req send wares, quantity;
 via restockingOrder2Rep receive ack:String, qtyReceived:Integer;
 if (ack == "NOK") then {
 via restockingOrder1Req send wares, (quantity-qtyReceived);
 unobservable;
 via restockingOrder1Rep receives ack2:String; }
 unobservable;
 done };
value erp is abstraction(Float: price, Integer: stock); {
 compose { quotationSystem(price)
 and orderSystem()
 and invoiceSystem()
 and stockControl(stock)
 and restockingSystem() } };
value ARCH-EVOLUTION is abstraction(Float:price, Integer: stock); {
 compose { erp(price, stock)
 and supplier1()
 and supplier2(20) } };

The abstraction that will be

sent to the scm abstraction

and applied by this latter

Fig. 13. Definition of the ARCH-EVOLUTION abstraction

6.4 Discussion

Let us now focus on evolution mechanisms illustrated in this section. When unpredictable
situations occur, the architect has to dynamically (at runtime) provide an abstraction
definition entailing the desired architectural changes. This abstraction, typed ARCH-
EVOLUTION is (1) checked against architectural properties, (2) sent to the abstraction that is
supposed to evolve and (3) dynamically applied by this latter (see section 6.2). The scope of
an architectural modification is related to the dedicated abstraction (evolver) that manages
such modification. More precisely it is related to the exact place the evolver takes in the
architecture, i.e., which abstraction it is bound to. A given modification that is defined
within an ARCH-EVOLUTION abstraction may only impact the abstraction (and sub-
abstractions) that receives this ARCH-EVOLUTION abstraction from the evolver. As a
consequence, the evolvers (abstractions) are architectural evolution elements. They may be
considered as non-functional architectural elements. Thus, it is up to the architect to decide,
at design time, where to place evolvers. The architect has to decide which abstractions may

Innovative Information Systems Modelling Techniques

40

evolve without knowing how these abstractions will evolve. The architect adopts a strategy
that can vary from using a unique evolver attached to the abstraction that composes the
entire system to using as many evolvers as abstractions in the architecture. Both strategies
have advantages and drawbacks. The first alternative forces the architect to dynamically
provide the code that corresponds to the new (modified) entire architecture even if only a
small change is occurring; it implies that that property checking is also performed on the
entire architecture. The second alternative is quite heavy as it imposes that an evolver
should be unified with every existing architectural abstraction (but when a change is
occurring, only the code that corresponds to the evolved abstraction is redefined). This
decision is related to the number of architectural abstractions and the underlying complexity
of the full specification code (expressed in ArchWare ADL): it is an architectural design
issue that can be solved.

Furthermore as the ADL proposes abstraction composition and evolution-dedicated

abstractions, a given architecture may considerably evolve with cascading evolution

situations. An open issue is, then, when and how an architecture is deviating so far from its

initial configuration that we may consider it as another architecture (not as an evolved one).

During planned evolution or unplanned evolution, user-defined properties are evaluated

taking into account the new architecture. It is worth noting in the scenarios of section 6.3,

that while some property expressions like connectivityOfScm_arch are not affected by the

change, other properties like requestBeforeReplyForSupplier should evolve to express

supplier2’s expected safe behavior as well.

7. Related work

This section presents the work related to the dynamic evolution of software-intensive
information systems using a software architecture-centric approach.

(Bradbury et al., 2004) presents a survey of self-management in dynamic software

architecture specifications. The authors compare well known architecture description

languages and approaches in a self management perspective; dynamic architectural changes

have four steps : (1) initiation of change, (2) selection of architectural transformation, (3)

implementation of reconfiguration and (4) assessment of architecture after reconfiguration.

This chapter focuses on the three first steps. In the Bradbury et al. survey, most of the

studied ADLs support all of the basic change operations (adding or removing components

and connectors) but other more complex operations are not fully satisfied. Particularly,

dynamically modifying internal component behavior remains an issue that is successfully

addressed only by few ADLs.

