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1. Introduction  

Since the fifth Century Athens, when Hippocrates identified the brain as the source of 
thought and understanding, humanity has been preoccupied with its functions. Anatomical 
descriptions have been brought to modernity by Andreas Vesalius in the sixteenth century 
(Vesalius, 1543) while underlying mechanisms have awaited the discovery of “bio-
electricity” by Luigi Galvani in the eighteenth century to emerge (Galvani, 1791). In the 
nineteenth century, famous physicians such as Paul Broca or Carl Wernicke have 
demonstrated the role of the brain in cognitive tasks, studying patients with neurological 
disorders (Broca, 2004; Wernicke, 1894). From the late twentieth century to present day, 
neuroimaging techniques have allowed explorations in healthy subjects providing very 
precise locations of brain regions involved in cognitive and motor functions. 
For the advancement of theory it is essential to acknowledge the strengths and limitations of 
available neuroimaging techniques so that converging evidence on the basis of multiple 
modes of investigation can be brought to bear on current controversies in the literature. 
Electroencephalography (EEG) was chronologically the first technique to open the way to 
the study of brain functions in exercising subjects (Swartz and Goldensohn, 1998). While one 
of the most direct methods to non-invasively measure the electrical signal arising from the 
synchronous firing of neurons, spatial resolution and lack of information from areas 
deeper than the cortex are its main limitations. Magnetoencephalography (MEG) is also a 
direct measure of the electrical activity of neurons and has a better spatial resolution as 
compared with EEG. However, the lack of detection in deep brain structures and the 
threshold detection (at least 50,000 neurons active simultaneously are needed) make MEG 
main disadvantages (Shibasaki, 2008). Functional imaging such as positron emission 
tomography (PET), single photon emission computed tomography (SPECT) and 
functional magnetic resonance imaging (fMRI) overcome the EEG and MEG limitations as 
they can detect neuronal activity as deep in the brain as experimenters desire (Cui et al., 
2011; Villringer, 1997). However, the measure is indirect as it relies on blood supply for 
fMRI or on radioactive tracers for PET and SPECT (Jantzen et al., 2008; Tashiro et al., 
2008). Additionally, except for EEG, the experimental environments of the earlier 
described techniques are very restricting with regards to physical exercise. Subjects and 
experimenters are limited to sit or laid positions and to breathe, eye, wrist and ankle 
movements. Actually, in vivo determination of brain functions in humans requires flexible, 
accessible and rapid monitoring techniques (Kikukawa et al., 2008; Perrey, 2008; 
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Rasmussen et al., 2007). Near infrared spectroscopy (NIRS) is perhaps the technique 
which best gathers these qualities; which may account for the increasing popularity of 
NIRS among research teams in recent years. 

2. Near infrared spectroscopy in humans 

As suggested by its name, the NIRS technique relies on red and infrared light diffusion 
through the living tissues. Physically, NIRS systems consist of numerous probes designed to 
be attached directly on the skin, over the area(s) to explore. Either optical fibres or regular 
electrical wires link the probes to a dedicated hardware, which in turn feeds a computer 
with experimental data. Probes are made of light transmitters and light receivers; the light 
power emission, the receiver gain and the interoptode distance can be adapted to match 
with the characteristics and depth of the areas under investigation. However, those three 
parameters necessarily come as inputs for the NIRS dedicated software which drives the 
record session.  

2.1 Principles of physics underlying the NIRS technique 

Back in the eighteenth century, the brilliant French scientist Pierre Bouguer (1698-1758) is 

probably the true father of photometry (Bouguer, 1729). The goal of his publication entitled 

“Essais sur la gradation de la lumière” in 1729 was to quantify how much light is lost when 

travelling through a given atmospheric layer. To achieve his work, he empirically 

characterizes materials with an optical density (OD) as follows: 

 OD = log 0I

I

 
 


   (1) 

where I0 is the intensity of the incident light and I the intensity of the transmitted light. More 
than one hundred years later, the German scientist August Beer (1825-1863), based on Jean-
Henri Lambert’s (1728-1777) and Pierre Bouguer’s works, published “Einleitung in die höhere 
Optik” (1853), where he defined transmittance of light rather than its loss when travelling 
through a tissue (Beer, 1853). What is now known as the Beer-Lambert’s law is a different 
version of Bouguer’s idea (eq.1). The Beer-Lambert’s law (eq.2) states that there is a 
logarithmic dependence between the transmission of light (T) and the product of the 
absorption coefficient of the substance the light travelled through (α) and the distance 
travelled by the light (also called path length, l). 

