
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

7

Knowledge Representation in
a Proof Checker for Logic Programs

Emmanouil Marakakis, Haridimos Kondylakis and Nikos Papadakis
Department of Sciences, Technological Educational Institute of Crete,

Greece

1. Introduction

Lately the need for systems that ensure the correctness of software is increasing rapidly.
Software failures can cause significant economic loss, endanger human life or environmental
damage. Therefore, the development of systems that verify the correctness of software
under all circumstances is crucial.

Formal methods are techniques based on mathematics which aim to make software

production an engineering subject as well as to increase the quality of software. Formal

verification, in the context of software systems, is the act of proving or disproving the

correctness of a system with respect to a certain formal specification or property, using

formal methods of mathematics. Formal program verification is the process of formally

proving that a computer program does exactly what is stated in the program specification it

was written to realize. Automated techniques for producing proofs of correctness of

software systems fall into two general categories: 1) Automated theorem proving (Loveland,

1986), in which a system attempts to produce a formal proof given a description of the

system, a set of logical axioms, and a set of inference rules. 2) Model checking, in which a

system verifies certain properties by means of an exhaustive search of all possible states that

a system could enter during its execution.

Neither of these techniques works without human assistance. Automated theorem provers
usually require guidance as to which properties are "interesting" enough to pursue. Model
checkers can quickly get bogged down in checking millions of uninteresting states if not
given a sufficiently abstract model.

Interactive verifiers or proof checkers are programs which are used to help a user in building a
proof and/or find parts of proofs. These systems provide information to the user regarding
the proof in hand, and then the user can make decisions on the next proof step that he will
follow. Interactive theorem provers are generally considered to support the user, acting as
clerical assistants in the task of proof construction. The interactive systems have been more
suitable for the systematic formal development of mathematics and in mechanizing formal
methods (Clarke & Wing, 1996). Proof editors are interactive language editing systems which
ensure that some degree of “semantic correctness” is maintained as the user develops the
proof. The proof checkers are placed between the two extremes, which are the automatic
theorem provers and the proof editors (Lindsay, 1988).

www.intechopen.com

Advances in Knowledge Representation

162

In this chapter we will present a proof checker or an interactive verifier for logic programs which
are constructed by a schema-based method (Marakakis, 1997), (Marakakis & Gallagher, 1994)
and we will focus on the knowledge representation and on its use by the core components of
the system. A meta-program is any program which uses another program, the object program,
as data. Our proof checker is a meta-program which reasons about object programs. The logic
programs and the other elements of the theory represented in the Knowledge Base (KB) of our
system are the object programs. The KB is the data of the proof checker. The proof checker
accesses and changes the KB. The representation of the underlying theory (object program) in
the proof checker (meta-program) is a key issue in the development of the proof checker. Our
System has been implemented in Sicstus Prolog and its interface has been implemented in
Visual Basic (Marakakis, 2005), (Marakakis & Papadakis, 2009)

2. An Overview of the main components of the proof checker

This verifier of logic programs requires a lot of interaction with the user. That is why

emphasis is placed on the design of its interface. The design of the interface aims to facilitate

the proof task of the user. A screenshot of the main window of our system is shown in Fig. 1.

Fig. 1. The main window of the proof-checker.

Initially, all proof decisions are taken by the programmer. The design of the interface aims to
facilitate the proof task of the user. This interactive verifier of logic programs consists of
three distinct parts the interface, the prover or transformer and the knowledge base (KB). The
interface offers an environment where the user can think and decide about the proof steps
that have to be applied. The user specifies each proof step and the prover performs it. A
high-level design of our system is depicted in Fig. 2. The main components of the proof
checker with their functions are shown in this figure. The prover of the system consists of
the following two components. 1) The component “Spec Transformer” transforms a

www.intechopen.com

Knowledge Representation in a Proof Checker for Logic Programs

163

specification expressed in typed FOL into structured form which is required by our
correctness method (Marakakis, 1997), (Marakakis, 2005). 2) The component “Theorem Proof
Checker supports the proof task of the selected correctness theorem.

The “KB Update” subsystem allows the user to update the KB of the system through a user-
friendly interface. The knowledge base (KB) and its contents are also shown in Fig. 2. The
KB contains the representation of specifications, theorems, axioms, lemmas, and programs
complements. It also has the representation of FOL laws in order to facilitate their selection
for application. These entities are represented in ground representation (Hill & Gallagher,
1998). The main benefit of this representation is the distinct semantics of the object program
variables from the meta-variables. It should be noted that the user would like to see
theorems, axioms, lemmas and programs in a comprehensible form which is independent of
their representation. However, the ground representation cannot be easily understood by
users. Moreover, the editing of elements in ground representation is error-prone. Part of the
interface of the system is the “Ground-Nonground Representation Transformer” component
which transforms an expression in ground representation into a corresponding one in the
standard formalism of FOL and vice-versa. The standard form of expressions helps users in
the proof task and for the update of the KB.