The representation of evolvable software-intensive information system architectures is
related to architecture description languages and their capabilities, i.e., ADLs that allow the
architect to express dynamic evolvable architectures, including adaptive architectures. Few
ADLs support dynamic architecture representation: Darwin (Magee et al., 1995), Dynamic

Wright (Allen et al., 1998), -Space (Chaudet & Oquendo, 2000), C2SADEL (Medvidovic et
al., 1999; Egyed & Medvidovic, 2001; Egyed et al., 2001), Piccola (Nierstrasz & Achermann,

2000), Pilar (Cuesta et al., 2005), ArchWare -ADL (Oquendo et al., 2002; Oquendo 2004),
ArchWare C&C-ADL (Cîmpan et al., 2005). Most of them are not suitable to support

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

41

unplanned dynamic architecture evolution as they consider different representations for the
concrete and abstract levels, and use reflection mechanisms to switch among these
representations: a dynamic architecture is first defined at abstract level and is then reflected
(1) into a dynamic evolvable concrete software-intensive system (Cazzola et al., 1999; Tisato
et al., 2000) or (2) into another, evolved abstract representation (Cuesta et al., 2001; Cuesta et
al., 2005). The link between the abstract level and the concrete one is not maintained, leading
to a situation in which only anticipated modifications can be supported dynamically.

ArchWare -ADL uses a unique representation for both levels (Verjus et al., 2006).

Thus, handling the software evolution is closely related to the problem of keeping the
consistency between the abstract and the implementation levels and continuously switching
between these levels. This issue is particularly important in the case of runtime evolution.
The consistency among the abstract and the concrete levels can be seen in two directions:
top-down from the abstract level to the concrete one (such as considered in model-driven
and architecture refinement approaches) and bottom-up from the concrete level to the
abstract one (such as considered by architecture extraction approaches). Our approach
adresses the top-down consistency.

Going from abstract architectural representations to more concrete ones is inherent in
architecture-centric development, and to the model-driven development in general. The
architecture-centric development highly depends on maintaining the consistency among
levels. Traditionally, when changes on the abstract architecture occur, it is up to the
developer to modify the code accordingly (sometimes assisted by semi-automated code
generation tools). Some architecture-based development approaches maintain mappings
between single versions of the architecture and their corresponding implementations
(Carriere et al., 1999; Medvidovi et al., 1999; Erdogmus, 1998; Egyed 2000; Van der Hoeck et
al., 2001; Egyed et al., 2001; Dashofy et al., 2002; Aldrich et al., 2002).

(Egyed & Medvidovic, 2001) approach introduces an intermediate “design” level between
architectural (abstract) level and implementation (concrete) level. The consistency between
these levels is managed using mapping rules between UML diagrams with OCL constraints
(at design level) and C2 concepts (at architectural level). The transformation-based
consistency checking is ensured by IVita (Egyed & Medvidovic, 2001). This approach
assumes that changes are applied off-line.

ArchEvol (Nistor et al., 2005) proposes to accurately determine which versions of the

component implementations belong to the initial version of the architecture and which

belong to the branched version of the architecture. ArchEvol defines mappings between

architectural descriptions and component implementations using a versioning infrastructure

(by using conjointly Subversion, Eclipse and ArchStudio) and addresses the evolution of the

relationship between versions of the architecture and versions of the implementation.

ArchJava (Aldrich et al., 2002) is an extension to Java that unifies the software architecture

with implementation, ensuring that the implementation conforms to the architectural

constraints. The latter mainly concern the communication integrity, i.e., implementation

components only communicate directly with the components they are connected to in the

architecture. The limitations of ArchJava are inherent to Java systems, that are difficult to

dynamically evolve without stopping the executing system. In (Garlan et al., 2004), the code

is monitored, changes are made on abstract architectures using a change script language and

Innovative Information Systems Modelling Techniques

42

then mapped into the code. Each change operator has its transformation into lower level

changes. If the change script execution fails at the code level, the change is aborted. As this

work is made in the context of self-adaptation, issues such as how the change is triggered

are taken into account. The evolution takes place at runtime, and concerns both the design

and the code.