 T = 10 l   (2) 

In turn, the absorption coefficient α depends on the product of the extinction coefficients (ε) 
and the concentration (c) of the absorbers in the material. In liquids, the Beer-Lambert’s law 

is often written as follows:  

 T = εcl10  (3) 

Equations 1 and 3 imply that there is a linear relationship between Bouguer’s optical density 
and the concentration of species in the material explored: 

 OD = εcl   (4) 
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From equation 4 (illustrated by fig.1), the main idea of NIRS is to compute the concentration 
of species (c) by measuring the OD according to Bouguer’s definition (eq.1) and, inserting 
the a priori known extinction coefficients for species and the path length of light (eq. 4).  
 

 

Fig. 1. Illustration of the Beer-Lambert’s law. In panel A, the medium has a low OD 
(transmitted light I1 is close to incident light I0); the concentration of absorbing species is 
low. In panel B, OD is higher (larger difference between I2 and I0 than between I1 and I0), so 
is the concentration of absorbing species. 

2.2 Application of NIRS to living tissues 
At least six conditions have to be fulfilled in order for the Beer-Lambert’s law to be valid: 
- the absorbers must act independently from each others; 
- the absorbing medium must be homogeneous in the interaction volume; 
- the absorbing medium must not scatter the radiation; 
- the incident radiation must consist of parallel rays, each travelling the same length in 

the medium; 
- the incident radiation must be monochromatic; 
- the incident radiation must not influence the atoms in the medium. 
Living tissues, especially in humans, are doubtlessly among the most structured and 
complex in the universe. Their characteristics do not match with the Beer-Lambert’s law 
prerequisites on numerous points. Therefore, the modified Beer-Lambert’s law has to be 
applied in NIRS. As stated in the fifth point of the prerequisites, the incident light must be 
monochromatic (i.e. only one wavelength λ). In human tissues, lots of chemical species 
absorb light and account for its loss when travelling. However, there is a range of 
wavelengths at which light travel is much facilitated. Intuitively, when, in a dark 
environment, one looks at a flashlight through his finger or his hand, red is invariably the 
dominant colour. The physical explanation is that the red light travel through the human 
tissues is easier than for any other wavelengths. Implicitly, in the red portion of the visible 

www.intechopen.com



 
Neuroimaging – Cognitive and Clinical Neuroscience 300 

light, there are a limited number of chemical species which are responsible for the majority 
of light absorption and diffusion. These species are known to give its colour to the tissue 
and have been judiciously named chromophores. In human tissues, it is well known that 
haemoglobin is responsible for the colour given to tissues; in physics, haemoglobin is the 
chromophore whose concentration can be measured using Bouguer’s idea. 

2.2.1 The chromophores 

Haemoglobin is a metalloprotein which transports 98% of the oxygen in most vertebrates’ 
blood. When oxygen binds to the iron complex, it causes the iron ion to move back, and 
changes the optical properties of the molecule. At the human scale the phenomenon is 
perceptible and results in the long standing view that the red blood is filled-up with oxygen 
while the blue one has lost the majority of its initial quantity of oxygen. In physics, it can be 
considered that there are two distinct chromophores: oxygenated haemoglobin (O2Hb) and 
deoxygenated haemoglobin (HHb). Therefore, according to Bouguer’s idea one can compute 
the concentration of oxy and deoxyhaemoglobin in a tissue by measuring the changes in OD 
(eq. 4). However, the OD in human tissues is not strictly dependant on haemoglobin. In an 
imaginary case where there would be no haemoglobin in the explored area, the tissue would 
still absorb light. Consequently, eq.4 should be rewritten as: 

 
(λ) (λ) (λ)OD    ε  . c . l ODr   (5) 

where ODr is the y-intercept of the linear relation and denotes the OD of the living tissue 
when there is no haemoglobin. λ denotes the chosen wavelength for the monochromatic light. 

2.2.2 Two wavelengths 

The Beer-Lambert’s law states that the measured optical density is the sum of the 
absorbance of the two chromophores. Eq. 5 becomes eq. 6 with the two chromophores 
appearing: 

 
(λ) O2Hb (λ) O2Hb HHb (λ) HHb (λ)OD    ε  . c  . l  ε  . c  . l   ODr     (6) 

There are two unknowns in eq. 6 (ie. cO2Hb and cHHb). Thus, two equations are needed to solve 
the system. The two equations are provided by firing at two different wavelengths λ1 and λ2. 