Fig. 2. Main components of the proof-checker.

3. Knowledge representation

Knowledge and representation are two distinct concepts. They play a central role in the
development of intelligent systems. Knowledge is a description of the world, i.e. the problem
domain. Representation is how knowledge is encoded. Reasoning is how to extract more
information from what is explicitly represented.

www.intechopen.com

Advances in Knowledge Representation

164

Different types of knowledge require different types of representation. Different types of
knowledge representation require different types of reasoning. The most popular
knowledge representation methods are based on logic, rules, frames and semantic nets. Our
discussion will be focused on knowledge representation based on logic.

Logic is a language for reasoning. It is concerned with the truth of statements about the
world. Each statement is either “true” or “false”. Logic includes the following: a) syntax
which specifies the symbols in the language and how they can be combined to form
sentences, b) semantics which specify how to assign a truth to a sentence based on its
meaning in the world and c) inference rules which specify methods for computing new
sentences from existing sentences. There are different types of logic, i.e. propositional logic,
first-order predicate logic, fuzzy logic, modal logic, description logic, temporal logic, etc. We
are concerned on knowledge representation and reasoning based on typed first-order
predicate logic because our correctness method is based on typed FOL.

Another classification of knowledge representation is procedural and declarative knowledge
representation. Declarative knowledge concerns representation of the problem domain
(world) as a set of truth sentences. This representation expresses “what something is”. On
the other hand, the procedural knowledge concerns tasks which must be performed to
reach a particular goal. In procedural representation, the control information which is
necessary to use the knowledge is embedded in the knowledge itself. It focuses on “how
something is done”. In the same way, declarative programming is concerned with writing
down “what” should be computed and much less with “how” it should be computed (Hill
& Lloyd, 1994). Declarative programming separates the control component of an
algorithm (the “how”) from the logic component (the “what”). The key idea of declarative
programming is that a program is a theory (in some suitable logic) and computation is
deduction from the theory (Lloyd, 1994). The advantages of declarative programming are:
a) teaching, b) semantics, c) programmer productivity, c) meta-programming and e)
parallelism. Declarative programming in Logic Programming means that programs are
theories. The programmer has to supply the intended interpretation of the theory. Control
is usually supplied automatically by the system, i.e. the logic programming language. We
have followed the declarative knowledge representation for the representation of the
knowledge base of our system.

3.1 Meta-programming, ground and non-ground representation

A language which is used to reason about another language (or possibly itself) is called
meta-language and the language reasoned about is called the object language. A meta-program
is a program whose data is another program, i.e. the object program. Our proof-checker is a
meta-program which manipulates other logic programs. It has been implemented in Prolog
and the underlying theory, i.e. the logic programs being verified and the other elements of
the KB, is the object program. An important decision is how to represent programs of the
object language (i.e. the KB elements in our case) in the programs of the meta-language, i.e.
in the meta-programs. Ground representation and non-ground representation are the two main
approaches to the representation of object programs in meta-programs. We have followed
the ground representation approach for the representation of the elements of the KB of our
system. Initially, ground and non-ground representation will be discussed. Then, we will
see the advantages and the drawbacks of the two representations.

www.intechopen.com

Knowledge Representation in a Proof Checker for Logic Programs

165

In logic programming there is not clear distinction between programs and data because data

can be represented as program clauses. The semantics of a meta-program depend on the

way the object program is represented in the meta-program. Normally, a distinct

representation is given to each symbol of the object language in the meta-language. This is

called naming relation (Hill & Gallagher, 1998). Rules of construction can be used to define

the representation of the constructed terms and formulas. Each expression in the language

of the object program should have at least one representation as an expression in the

language of the meta-program. The naming relation for constants, functions, propositions,

predicates and connectives is straightforward. That is, constants and propositions of the

object language can be represented as constants in the meta-language. Functions and

predicates of the object language can be represented as functions in the language of meta-

program. A connective of the object language can be represented either as a connective or as

a predicate or as a function in the meta-language. The main problem is the representation of

the variables of the object language in the language of the meta-program. There are two

approaches. One approach is to represent the variables of the object program as ground

terms in the meta-program. This representation is called ground representation. The other

approach is to represent the variables of the object program as variables (or non-ground

terms) in the meta-program. This representation is called non-ground representation.