(Huang et al., 2006) focus on dynamic software architecture extraction and evolution by
catching the executing component-based system state and system behavior: an architectural
representation is deduced and can be modified at runtime. The approach can be seen as a
unifying one. However, the deduced architectural representation is incomplete and the
approach is limited to existing component-based systems.

Thus, the issue of dynamic unplanned changes is not satisfactory addressed. Aside
ArchWare, none of the existing proposals unifies the abstract level and the implementation
level in a complete and consistent manner. This is related to the fact that these proposals
consider software-intensive information system architecture at abstract levels only. Most of
the ADLs provide high level architectural means by focusing on abstract architectures. As
we can see, there is an unbalance between the two identified issues, namely the description
of dynamic architectures and the handling of unexpected changes. The former is rather well
addressed by existing proposals, but the latter is practically uncovered. For an ADL, to
consider both issues is important, the ADL should not only be a design language but also an
implementation one, i.e., architectures become executable representations. We have
investigated in this chapter dynamic evolvable software-intensive information system
architectures in a model-based development perspective. Model-based development is
centered around abstract, domain-specific models and transformations of abstract models
into more specific underlying platforms. Our approach addresses both abstract and concrete
architectural models in a model-based development framework and is quite related to the
Monarch approach (Bagheri & Sullivan, 2010). Nevertheless Monarch does not deal with
dynamic architecture evolution support.

8. Conclusion

In this chapter we have presented an architecture model-based development approach
guiding the development of dynamic evolvable software-intensive information system
architectures. Our approach supports dynamic evolvable architecture development process
covering modeling, analysis and execution. As the evolution is an important facet of a
software-intensive system (Lehman, 1996), our proposal aims at integrating evolution
modeling and evolution mechanisms into an executable and formal ADLs that can serve at
both abstract and concrete levels (bridging the gap between both levels). In this chapter, we
use ArchWare languages and technologies. Our proposal deals with the dynamic evolution
of architecture using specific architectural elements and ADL built-in mechanisms. We claim
that software-intensive system architectures have to incorporate, at the design time,
evolution mechanisms making those architectures evolution-aware at runtime.

Architectural changes can occur at different levels of abstraction and may concern
architecture structure and behavior, internal architectural elements’ structure and behavior
as well as their related properties. The dynamic support elements and mechanisms we have
introduced and formally defined serve not only at classical architectural (abstract) level but

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

43

also as implementation means. In other words, the software architecture, if completely
detailed and defined, can be the entire executing system itself. In our proposal, even in the
case of information systems incorporating heterogeneous and existing components or legacy
systems, information system components’ “glue” is described as behavior that can be
modified at runtime. Then, components can be dynamically removed, modified or added
and the way they interoperate can also be dynamically modified.

This issue positively impacts software-intensive information system maintenance activities
and underlying costs, budgets, efforts and skills.

As for proposed mechanisms for unplanned evolution, through the concept of evolver and
the ADL virtual machine, we consider them as a significant research advance as at the best
of our knowledge. Moreover as the framework relies on core ADL concepts of abstraction
composition and evolution-dedicated abstractions, a given architecture may considerably
evolve with cascading evolution situations. We did not discuss when and how an
architecture is deviating so far from its initial configuration so that we may consider it as
another architecture/system (and not as an evolved one). This issue can be further
addressed and related to architectural evolution patterns and paths introduced in (Garlan et
al., 2009). We also think that the ADL-based evolution support we propose is a good
candidate for self-adaptation system design and analysis but further investigations and case
studies are mandatory.

The scenarios used in this chapter, illustrate changes that are related to the composition of
the system (by adding for example a supplier) as well as the behaviour of the system (in
other words the business process) by modifying the restocking process. Other case studies
have been realized using the ArchWare approach and technologies, i.e., for a Manufacturing
Execution System for a Grid-based application in a health-related project (Manset et al.,
2006). Other reserarch activities are directly inspired from these results (Pourraz et al., 2006).