 (λl) O2Hb(λ1) O2Hb HHb(λ1) HHb (λl)

(λ2) O2Hb(λ2) O2Hb HHb(λ2) HHb (λ2)

OD    ε  . c  . l  ε  . c  . l   ODr

OD   ε  .  c  .  l ε  .  c  .  l    ODr

  
   

 (7) 

The main idea is that one needs as many wavelengths as there are chromophores in the 

investigated area. Only one equation is exposed further down this line for clarity purpose. 

Note that NIRS systems perform every computation to solve the systems of equations. 

2.2.3 Application of the modified Beer-Lambert’s law 

Since physiologists use NIRS to compute the haemoglobin concentration, the modified Beer-

Lambert’s law is then written: 

 c = (λ) (λ)

(λ)

(OD   ODr )

ε  . l


 (8) 
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In eq. 8, OD is measured using Bouguer’s idea (eq.1), ε is known from the physicists who are 
able to measure it (fig.2), ODr and l are unknown but necessary to the computation of c. 
 

 

Fig. 2. Molar extinction coefficient for haemoglobin in water. O2Hb: plain line; HHb: dashed 
line; x axis: wavelength (λ) in nm; y axis: extinction coefficient (ε) in cm-1/M. Data compiled 
by Scott Prahl (Prahl, 2008). 

ODr is not expected to change radically in a short lap of time. In other words, it is 
considered constant between two light impulsions a few tenths of seconds away. Therefore, 
considering two light impulsions at t0 and t1, it is possible to write: 

 
   (λ) (λ)λ t0 λ t1

t0 t1
(λ) (λ)

(OD   ODr ) (OD   ODr )
c    c      

ε  . l ε  . l

 
    (9) 

which simplifies into 

 
   λ t0 λ t1

t0 t1
(λ)

(OD    OD )
c    c    

ε  . l


   (10) 

Eq. 10 states that the concentration variations depend on the measured OD variations. The 
advantage of the subtraction in eq. 9 is to get rid of the unknown ODr. However, the 
absolute concentration of the chromophore becomes unknown as only a concentration 
difference (or variation) can be computed. 
The last unknown parameter missing to compute the concentration variation is l, the path 
length of light between the transmitter and the receptor (fig. 3). Its measure is almost 
impossible due to the numerous interactions between the matter and the light in living 
tissues (Ijichi et al., 2005). Three methods are available to approach the path length: 
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- the differential path length factor (DPF) 
- the time of flight 
- the Monte Carlo simulation 
 

 

Fig. 3. Schematic representation of NIRS applied to human cerebral tissues. The mean path 
length of light represents the l.DPF in eq.11. Roughly, the maximum depth of the mean path 
length of light is believed to be half of the emitter to receiver distance. 

The DPF method is doubtlessly the easiest to use but also the less precise and less 
satisfactory. Regrettably it is the most common method nowadays. In this method, l is 
considered the most direct way between the light transmitter and receptor, DPF is 
multiplied to l to lengthen the global path length, eq. 10 is then written: 

 
 λ

(λ )

OD
c   
ε  . l . DPF


   (11) 

DPF is arbitrarily set from abacus found in the literature. Only a few studies give the DPF, 
often as a function of age (Duncan et al., 1995; Essenpreis et al., 1993a; Essenpreis et al., 
1993b; Firbank et al., 1993; Ijichi et al., 2005; Kohl et al., 1998a; Kohl et al., 1998b; Nolte et al., 
1998; Pringle et al., 1999; Ultman and Piantadosi, 1991; van der Zee et al., 1992; Zhao et al., 
2002). Another way to approach the path length of light is to measure the time of flight 
between the light transmitter and the receptor. The speed of light in the vacuum is used to 
compute the path length. This method is more precise than the DPF method but costly 
financially and in terms of load of computation. Billion of photons are detected by the 
receptor at each light impulsion. One of the advantages is the possibility to select the 
photons to study; the first detected photons have a priori a shorter path length, which 
means that they did not go deep into the tissues (Ferrante et al., 2009). The latest photons, 
which have a longer path length, went a priori deeper into the tissues and carry more 
information. Finally, the Monte Carlo simulation is a statistical method representing the 
distribution of energy in the explored volume. It is a way to assume the random path length 
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of photons between the light transmitter and the receptor (Hiraoka et al., 1993; Simpson et 
al., 1998; Zhang et al., 2007a, b). This is the most precise method nowadays, usable with 
regular measurement devices but costly in terms of computation. The Monte Carlo method 
might be performed after the monitoring session as computers may not be powerful enough 
to ensure simultaneously proper recording of the data and Monte Carlo analysis (Avrillier et 
al., 1998a; Avrillier et al., 1998b). Roughly, for all methods the maximum depth of the mean 
path length of light is believed to be half of the emitter to receiver distance.  