Using non-ground representation of the object program is much easier to make an efficient

implementation of the meta-program than using ground representation. In non-ground

representation, there is no need to provide definitions for renaming, unification and

application of substitutions of object language formulas. These operations which are time

consuming do not require special treatment for the object language terms. The inefficiency

in ground representation is mainly due to the representation of the variables of the object

program as constants in the meta-program. Because of this representation complicated

definitions for renaming, unification and application of substitutions to terms are required. On

the other hand, there are semantic problems with non-ground representation. The meta-

program will not have clear declarative semantics. There is not distinction of variables of the

object program from the ones of the meta-program which range over different domains.

This problem can be solved by using a typed logic language instead of the standard first-

order predicate logic. The ground representation is more clear and expressive than the non-

ground one and it can be used for many meta-programming tasks. Ground representation is

suitable for meta-programs which have to reason about the computational behavior of the

object program. The ground representation is required in order to perform any complex

meta-programming task in a sound way. Its inherent complexity can be reduced by

specialization. That is, such meta-programs can be specialized with respect to the

representation of the object program (Gallagher 1993).

Another issue is how the theory of the object program is represented in the meta-program.
There are again two approaches. One approach is the object program to be represented in
the meta-program as program statements (i.e. clauses). In this case, the components of the
object program are fixed and the meta-program is specialized for just those programs that
can be constructed from these components. The other approach is the object program to be
represented as a term in a goal that is executed in the meta-program. In this case the object
program can be either fixed or it can be constructed dynamically. In this case the meta-
program can reason about arbitrary object programs. This is called dynamic meta-

www.intechopen.com

Advances in Knowledge Representation

166

programming. The object program in our proof checker is represented as clauses. The
underlying theory is fixed for each proof task.

3.2 Ground representation of object programs in the proof-checker

The KB shown in Fig. 2 contains the representation of specifications, theorems, axioms,
lemmas and programs complements. It also has the representation of FOL laws in order to
facilitate their selection for application. These KB elements are represented in ground
representation (Hill & Gallagher, 1998).. The representation of the main symbols of the
object language which are used in this chapter is shown below.

Object language symbol Representation

constant constant

object program variable term v(i), i is natural

function term g(i), i is natural

proposition, formulas of FOL term f(i), i is natural

predicate term p(i), i is natural

connectives (,,~,↔) \/, /\, ~, -> , <->

exist () ex

for all () all

length of sequence x1(#x1) len(v(1):Type):nat

operation plus (+) plus

operation minus (-) minus

type variable term tv(i), i is natural

type sequence seq

empty sequence (<>) nil_seq

sequence constructor seq_cons(Head, Tail) where Head and Tail are

(Head :: Tail) defined in ground representation
accordingly.

operator / (Object/Type) (Object : Type)
x1i /Type (e.g. x1/α1) v(1, i:nat):Type (e.g. v(1, 1:nat):tv(1))

equality (=) eq

inequality (≠) ~eq

less-equal (≤) le

greater-equal (≥) ge

type natural (N) nat

type integer (Z) int

nonzero naturals (N1) posInt

Predicates are represented by their names assuming that each predicate has a unique name.
In case of name conflicts, we use the ground term p(i) where i is natural. Sum of n elements,

i.e.
1

n

i

i

x

 is represented as the following ground term: sum(1:nat, v(2):nat, v(3,

v(4):nat):Type):Type where “Type” is the type of xi.

www.intechopen.com

Knowledge Representation in a Proof Checker for Logic Programs

167

3.3 Representation of variables

3.3.1 Type variables

The type variables are specified by the lower case Greek letter a followed by a positive
integer which is the unique identifier of the variables e.g. a1, a2, a3, a4 etc. Each type variable
is represented in ground form by a term of the form tv(N) or in simplified form tvN where N
stands for the unique identifier of the variable. For example, the ground representation of
type variables a1, a2, a3 could be tv(1) or tv1, tv(2) or tv2, tv(3) or tv3 respectively.

3.3.2 Object program variables

Object program variables and variables in specifications are expressed using the lower case
English letter x followed by a positive integer which is the unique identifier of the variables
e.g. x1, x2, x3, x4 etc. Each object variable is represented in ground form by a term of the
form v(N) where N stands for the unique identifier of the variable. For example, the ground
representation of the object variables x1, x2, x3 is v(1) ,v(2) and v(3) respectively. Note that,
the quantifier of each variable comes before the variable in the formula. Subscripted
variables of the form x1i represent elements from constructed objects. They are represented
by a term of the form v(Id, i:nat):ElementType where the first argument “Id” represents its
unique identifier and the second one represents its subscript. “Id” is a natural number. This
type of variables occurs mainly in specifications. A term like v(Id, i:nat):ElementType can be
assumed as representing either a regular compound term or an element of a structured
object like a sequence. The distinction is performed by checking the types of the elements x
and x(i). For example, for i=1 by checking x1:seq(α1) and x1(1:nat):α1, it can be inferred that
x1(1:nat):α1 is an element of x1:seq(α1).