9. References

Abrial, J.R. (1996). The B Book, Assigning Programs to Meanings, Cambridge University

Press, Cambridge, 1996.

Aldrich, J.; Chambers, C. & Notkin, D. (2002). ArchJava: Connecting Software Architecture

to Implementation, Proceedings of the 24th International Conference on Software

Architecture (ICSE 2002), Orlando, Florida, May 2002.

Allen, R. ; Douence, R. & Garlan D. (1998). Specifying and Analyzing Dynamic Software

Architectures, Proceedings on Fundamental Approaches to Software Engineering, Lisbon,

Portugal, March 1998.

Alloui, I. & Oquendo, F. (2003). UML Arch-Ware/Style-based ADL, Deliverable D1.4b,

ArchWare European RTD Project, IST-2001-32360, 2003.

Alloui, I. ; Garavel, H. ; Mateescu, R. & Oquendo F.(2003a). The ArchWare Architecture

Analysis Language, Deliverable D3.1b, ArchWare European RTD Project, IST-2001-

32360, 2003.

Alloui, I. ; Megzari, K. & Oquendo F. (2003b). Modelling and Generating Business-To-

Business Applications Using an Architecture Description Language - Based

Innovative Information Systems Modelling Techniques

44

Approach, Proceedings of International Conference on Enterprise Information Systems

(ICEIS), Anger, France, April 2003.

ArchStudio http://www.isr.uci.edu/projects/archstudio.

Andrade, L.F. & Fiadeiro, J.L. (2003). Architecture Based Evolution of Software Systems, In

Formal Methods for Software Architectures, M.Bernardo & P.Inverardi, pp. 148-181,

LNCS 2804, 2003.

ArchWare Consortium (2001). The EU funded ArchWare – Architecting Evolvable Software –

project, http://www.arch-ware.org, 2001.

Azaiez, S. & Oquendo, F. (2005). Final ArchWare Architecture Analysis Tool by Theorem-

Proving: The ArchWare Analyser, Delivrable D3.5b, ArchWare European RTD

Project IST-2001-32360, 2005.

Bagheri, H. & Sullivan, K. (2010). Monarch: Model-based Development of Software

Architectures, Proceedings of the 13th ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems (MoDELS), Oslo, Norway, October 2010.

Balasubramaniam, D.; Morrison, R.; Mickan, K.; Kirby, GNC.; Warboys, B.C.; Robertson, I.;

Snowdon, B; Greenwood, R.M. & Seet, W. (2004). Support for Feedback and

Change in Self-adaptive Systems, In Proceedings of ACM SIGSOFT Workshop on Self-

Managed Systems (WOSS'04), Newport Beach, CA, USA, ACM, October /November

2004.

Barrios, J. & Nurcan, S. (2004). Model Driven Architectures for Enterprise Information

Systems, In Proceedings of 16th Conference on Advanced Information Systems

Engineering, (CAISE’04), Springer Verlag (pub), Riga, Latvia, June 2004.

Bass, L.; Clements, P. & Kazman, R.(2003). Software architecture in practice, Second Edition,

Addison-Wesley, 2003.

Belady, L. & Lehman, M.(1995). Program Evolution Processes of Software Change, Academic

Press, London, UK, 1995.

Bergamini, D.; Champelovier, D.; Descoubes, N.; Garavel, H.; Mateescu, R. & Serwe, W.

(2004). Final ArchWare Architecture Analysis Tool by Model-Checking, ArchWare

European RTD Project IST-2001-32360, Delivrable D3.6c, December 2004.

Bradbury, J.S.; Cordy, J.R.; Dingel, J.& Wermelinger, M.(2004). A survey of self-management

in dynamic software architecture specifications. In Proceedings of ACM SIGSOFT

Workshop on Self-Managed Systems (WOSS '04). Newport Beach, CA, USA, ACM,

October /November 2004.

Bradfield, J. C.& Stirling, C. (2001). Modal logics and mu-calculi: an introduction , In

Handbook of Process Algebra, Elsevier, pp. 293–330, 2001.