3. Signal characteristics and interpretations 

NIRS data consist of oxy and deoxyhaemoglobin time series (Fig. 4 and Fig. 5), with 
sampling rate usually ranging from 2 to 20Hz, and occasionally above. Usual measurement 
sites exclude locations where large arteries or veins would be reachable by the NIRS light as 
experimenters are rather interested in tissue data. In the tissues, the light crosses three types 
of blood vessels: 
- arterioles (diameter below 100µm, average 20-30µm) 
- capillaries (average diameter 5-10µm) 
- venules (average diameter 8-30µm) 
NIRS signal is believed to originate in its major part from the venous compartment (approx. 
70%); however, vasomotion makes the part of each segment variable (Bourdillon et al., 2009; 
Peltonen et al., 2009). Briefly, capillaries form an extensive network which connects the 
arterial and venous sides of the vascular system. The blood flow through a given capillary 
bed strongly depends on the vascular tone of the parent arteriole and the pre-capillary 
sphincters. Both adjust the local blood flow to meet the physiological demands. Despite the 
smooth muscles of the arterioles and sphincters are connected to the sympathetic nervous 
system, the vascular tone is largely dependent on the local factors (Segal, 2005). Concerning 
the motor areas of the brain, it is generally assumed that, when activated, the neurons 
increase their firing rates to generate the motor command and thus increase their metabolic 
demands (Villringer, 1997). One of the consequences is to increase the local blood flow; this  
 

 

Fig. 4. Example of a NIRS signal pattern over the motor cortex during a 20 seconds lasting 
handgrip task (Wolf et al., 2007). 
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phenomenon can be detected by NIRS. It is obvious that the NIRS measurements are 
indirect with regards to neuronal activity and rely on the assumption that the latter is 
coupled to blood supply. Moreover, NIRS measures the concentrations of oxy and 
deoxyhaemoglobin (the sum of both, Hbtot, giving a proxy of local blood volume), not the 
blood flow nor the oxygen consumption. Fig. 4 shows a typical NIRS record during a simple 
motor task (handgrip). 

3.1 Patterns 

Empirically, activation pattern in the motor cortex is identified as an increase in 

oxyhaemoglobin concomitant to a decrease in deoxyhaemoglobin (Fig. 4). The reasons 

which give the activation pattern such a shape are not fully elucidated (Dai et al., 2001; 

Harada et al., 2006; Matsuura et al., 2011). However, it is commonly thought that the 

vasodilation caused by the increase in metabolic demand from the firing neurons overcomes 

the needs in oxygen; which results in an apparent increase in tissue oxygenation as 

measured by NIRS (Franceschini and Boas, 2004; Gervain et al., 2011; Leff et al., 2011; Rooks 

et al., 2010; Shibasaki, 2008; Shibuya and Tachi, 2006). The amplitudes of changes in oxy and 

deoxyhaemoglobin within the motor cortex areas have been shown to be dependent on the 

force production: the stronger the push, the higher the oxyhaemoglobin (Shibuya and Tachi, 

2006; Smith et al., 2003). However, at low levels of force, there might be no detection by the 

NIRS systems (at least 10% of maximal voluntary contraction needed); while at high levels 

(about 50% of maximal voluntary contraction and above) there might be no plateau but only 

a peak in oxyhaemoglobin (Ekkekakis, 2009). This type of activation pattern is valid only for 

steady systemic variables (ie. globally non moving body). The NIRS signal, as it comes from 

the circulatory system, is strongly dependent on the cardio-respiratory parameters. 