3.4 Representation of axioms and lemmas

A set of axioms is applied to each DT including the “domain closure” and the “uniqueness”
axioms which will be also presented later on Section 3.7. Each axiom is specified by a FOL
formula. Axioms are represented by the predicates “axiom_def_ID/1” and “axiom_def/4” as
follows. The predicate

“axiom_def_ID(Axiom_Ids)”

represents the identifiers of all axioms in the KB. Its argument “Axiom_Ids” is a list with the
identifiers of the axioms. For example, the representation “axiom_def_ID([1,2,3,4])” says
that the KB has four axioms with identifiers 1,2,3 and 4.

The specification of each axiom is represented by a predicate of the following form

“axiom_def(Axiom_Id, DT_name, Axiom_name, Axiom_specification)”.

The argument “Axiom_Id” is the unique identifier of the axiom, i.e. a positive integer.
“DT_name” is the name of the DT which the axiom is applied to. “Axiom_name” is the name
of axiom. “Axiom_specification” is a list which has the representation of the specification of
the axiom.

Example: Domain closure axiom for sequences. Informally, this axiom says that a sequence can
be either empty or it will consist from head and tail.

www.intechopen.com

Advances in Knowledge Representation

168

Specification:

[ x1/seq(a2),[x1= < >  ( x3/a2, x4/seq(a2),[x1=x3::x4])]]

Representation:

Similarly, lemmas are represented by the predicates “lemma_sp_ID/1” and “lemma_sp/4”.

3.5 Representation of first-order logic laws

The FOL laws are equivalence preserving transformation rules. Each FOL law is specified by

a FOL formula. They are represented by predicates fol_law_ID/1 and fol_law/3 as follows. The

predicate

“fol_law_ID(FOL_laws_Ids)”

represents the identifiers of all FOL laws in the KB. Its argument “FOL_laws_Ids” is a list

with the identifiers of all FOL laws. The specification of each FOL law is represented by a

predicate of the form

 “fol_law(FOL_law_Id, FOL_law_description, FOL_law_specification).”.

The argument “FOL_law_Id” is the unique identifier of the FOL law, i.e. a positive integer.

“FOL_law_description” is the name of a FOL law. “FOL_law_specification” is a list which has

the ground representation of the specification of FOL law.

Example: ( distribution)

Specification:

P  (Q  R) ↔ (P Q)  (P  R)

Representation:

3.6 Representation of theorems

3.6.1 Initial theorem

The theorems that have to be proved must also be represented in the KB. Each theorem is

specified by a FOL formula. They are represented by the predicates “theorem_ID/1” and

“theorem/4” as follows. The predicate

“theorem_ID(Theorems_Ids)”

fol_law(2,’  distribution’,
 [f1 /\ (f2 \/ f3) <-> (f1 /\ f2) \/ (f1 /\ f3)]).

axiom_def (1, sequences, ’domain closure’,
 [all v(1):seq(tv(1)), (eq(v(1):seq(tv(1)),nil_seq) \/
 [ex v(2):tv(1), ex v(3):seq(tv(1)), eq(v(1):seq(tv(1)),seq_cons(v(2):tv(1),
 v(3):seq(tv(1))):seq(tv(1)))])]).

www.intechopen.com

Knowledge Representation in a Proof Checker for Logic Programs

169

represents the identifiers of all theorems that are available in the KB. Its argument
“Theorems_Ids” is a list with the identifiers of all theorems. The specification of each theorem
is represented by a predicate of the form

“theorem(Theorem_Id, Program_Id, Spec_struct_Id, Theorem_specification).”

The argument “Theorem_Id” is the unique identifier of the theorem, i.e. a positive integer.
The arguments “Program_Id” and “Spec_struct_Id” are the unique identifiers of the program
and the structured specifications respectively. “Theorem_specification” is a list which has the
representation of the specification of theorem.

Example: The predicate sum(x1, x2) where Type(sum) = seq(Z)  Z is true iff x2 is the sum of
the sequence of integers x1. The correctness theorem for predicate sum/2 and the theory
which is used to prove it is as follows.

Comp(Pr)  Spec  A |=  x1/seq(Z), x2/Z (sum(x1,x2) ↔ sumS(x1, x2))

Pr is the logic program for predicate sum/2, excluding the DT definitions. Comp(Pr) is the
complement of the program Pr. Spec is the specification of predicate sum/2, i.e. sumS(x1,x2).
A is the theory for sequences, i.e. the underlying DTs for predicate sum/2, including the
specifications of the DT operations.