Carriere, S.; Woods, S. & Kazman, R. (1999). Software Architectural Transformation, In

Proceedings of 6th Working Conference on Reverse Engineering, IEEE Computer Society,

Atlanta, Georgia, USA, October 1999.

Cazzola, W.; Savigni, A.; Sosio, A. & Tisato, F. (1999). Architectural Reflection : Concepts,

Design and Evaluation, Technical Report RI-DSI 234-99, DSI, University degli Studi

di Milano. Retrived from http://www.disi.unige.it/CazzolaW/references.html,

1999.

Chaudet, C. & Oquendo, F. (2000). π-SPACE: A Formal Architecture Description Language

Based on Process Algebra for Evolving Software Systems, In Proceedings of 15th

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

45

IEEE International Conference on Automated Software Engineering, Grenoble, France,

September 2000.

Cîmpan, S.; Oquendo, F.; Balasubramaniam, D.; Kirby, G. & Morrison, R. (2002). The

ArchWare ADL: Definition of the Textual Concrete Syntax, ArchWare Europeean

RTD Project IST-2001-32360, Delivrable D1.2b, December 2002.

Cîmpan, S. & Verjus, H. (2005). Challenges in Architecture Centred Software Evolution, In

CHASE: Challenges in Software Evolution, Bern, Switzerland, 2005.

Cîmpan, S.; Leymonerie, F. & Oquendo, F. (2005). Handeling Dynamic Behaviour in

Software Architectures, In Proceedings of European Workshop on Software

Architectures, Pisa, Italy, 2005.

Cuesta, C.; de la Fuente, P.& Barrio-Solorzano, M. (2001). Dynamic Coordination

Architecture through the use of Reflection, In Proceedings of the 2001 ACM

symposium on Applied Computing, Las Vegas, Nevada, United States, pp. 134 – 140,

March 2001.

Cuesta, C.; de la Fuente, P.; Barrio-Solorzano, M. & Beato, M.E. (2005). An abstract process

approach to algebraic dynamic architecture description, In Journal of Logic and

Algebraic Programming, Elsevier, Vol. 63, pp. 177-214, ISSN 1567-8326, 2005.

Dashofy, E. M.; van der Hoek, A. & Taylor, R. N. (2002). Towards architecture-based self-

healing systems, In Proceedings of the First Workshop on Self-Healing Systems (WOSS

'02),. D. Garlan, J. Kramer, and A. Wolf, Eds., Charleston, South Carolina,

November 2002.

Egyed, A. & Medvidovic, N. (2001). Consistent Architectural Refinement and Evolution

using the Unified Modeling Language, In Proceedings of the 1st Workshop on

Describing Software Architecture with UML, co-located with ICSE 2001, Toronto,

Canada, pp. 83-87, May 2001.

Egyed, A.; Grünbacher, P. & Medvidovic, N.(2001). Refinement and Evolution Issues in

Bridging Requirements and Architectures, In Proceedings of the 1st International

Workshops From Requirements to Architecture (STRAW), co-located with ICSE,

Toronto, Canada, pp. 42-47, May 2001.

Egyed, A. (2000). Validating Consistency between Architecture and Design Descriptions, In

Proceedings of 1st Workshop on Evaluating Software Architecture Solutions (WESAS),

Irvine, CA, USA, May 2000.

Erdogmus H. (1998). Representing Architectural Evolution, In Proceedings of the 1998

Conference of the Centre for Advanced Studies on Collaborative Research, Toronto,

Ontario, Canada, pp. 159-177, November 1998.

Favre, J.-M. ; Estublier, J. & Blay, M. (2006). L'Ingénierie Dirigée par les Modèles : au-délà du

MDA, Edition Hermes-Lavoisier, 240 pages, ISBN 2-7462-1213-7, 2006.

Ghezzi, C.; Jazayeri, M. & Mandrioli D. (1991). Fundamentals of Software Engineering, Prentice

Hall, 1991.