Modifications in cardiac output, autonomic nervous system balance, hormonal response,  

 

 

Fig. 5. Example of a NIRS signal pattern over the motor cortex during a high intensity whole 
body cycling exercise at a constant work rate from baseline level (warm up) at 600 s. 
Personal data. 
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blood concentration in oxygen or carbon dioxide, baroreflexes and neural feedbacks from 
metabo and mecano receptors in the skeletal muscle potentially affect the vascular tone and 
thus the NIRS signal. Consequently, in subjects exercising at high metabolic rates (elevated 
oxygen consumption), with hyperventilation, hyper/hypocapnia and high cardiac output, 
the NIRS signal is rather dependant on systemic variables than on motor command (Pereira 
et al., 2007; Rasmussen et al., 2007). Fig. 5 shows a typical NIRS response from the motor 
cortex of a subject exercising on a cycloergometer above the ventilatory threshold for 20 
minutes (Rooks et al., 2010; Rupp and Perrey, 2008). The amplitudes of the variations are 
way larger as compared with fig. 4 and the “activation pattern” is altered as there is no 
apparent decrease in deoxyhaemoglobin. In any case, the interpretation of the NIRS signals 
has to be modulated following the experimental design and the systemic conditions 
(Gervain et al., 2011; Rooks et al., 2010). 

3.2 Delay 

As shown in fig. 4 or fig. 5, there is a delay between the stimulus, the neural responses and 
the hemodynamic modifications as detected by the NIRS systems (Cui et al., 2010b; Yasui et 
al., 2010). If the NIRS signal depends on the motor command, the delay has been shown to 
range between 2 and 5 seconds (Fig. 4). In the case of fig. 5 the NIRS signal is rather 
dependant on systemic parameters (i.e. ventilation) and the delay ranges between 1 and 4 
minutes. Such variations in delays are due to the facts that the NIRS records of cerebral 
hemodynamic parameters depend whether on the motor command or on systemic 
parameters, following the experimental design. To date, the time course analysis of NIRS 
signals has yet to be established, notably with regards to the transition periods and the 
experimental designs. 

3.3 NIRS computed indicators 

The only parameters measured by NIRS are the optical densities at two (or more) 
wavelengths as stated in the part 2.2.2 of this article. O2Hb and HHb are directly computed 
variables; the computer usually performs calculations during data acquisition. Afterwards, 
experimenters are using to computing other parameters from O2Hb and HHb to present 
NIRS data. Among the most often found parameters in the literature there are: the difference 
between O2Hb and HHb (usually abbreviated O2Hbdiff or Hbdiff); the tissue or capillary 
saturation (usually abbreviated StO2 or ScO2) and the tissue oxygenation index (TOI). TOI, 
StO2 and ScO2 are given by the simple formula: 

 TOI= 2

2

O Hb 
O Hb HHb

 (12) 

These indicators are thought to summarize O2Hb and HHb signals and reflect tissue 
oxygenation. However, physical exercise results in a large heterogeneous increase in 
cerebral oxygenation (Rooks et al., 2010). It seems that the primary factor influencing this 
increase is the intensity of exercise, followed by the training status of the subjects, age, 
health status (i.e., patients vs. healthy subjects) and methodology. 

3.4 Pre-processing 

In most studies, NIRS data is pre-processed in order to improve the signal quality (Boas et 
al., 2004). The first step typically aims at removing noise (Gervain et al., 2011). The noise 
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comes from the devices as well as from physiological parameters not a priori linked to the 
stimulation (eg. Exercise) and are thus undesirable (Nolte et al., 1998). This kind of noise is 
considered high frequency with regards to the frequencies of interest (Cui et al., 2010a). 
Low-pass filters are used to remove heart rate, blood pressure variations, breath, 
swallowing etc. Usually, the cut-off frequency ranges between 0.1 and 1Hz. Detrending is 
performed using a high-pass filter when NIRS signals slowly drift throughout the 
experimental session. High-pass filters usually range between 0.01 and 0.05Hz. However 
experimenters must care as the frequencies of interest could be part of this range. Finally, 
experimenters have several tools to choose from to remove movement artefacts. If possible 
set a marker during the experimental session when the subject moved his head is a good 
start. Retrospectively, the eye of the physiologist is the first tool which can be used. 
However, its somehow objective behaviour and its inability to treat large amounts of data 
make its main limits. Abrupt changes in the signals can be detected and corrected by 
algorithms (Lloyd-Fox et al., 2010; Wilcox et al., 2008). However, the thresholds must be 
defined carefully in order to preserve the changes that supposedly belong to the awaited 
hemodynamic response (Gervain et al., 2011).  