Theorem Specification:

x1/seq(Z),  x2/Z (sum(x1,x2) ↔ sums(x1,x2))

Representation:

3.6.2 Theorems in structured form

The specification of a theorem may need to be transformed into structured form in order to
proceed to the proof. The structure form of theorems facilitates the proof task. Each theorem
in structured form is specified by a FOL formula. They are represented by the predicates
“theorem_struct_ID/1” and “theorem_struct/4” as follows. The predicate

“theorem_struct_ID(Theorems_Ids)”

represents the identifiers of all theorems available in the KB with the specification part in
structured form. Its argument “Theorems_Ids” is a list with the identifiers of all theorems in
structured form. The specification of each theorem is represented by a predicate of the form

“theorem_struct(Theorem_struct_Id,Program_Id,Spec_struct_Id, Theorem_specification).”.

The argument “Theorem_struct_Id” is the unique identifier, i.e. a positive integer, of the
theorem whose specification part is in structured form. The arguments “Program_Id” and
“Spec_struct_Id” are the unique identifiers of the program and the structured specifications
respectively. “Theorem_specification” is a list which has the representation of the specification
of theorem.

theorem(1, progr1, spec_struct1,
 [all v(1):seq(int),all v(2):int, (sum(v(1):seq(int), v(2):int):int <->
 sum_s(v(1):seq(int), v(2):int))]).

www.intechopen.com

Advances in Knowledge Representation

170

Example

In order to construct the theorem in structured form the predicate specification must be
transformed into structured form. The initial logic specification for predicate sum/2 is the
following.

 x1/seq(Z), x2/Z (sumS(x1,x2) ↔ x2 =


1#

1

1
x

i

i
x)

The logic specification of sumS(x1,x2) in structured form and its representation are following.

Theorem Specification:

Representation:

3.7 An example theory and theorem

Throughout this Chapter we use the correctness theorem and theory for predicate sum/2.

That is,

Comp(Pr)  Spec  A |=  x1/seq(Z), x2/Z (sum(x1,x2) ↔ sumS(x1, x2))

The ground representation of theory is also illustrated.

Theory

The logic program completion Comp(Pr) of Pr is as follows.

Representation:

 progr_clause(progr1, 1,[all v(1):seq(int), all v(2):int, [sum(v(1):seq(int),v(2):int) <->
((p1(v(1):seq(int)) /\p2(v(1):seq(int), v(2):int)) \/ [ex v(3):int, ex v(4):seq(int), ex v(5):int,

x1/seq(Z),x2/Z,[sum(x1,x2)↔ (p1(x1)p2(x1,x2) [x3/Z, x4/seq(Z),
 x5/Z,[~p1(x1)p3(x1,x3,x4)p4(x1,x3,x5,x2)sum(x4,x5)]])]

x1/seq(Z),[p1(x1)↔empty_seq(x1)]

 x1/seq(Z),x2/Z,[p2(x1,x2) ↔neutral_add_subtr_int(x2)]

 x1/seq(Z),x2/Z,x3/seq(Z),[p3(x1,x2,x3)↔p5(x1,x2,x3)p6(x1,x2,x3)]

 x1/seq(Z),x2/Z,x3/seq(Z),[p5(x1,x2,x3)↔head(x1,x2)]

 x1/seq(Z),x2/Z,x3/seq(Z),[p6(x1,x2,x3)↔tail(x1,x3)]

 x1/seq(Z),x2/Z,x3/Z,x4/Z,[p4(x1,x2,x3,x4)↔plus_int(x3,x2,x4)]

 theorem_struct(1, progr1, spec_struct1,
 [all v(1):seq(int), all v(2):int, (sum(v(1):seq(int), v(2):int) <->
 ((eq(v(1):seq(int),nil_seq:seq(tv(1))) /\eq(v(2):int,0:int)) \/ [ex v(3):int,
 ex v(4):int, ex v(5):seq(int), (eq(v(1):seq(int), seq_cons(v(4):int,
 v(5):seq(int)):seq(int)) /\ eq(v(2):int,plus(v(4):int, v(3):int)) /\
 sum_s(v(5):seq(int), v(3):int))]))]).

x1/seq(Z),  x2/Z (sums(x1,x2) ↔ [x1=<>x2=0 [x4/Z, x5/Z,

x6/seq(Z),[x1=x5::x6 x2=x5+x4 sums(x6,x4)]]])

www.intechopen.com

Knowledge Representation in a Proof Checker for Logic Programs

171

[~p1(v(1):seq(int)) /\ p3(v(1):seq(int), v(3):int,v(4):seq(int)) /\ p4(v(1):seq(int),v(3):int,
v(5):int, v(2):int) /\ sum(v(4):seq(int),v(5):int)]])]]).