Garlan, D.; Cheng, S.-W.; Huang, A.-C.; Schmerl, B. & Steenkiste, P. (2004). Rainbow:

Architecture-Based Self Adaptation with Reusable Infrastructure, IEEE Computer,

Vol. 37, No. 10, October 2004.

Garlan, D.; Barnes, J.M.; Schmerl, B. & Celiku, O. (2009). Evolution styles: Foundations and

tool support for software architecture evolution, In Proceedings of the 7th Working

Innovative Information Systems Modelling Techniques

46

IEEE/IFIP Conference on Software Architecture (WICSA’09), pp. 131–140, Cambridge,

UK, September 2009.

Huang, G.; Mei, H. & Yang, F.-Q. (2006). Runtime recovery and manipulation of software

architecture of component-based systems, In Journal of Automated Software

Engineering., Vol. 13, No. 2, pp 257-281, 2006.

Kardasis, P. & Loucopoulos, P. (1998). Aligning Legacy Information Systems to Business

Processes , In Proceedings of International Conference on Advanced Information Systems

Engineering (CAISE’98), Pisa, Italy, June 1998.

Kyaruzi, J. J. & van Katwijk, J. (2000). Concerns On Architecture-Centered Software

Development: A Survey, In Journal of Integrated Design and Process Science, Volume

4, No. 3, pp. 13-35, August 2000.

Lehman M. M. (1996). Laws of Software Evolution Revisited, In Proceedings of European

Workshop on Software Process Technology (EWSPT 1996), p. 108-124, Nancy, France,

October 1996.

Leymonerie F. (2004). ASL language and tools for architectural styles. Contribution to

dynamic architectures description, PhD thesis, University of Savoie, December 2004.

Magee, J.; Dulay, N.; Eisenbach, S. & Kramer J. (1995). Specifying Distributed Software

Architectures, In Proceedings of 5th European Software Engineering Conference (ESEC

'95), LNCS 989, pp. 137-153, Sitges, September 1995.

Manset, D.; Verjus, H.; McClatchey, R. & Oquendo, F. (2006). A Formal Architecture-Centric

Model-Driven Approach For The Automatic Generation Of Grid Applications. In

8th International Conference on Enterprise Information Systems (ICEIS’06), Paphos,

Chyprus, 2006.

Mateescu, R. & Oquendo, F. (2006). π-AAL: an architecture analysis language for formally

specifying and verifying structural and behavioural properties of software

architectures, In ACM SIGSOFT Software Engineering Notes, Vol. 31, No. 2, pp. 1-19,

2006.

Medvidovic, N. & Taylor, R.N. (2000). A Classification and Comparison Framework for

Software Architecture Description Languages, In IEEE Transactions on Software

Engineering, Vol. 26, No. 1, pp. 70-93, 2000.

Medvidovic, N.; Egyed, A. & Rosenblum, D. (1999). Round-Trip Software Engineering

Using UML: From Architecture to Design and Back, In Proceedings of the 2nd

Workshop on Object-Oriented Reengineering, pp. 1-8, Toulouse, France, September

1999.

Mens, T.; Buckley, J.; Rashid, A. & Zenger, M. (2003). Towards a taxonomy of software

evolution, In Workshop on Unanticipated Software Evolution, (in conjunction with

ETAPS 2003) Varsaw, Poland, April 2003.

Milner, R. (1999). Communicating and Mobile Systems: the π -calculus, Cambridge University

Press, 1999.

Morrison, R.; Kirby, GNC.; Balasubramaniam, D.; Mickan, K.; Oquendo, F.; Cîmpan, S.;

Warboys, BC.; Snowdon, B. & Greenwood, RM. (2004). Support for Evolving

Software Architectures in the ArchWare ADL, In Proceedings of the 4th Working

IEEE/IFIP Conference on Software Architecture (WICSA 4), Oslo, Norway 2004.

An Architecture-Centric Approach for
Information System Architecture Modeling, Enactement and Evolution

47

Nierstrasz, O. & Achermann, F. (2000). Supporting Compositional Styles for Software

Evolution, In Proceedings of International Symposium on Principles of Software

Evolution, IEEE, Kanazawa, Japan, pp. 11-19, November 2000.