3.5 Data analysis 

Since NIRS is a relatively new technique for brain investigations, there is no standardised 
method to analyse data. Up to date, the only invariant is that different experimental designs 
require different analysis techniques.  
In block-designed studies, experimenters are used to analysing time series by averaging 
multiple trials of the same condition. Mean variations and mean time courses are then 
obtained for each condition. The critical points of such techniques are the determination of 
the relevant windows of the time series and the baseline which it is compared to. Once 
determined, student t-test and analyses of variance are the most often used statistical 
methods. 
More complex, three main freeware packages are downloadable and provide analysis 

methods derived from the BOLD signal of fMRI: HomER (Huppert et al., 2009), fOSA (Koh 

et al., 2007) and NIRS-SPM (Ye et al., 2009). The general linear model (GLM) and the 

statistical parametric mapping (SPM) offer the possibility to create three dimensional 

pictures of the brain, where activated/inhibited cortex areas are colour encoded (Friston et 

al., 1999; Plichta et al., 2007; Schroeter et al., 2004; Zarahn et al., 1997). In most studies, the 

NIRS records are performed off the MRI scan. Then, the input of the three dimensional 

coordinates of the optodes/channels is crucial for the reconstitution of the pictures. In the 

case of a co-record of NIRS and fMRI techniques, the coordinates of the NIRS optodes can be 

precisely assigned; else, skull measurements and probe placement are made either by 

reference to the 10-20 EEG system or by kinematic acquisition using such devices as 

optotrack or fastrack. 

3.6 Dos and don’ts 

Doubtlessly, the toughest part of the NIRS based studies, is to draw physiological and 

cognitive conclusions from the data. Multi-channel setups cover wide cortical zones and 

result in several time series and three dimensional coloured images in which probability to 

give statistically significant results is high. The question experimenters inevitably face is 

“What do those results mean?”. A typical NIRS channel includes a great number of capillary 
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beds, corresponding to a greater number of neurons (estimated around 300,000 to 500,000) 

from various depths in the cortex (Gervain et al., 2011). The pool of capillary beds enlighten 

by a channel is believed to belong to a given cortex area, which supposedly has a single 

function. This makes a huge simplification if compared to the brain complexity and its 

capacity of integration, not to mention the neuro-vascular coupling assumption (see part 

4.1.)! Moreover, probe placement is based on the skull anatomy as no direct access to the 

brain is allowed by NIRS (except in the case of fMRI co-recording) giving a probability to 

fire over multiple cortex areas or even over a wrong area. Additionally, the proportion of 

excitatory and inhibitory neurons in the volume aimed by NIRS is unknown yet potentially 

affects the results. 

3.7 Confounding factors 

At this stage of the article, the most impeding factors have been brought to discussion. 
However, some factors, not directly linked to the NIRS concepts nor to brain characteristics 
must be debated. Before entering the tissue of interest, light travels through the skin and the 
fat layers (as well as the hair and skull layers in case of brain investigations, Fig. 3). The skin 
colour (and hair colour) has been shown to influence light absorption (Pringle et al., 1999). 
Intuitively, human eyes perceive various skin colours because skin absorbs and reflects light 
depending on its properties. The same (or the opposite) happens in the near infrared portion 
of the spectrum. Light skins are believed to absorb light more than dark skins, while Asian 
originated skins are the less absorbent. NIRS gain or laser power must then be modulated to 
fit with the skin properties of a given subject; which can be performed automatically by the 
NIRS hardware before starting the data acquisition. 
Skin blood flow is one of the main confounding factors as the haemoglobin molecules 

present in the capillary beds located in the skin are the first (and last) exposed to NIRS light 

(Tew et al., 2010). In exercising subjects, blood flow is increasing in proportion to the 

intensity of exercise, for well-known thermoregulation reasons. However, skin is not 

believed to consume more oxygen at high intensity as compared with low intensity 

exercises. This means that skin blood flow overcomes by far the local metabolic demands; 

which necessarily biases the NIRS measurements. 

The fat and bone layers are probably easier to take into account as they can be integrated in 

the automatic gain setup which occurs in most modern NIRS devices, before data 

acquisition.  

Finally, gender has been shown to influence NIRS responses to various stimuli, notably 

motor, cognitive tasks and emotions (Marumo et al., 2009; Yang et al., 2009). 

4. Measuring the brain activities related to the motor stimulation using NIRS 

4.1 Physiological processes associated with brain activity 

Physiological events associated with brain activity can be subdivided into intracellular 

events, events occurring at the cell membranes and those that are mediated by 

neurovascular coupling and occur within the vascular space. Increased brain activity is 

correlated not only with oxygen consumption but also with glucose consumption. The brain 

has only negligible stores of glucose and therefore relies both on the circulating glucose and 

on the active transport system which moves glucose across the blood-brain barrier. 