 progr_clause(progr1, 2, [all v(6):seq(int),[p1(v(6):seq(int)) <-> empty_seq(v(6):seq(int))]]).

 progr_clause(progr1, 3, [all v(7):seq(int), all v(8):int,[p2(v(7):seq(int), v(8):int) <->
neutral_add_subtr_int(v(8):int)]]).

 progr_clause(progr1, 4, [all v(9):seq(int), all v(10):int, all v(11):seq(int), [p3(v(9):seq(int),
v(10):int, v(11):seq(int))<-> p5(v(9):seq(int), v(10):int, v(11):seq(int)) /\ p6(v(9):seq(int),
v(10):int, v(11):seq(int))]]).

 progr_clause(progr1, 5, [all v(12):seq(int), all v(13):int, all v(14):seq(int),[p5(v(12):seq(int),
v(13):int, v(14):seq(int)) <-> head(v(12):seq(int), v(13):int)]]).

 progr_clause(progr1, 6, [all v(15):seq(int), all v(17):int, all v(16):seq(int),[p6(v(15):seq(int),
v(17):int, v(16):seq(int))<-> tail(v(15):seq(int), v(16):seq(int))]]).

 progr_clause(progr1, 7, [all v(18):seq(int), all v(19):int, all v(20):int, all
v(21):int,[p4(v(18):seq(int), v(19):int, v(20):int, v(21):int) <-> plus_int(v(20):int, v(19):int,
v(21):int)]]).

The logic specification (Spec) is shown in Section 3.6 and its representation in ground form.

The theory A of the DT operations including the specification of the DT operations is as
follows.

Axioms

Domain closure axiom for sequences

 x1/seq(a2),[x1= < >  ( x3/a2,x4/seq(a2),[x1=x3::x4])]

Its ground representation is shown in section 3.4.

Uniqueness axioms for sequences

i x1/a2,x3/seq(a2),[~[x1::x3/a2= < >]]

ii x1/a2,x3/a2,x4/seq(a2),x5/seq(a2),[x1::x4=x3::x5 x1=x3 x4=x5]

Representation:

 axiom_def(2, sequences, "uniqueness i", [all v(1):tv(1), all v(2):seq(tv(1)), [~[eq(seq_cons
(v(1):tv(1), v(2):seq(tv(1))):tv(1),nil_seq:seq(tv(1)))]]]).

 axiom_def(3, sequences, "uniqueness ii", [all v(1):tv(1), all v(2):tv(1),
all v(3):seq(tv(1)), all v(4):seq(tv(1)),[eq(seq_cons(v(1):tv(1), v(3):seq(tv(1))):seq(tv(1)),
seq_cons(v(2):tv(1), v(4):seq(tv(1))):seq(tv(1))) -> (eq(v(1):tv(1), v(2):tv(1)) /\
eq(v(3):seq(tv(1)), v(4):seq(tv(1))))]]).

Definition of summation operation over 0 entities

x1/seq(Z),[x1= < > Σ((i=1 to #x1) x1i)=0]

Representation:

 axiom_def(4, sequences, "summation over 0 entities", [all v(1):seq(int), [eq(v(1):seq(int),nil_seq)
-> eq(sum(1:int,len(v(1):seq(int)):int, v(1,v(3):nat):int), 0:int)]]).

Lemmas

www.intechopen.com

Advances in Knowledge Representation

172

x1/seq(a2),[x1 ≠ < > ↔ [x3/a2,x4/seq(a2),[x1=x3::x4/a2]]]

x1/a2,x3/seq(a2),x4/seq(a2),[x3=x1::x4(x5/N,[2≤x5≤#x3x3(x5)=x4(x5-1)])]

x1/seq(a2),x3/seq(a2),x4/a2,[x1=x4::x3#x1=#x3+1]

x1/a2,x3/seq(a2),x4/seq(a2),[x3=x1::x4/a2x1=x31/a2]

Representation:

 lemma_sp(1, sequences, "Non-empty sequences have at least one element",[all v(1):seq(tv(1)),
[~eq(v(1):seq(tv(1)),nil_seq:seq(tv(1))) <-> [ex v(2):tv(1), ex v(3):seq(tv(1)), [eq(v(1):seq(tv(1)),
seq_cons(v(2):tv(1), v(3):seq(tv(1))):tv(1))]]]]).

 lemma_sp(2,sequences,"if sequence s has tail t then the element si is identical to the element ti-
1",[all v(1):tv(1), all v(2):seq(tv(1)), all v(3):seq(tv(1)),[eq(v(2):seq(tv(1)), seq_cons(v(1):tv(1),
v(3):seq(tv(1))):seq(tv(1))) -> (all v(4):nat, [le(2:nat, v(4):nat) /\ le(v(4):nat, len(v(2):seq
(tv(1))):nat) -> eq(v(2, v(4):nat):tv(1), v(3, minus(v(4): nat,1:nat)))])]]).