Nistor, E.; Erenkrantz, J.; Hendrickson, S. & van der Hoek, A. (2005). ArchEvol: Versioning

Architectural-Implementation Relationships, In Proceedings of the 12th International

Workshop on Software Configuration Management, Lisbon, Portugal, September 2005.

Nurcan, S. & Schmidt, R. (2009). Service Oriented Enterprise-Architecture for enterprise

engineering introduction, In Proceedings of 13th IEEE International Enterprise

Distributed Object Computing Conference, pp. 247-253, Auckland, New Zeeland,

September 2009.

Oquendo, F. (2004). π-ADL: an Architecture Description Language based on the higher-

order typed π-calculus for specifying dynamic and mobile software architectures,

In ACM SIGSOFT Software Engineering Notes, Volume 29, No. 3, pp. 1-14, 2004a.

Oquendo, F.; Alloui, I.; Cîmpan, S. & Verjus, H. (2002). The ArchWare ADL: Definition of

the Abstract Syntax and Formal Semantic, ArchWare European RTD Project IST-2001-

32360, Deliverable D1.1b, 2002.

Oquendo, F.; Warboys, B.; Morrison, R.; Dindeleux, R.; Gallo, F.; Garavel, H. & Occhipinti,

C. (2004). ArchWare: Architecting Evolvable Software, In Proceedings of the 1st

European Workshop on Software Architecture (EWSA 2004), St Andrews, UK, pp. 257-

271, 2004.

Perry, D.E. & Wolf, A.L. (1992). Foundations for the study of software architecture, In ACM

SIGSOFT Software Engineering Notes, Vol. 17, No. 4, pp. 40-52, 1992.

Pourraz,, F. ; Verjus, H. & Oquendo, F. (2006). An Architecture-Centric Approach For

Managing The Evolution Of EAI Service-Oriented Architecture, In 8th International

Conference on Enterprise Information Systems (ICEIS’06), Paphos, Chyprus, 2006.

Tisato, F.; Savigni, A.; Cazzola, W. & Sosio, A. (2000). Architectural Reflection - Realising

Software Architectures via Reflective Activities, In Proceedings of the 2nd

Engineering Distributed Objects Workshop (EDO 2000), University of Callifornia,

Davis, USA, November 2000.

Touzi, J.; Benaben, F.; Pingaud, H. & Lorre, J. (2009). A model-driven approach for

collaborative service- oriented architecture design, In International Journal of

Production Economics, Vol. 121, Issue 1, p. 5-20, 2009.

Van der Hoek, A.; Mikic-Rakic, M.; Roshandel, R. & Medvidovic, N. (2001). Taming

architectural evolution, In Proceedings of the 8th European Software Engineering

Conference, ACM Press, pp.1-10, Viena, Austria, September 2001.

Verjus, H. & Oquendo, F. (2003). Final XML ArchWare style-based ADL (ArchWare AXL),

ArchWare European RTD Project IST-2001-32360, Deliverable D1.3b, June 2003.

Verjus, H. ; Cîmpan, S. ; Alloui, I. & Oquendo, F. (2006). Gestion des architectures évolutives

dans ArchWare, In Proceedings of the First Conférence francophone sur les Architectures

Logicielles (CAL 2006), Nantes, France, September 2006, pp. 41-57.

Verjus, H. (2007). Nimrod: A Software Architecture-Centric Engineering Environment -

Revision 2, Nimrod Release 1.4.3, University of Savoie - LISTIC, Number LISTIC No

07/03, June 2007.

Innovative Information Systems Modelling Techniques

48

Vernadat, F. (2006). Interoperable enterprise systems: architecture and methods, Plenary

Lecture at 12th IFAC Symposium on Information Control Problems in Manufacturing,

Saint-Etienne, France, May 2006.

Zachman, J. (1997). Enterprise Architecture : The Issue of the Century, In Database

Programming and Design, Vol. 10, p. 44-53, 1997.

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