Increased activity in brain cells is associated with an increase in glucose consumption and 
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thus the intracellular glucose concentration might fall in the early activation period 

(Villringer and Dirnagl, 1995). This transient drop in glucose is accompanied by a transient 

rise in local lactate concentration (Villringer and Dirnagl, 1995). Magistretti and Pellerin 

(Magistretti and Pellerin, 1999a, b) have provided new insights on the role of astrocytes in 

coupling neuronal activity with energy metabolism. They propose an initial glycolytic 

processing which occurs in astrocytes during activation, resulting in a transient lactate 

overproduction; followed by a recoupling phase during which lactate is oxidised by 

neurons. In addition to the events taking place intracellularly, local brain activity induces a 

local arteriolar vasodilation (Villringer and Dirnagl, 1995). Although small arteries and 

arterioles probably contain less than 5% of the blood volume in the brain parenchyma, they 

control most of the resistance and therefore blood flow at a local level. As a consequence of 

local vasodilation the local cerebral blood volume as well as the blood flow increase. This 

relationship between neuronal activity and vascular response is termed “neurovascular 

coupling”. In other words, the changes in Hbtot most probably reflect the match between 

oxygen supply and oxygen demand, whereas changes in O2Hb reflect the alterations in 

cerebral blood flow, an overshoot in cerebral oxygenation during brain activation. Several 

NIRS studies conducted in the past fifteen years have demonstrated that activation- induced 

changes in brain activity can be assessed non-invasively during the performance of various 

whole-body motor activities (Maki et al., 1995; Obrig et al., 1996). 

4.2 Brain activity and motor performance 

The NIRS is applicable under a variety of conditions ranging from bedside monitoring in 

intensive care to documenting the effects of maximal whole body exercise in the physiology 

laboratory. To date, several studies have used NIRS to examine alterations in cerebral 

oxygenation during dynamic exercise, and have found an increase in cerebral oxygenation 

with medium and high-intensity exercise (Bhambhani et al., 2007; Shibuya et al., 2004a; 

Subudhi et al., 2007; Suzuki et al., 2004). 

While a rather detailed understanding of brain activity during hand movement has been 

developed (Dettmers et al., 1995), less is known about the functional anatomy of motor 

control for leg or foot movements. Due to its advantages compared to other neuroimaging 

techniques, NIRS technique allows recording of cerebral activity during ordinary gait (Fig. 

6). For instance, Miyai et al. (2001) were able to compare cerebral activities evoked during 

gait, alternating foot movements, arm swing and motor imagery of gait. Gait-related 

responses along the central sulcus were medial and caudal to activity associated with arm 

swing, in agreement with the known somatotopic organisation of the motor cortex (Perec, 

1974). Crucially, these authors showed that walking increased cerebral activity bilaterally in 

the medial primary sensori-motor cortices and the supplementary motor area, and to a 

greater extent than the alternation of foot movements. Unfortunately, the spatial distribution 

and intensity of these responses were not statistically compared. In a different NIRS study, 

Suzuki et al. (2004) examined the effect of various walking speeds on cerebral activity. They 

demonstrated that cerebral activity in the prefrontal cortex and premotor cortex tended to 

increase as the locomotion speed increased, whereas cerebral activity in the medial sensori-

motor cortex was not influenced by the locomotion speed. In summary, NIRS is particularly 

useful for studying the cortical bases of locomotion control. Unfortunately, given the limited 

depth penetration of the infrared light (a few centimetres from the skull surface), the NIRS 
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technique can only assess the responses of the most superficial portions of the cerebral 

cortex. 

Neuroimaging studies have reported a proportional relationship between cortical signals 

and exerted joint force in humans, indicating that brain signals are positively correlated to 

voluntary efforts, as a high level of effort is required for exerting greater muscle force (Liu et 

al., 2007; Liu et al., 2003). Recently several authors have proposed combining neuroimaging 

techniques with the classical twitch interpolation to investigate the central aspects of fatigue 

after and during ongoing exercise. Most studies on central fatigue have investigated 

isometric contractions of isolated muscle groups. Post et al. (2009) showed, during a 

sustained high force contraction, that the hemodynamic response (BOLD signal) in the most 

important motor (output) areas increased (primary sensorimotor cortex, supplementary 

motor area, premotor area), whereas the voluntary activation (accessed via the twitch- 

interpolation technique) of the index finger muscle during a unilateral task decreased with 

time. This finding suggests that although the central nervous system (CNS) increased its 

input to the motor areas, these increases did not overcome fatigue-related changes in the 

voluntary drive to the motor units. During a progressive maximal cycling exercise, Rupp 

and Perrey (2008) showed a decrease in prefrontal cortical oxygenation before motor 

performance failure, which may be compatible with the notion of a role for the prefrontal 

cortex in the reduction of motor output by the cessation of exercise. However, this finding 

was not associated with a decrease in voluntary activation, but measured 6 min post-

exercise. Support for the role of a failure of the CNS to excite the motor neurons adequately 

(i.e., central fatigue) in fatigue during challenging exercises has been provided by the 

finding that voluntary activation of skeletal muscles is reduced after fatiguing exercise. 