 lemma_sp(3, sequences, "If sequence s has tail t then the length of s is equal to the
length of t plus 1", [all v(1):seq(tv(1)), all v(2):seq(tv(1)), all v(3):tv(1), [eq(v(1):seq(tv(1)),
seq_cons(v(3):tv(1), v(2):seq(tv(1))):seq(tv(1))) -> eq(len(v(1):seq(tv(1))): nat,plus(len(v(2):
seq(tv(1))):nat,1:nat))]]).

 lemma_sp(4, sequences, "If sequence s is non-empty then its head h is identical to its first
element", [all v(1):tv(1), all v(2):seq(tv(1)), all v(3):seq(tv(1)),[eq(v(2):seq(tv(1)),
seq_cons(v(1):tv(1), v(3):seq(tv(1))):tv(1)) -> eq(v(1):tv(1), v(2, 1:int):tv(1))]]).

Logic specifications of DT operations

 x1/seq(a2),[empty_seq(x1)↔ x1= < >]

 x1/Z,[neutral_add_subtr_int(x1) ↔x1=0]

 x1/seq(a2),x3/a2,[head(x1,x3) ↔ [x1≠ < >  [ x4/seq(a2),[x1=x3::x4/a2]]]]

 x1/seq(a2),x3/seq(a2),[tail(x1,x3)↔ [x4/a2,[x1≠< > x1=x4::x3/a2]]]

 x1/Z,x2/Z,x3/Z,[plus_int(x1,x2,x3)x3=x2+x1]

Representation:

 dtOp_sp(empty_seq, 1, "seq: empty", [all v(1):seq(tv(1)), [empty_seq(v(1):seq(tv(1))) <->
eq(v(1):seq(tv(1)),nil_seq:seq(tv(1)))]]).

 dtOp_sp(head, 2, "seq: head", [all v(1):seq(tv(1)), all v(2):tv(1),[head(v(1):seq(tv(1)), v(2):tv(1))
<-> [~eq(v(1):seq(tv(1)),nil_seq:seq(tv(1))) /\ [ex v(3):seq(tv(1)), [eq(v(1):seq
(tv(1)),seq_cons(v(2):tv(1), v(3):seq(tv(1))):tv(1))]]]]]).

 dtOp_sp(tail, 3, "seq: tail", [all v(1):seq(tv(1)), all v(2):seq(tv(1)), [tail(v(1):seq(tv(1)),
v(2):seq(tv(1))) <-> [ex v(3):tv(1),[~eq(v(1):seq(tv(1)), nil_seq:seq (tv(1))) /\ eq(v(1),
seq_cons(v(3):tv(1),v(2):seq(tv(1))):tv(1))]]]]).

 dtOp_sp(neutral_add_subtr_int, 8, "int: neutral_add_subtr_int", [all v(1):int,
[neutral_add_subtr_int(v(1):int) <-> eq(v(1):int,0:int)]]).

 dtOp_sp(plus_int, 9,"int: plus_int", [all v(1):int, all v(2):int, all v(3):int,
[plus_int(v(1):int,v(2):int,v(3):int) <-> eq(v(3):int,plus(v(2):int,v(1):int))]]).

4. Schematic view of the Interaction of the main components

In this section, a schematic view of the proof checker and the interaction of its main
components will be shown. In addition, the functions of its components will be discussed.
An example of a proof step will illustrate the use of the KB representation in the proof task.

www.intechopen.com

Knowledge Representation in a Proof Checker for Logic Programs

173

user
Make necessary

selections

Knowledge
Base

‐specifications
‐axioms

‐lemmas

‐specs DT
operations

‐logic
programs

Perform Proof Step

� Select Theory
� Select Proof Scheme

� Specify Theorem

1

2

3

Fig. 3. Schematic View of the Theorem Proof Checker.

4.1 Schematic view of the theorem proof checker

The process of proving a theorem is shown in Fig. 3 and consists of three steps.

 Step 1: In order to prove the correctness of a theorem the user initially has to specify the
theorem that is going to be proved and to select the theory and the proof scheme that
will be used for the proof. The theory is retrieved from the KB and it is presented to the
user for selection. It consists of a program complement, a logic specification, axioms and
lemmas. The corresponding window of the interface which allows the user to make these
selections is shown in Fig. 6.

 Step 2: After the selection the user proceeds to the actual proof of the specific theorem.
In order to do that he has to select specific parts from the theorem, the theory and the
transformation rules that will be applied. The transformation rules that can be applied
are first order logic (FOL) laws, folding and unfolding.