This suboptimal muscle activation has also been functionally observed via lowered surface 

electromyographic (EMG) activity on several occasions during fatiguing exercises (Mendez-

Villanueva et al., 2007). However, what triggers these acute changes in the CNS behaviour 

remains to be determined. Central fatigue may be elicited by low brain oxygenation, i.e., by 

insufficient O2 delivery and/or low pressure gradient to drive the diffusion of O2 from the 

capillaries to the mitochondria. Direct and indirect evidences support the contention that 

inadequate cerebral oxygenation depresses cortical neuron excitability, although the 

mechanisms remain debated (for review see Nybo and Rasmussen, 2007). The non-invasive 

technique of NIRS offers real-time measurement of oxygenation and hemodynamic 

responses in tissues, and thus, constitutes a relevant tool to enhance our current knowledge 

of central (CNS) and peripheral (muscle) determinants of whole-body exercise performance. 

Some studies have reported that muscle deoxygenation occurs during repeated cycling tests 

(Racinais et al., 2007). However, exercises of this nature appear to induce a fairly constant 

level of deoxygenation in prime mover muscles across repetitions, and therefore authors 

have suggested that muscle O2 uptake was well preserved and was not likely to represent a 

limiting factor. Data on cerebral oxygenation changes during fatiguing tests are currently 

presented in the literature. Based on studies conducted during constant workload exercise, 

incremental test to maximal effort (Rupp and Perrey, 2008), and supramaximal exercise 

(Shibuya et al., 2004b), the deoxygenation of the cerebral cortex has, in general, been 

incriminated in the cessation of exercise, or at least in the reduction of exercise intensity. 

This finding, however, is confounded by the availability of O2 (Subudhi et al., 2007). 

Although an association exists between cerebral oxygenation and performance in various 
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exercises, no studies have yet determined if a critical level of cerebral deoxygenation impairs 

whole body exercise. Shibuya and colleagues Shibuya et al. (2004a) reported a progressive 

cerebral deoxygenation during intermittent exercises. Specifically, these authors observed a 

reduction in Δ[O2Hb] and Δ[Hbtot], while Δ[HHb] increased, over the course of seven, 30s 

cycling exercises performed at an intensity corresponding to 150% VሶO2max and interspersed 

with 15s of rest. It was concluded that fatigue, resulting from such intermittent 

supramaximal exercises, was related to a decrease in the cerebral oxygenation level. 

 

 

Fig. 6. Example of a NIRS setting while the subject is walking on a treadmill. 
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To date based on recent evidences; we may propose that reductions in cerebral oxygenation 

during exhaustive intensities are caused by decreased cerebral blood flow coupled with 

increased cerebral oxygen uptake (Gonzalez-Alonso et al., 2004). It has also been proposed 

that this change in flow and metabolism at high intensities is sensed or controlled by a 

‘central governor’ so that during oxygen availability reduction, peak exercise performance is 

reduced to prevent the development of ischemia in vital organs including the brain (Noakes 

et al., 2005). In this way, an increase in Hbtot and a decrease in cerebral oxygenation 

represent potential metabolic indicators, signalling either directly or indirectly to sub-

cortical and cortical motor areas of the brain to reduce muscle unit recruitment and thus 

protect the brain and peripheral organs.  

5. Conclusion 

NIRS utilises light to measure cortical haemoglobin concentration changes associated with 

neural activity. This technique is more tolerant compared with other comparable techniques, 

regarding the subjects’ movements, thus allowing a wider range of experimental tasks in the 

range of dynamic exercises. However, it has some shortcomings that need to be addressed. 

In this chapter, we showed how technical obstacles could be overcome, how NIRS 

contributes to the mapping of exercise-related brain functions, and further promotes the 

understanding of human movement and motor performance. In this context, we propose 

NIRS as a potential mediator between physiology and neuroscience. Beside these advances 

in technique and analysis of the data, we believe that users should consider the 

methodology’s strengths and weakness when designing a NIRS study.  
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