 Step 3: In this step the selected transformation is applied and the equivalent form of the
theorem is presented to the user. The user can validate the result. He is allowed to
approve or cancel the specific proof step.

The last two steps are performed iteratively until the theorem is proved.

www.intechopen.com

Advances in Knowledge Representation

174

4.2 Schematic view of specification transformer

Fig. 4 depicts the procedure for transforming a specification in the required structured form,

which is similar to the previous case. In this case however, the underlying theory consists of

Spec U Axioms U Lemmas. Initially, the user selects a specification, then the rest elements of

the theory are automatically selected by the system. Next, in step 2, the user has to select

specific theory elements and transformation rules. In step 3, the selected transformation rule

is performed. Step 2 and step 3 are performed iteratively until the specification is

transformed in the required structured form.

user
Make necessary

selections

Knowledge

Base

-specifications

-axioms

-lemmas

-specs DT

operations

Transformation Step

Select Logic Specification and
rest elements of the theory

1

2

3

Fig. 4. Schematic View of Specification Transformer.

4.3 Illustration of a proof step

The “Transformation Step” procedure is actually a sub-procedure of the “Perform Proof Step”
procedure and that is why we will not present it. The schematic view of the main algorithm
for the procedure which performs a proof step, i.e. “performProofStep”, is shown in Fig. 5. It is
assumed that the user has selected some theory elements, and a transformation rule that
should be applied to the current proof step.

www.intechopen.com

Knowledge Representation in a Proof Checker for Logic Programs

175

Fig. 5. Schematic view of the “performProofStep” procedure.

The function block diagram of the algorithm “performProofStep” shown in Fig. 5 will be

discussed through an example. Consider that our theorem has been transformed and its

current form is the following:


The user has selected the following FOL law to be applied to the above theorem:

P false ↔false

Initially, the current theorem is converted to the corresponding ground representation by

the procedure “ConvertGr” and we get:

Then, the procedure “applyProofStep” applies the transformation rule to the current theorem

and derives the new theorem. In order to do that, this procedure constructs and asserts a set

of clauses which implement the selected transformation rule. Then, it applies this set of

clauses and derives the new theorem in ground representation. That is,

[all v(1):seq(int),[all v(2):int,sum_s(v(1):seq(int),v(2):int)<->
(eq(v(1):seq(int),nil_seq:seq(int))/\eq(v(2):int,0:int) \/
[ex v(3):int,[ex v(4):int,[ex v(5):seq(int),
 false /\ sum_s(v(5):seq(int),v(3):int)]]])]]

The new theorem is then converted to the corresponding non-ground form in order to be

presented to the user. That is,

[x1/seq(Z),[x2/Z,sums(x1,x2) ↔ (x1=<> x2=0  [x3/Z,[x4/seq(Z),

 falsesums(x4,x3)]])]]

[all v(1):seq(int),[all v(2):int,sum_s(v(1):seq(int),v(2):int)<->
 (eq(v(1):seq(int),nil_seq:seq(int))/\eq(v(2):int,0:int) \/
 [ex v(3):int,[ex v(4):int,[ex v(5):seq(int),
 false/\eq(v(2):int,plus(v(4):int,v(3):int):int)/\sum_s(v(5):seq(int),v(3):int)]]])]]

x1/seq(Z),x2/Z (sums(x1,x2) ↔

 (x1= <> x2=0  [x3/Z,[x4/seq(Z),false x2=x4+x3 sums(x4,x3)]]))

www.intechopen.com

Advances in Knowledge Representation

176

5. System interface

To enable users to guide this proof checker it is necessary to provide a well-designed user
interface. The design of the interface of an interactive verifier depends on the intended user.
In our verifier we distinguish two kinds of users, the “basic users” and the “advanced or
experienced users”. We call “basic user” a user who is interested in proving a theorem. We call
an “advanced user” a user who in addition to proving a theorem he/she may want to
enhance the KB of the system in order to be able to deal with additional theorems. Such a
user is expected to be able to update the KB of axioms, lemmas, predicate specifications,
specifications of DT operations and programs. We will use the word “user” to mean both the
“basic user” and the “advanced user”. Both kinds of users are expected to know very well the
correctness method which is supported by our system (Marakakis, 2005).

Initially, the system displays the main, top-level window as shown in Fig. 1. This window
has a button for each of its main functions. The name of each button defines its function as
well, that is, “Transform Logic Specification into Structured Form”, “Prove Program Correctness”
and “Update Knowledge Base”. The selection of each button opens a new window which has a
detailed description of the required functions for the corresponding operation. Now we will
illustrate the “Prove Program Correctness” function to better understand the whole interaction
with the user.

5.1 Interface illustration of the “Prove Program Correctness” task

If the user selects the button “Prove Program Correctness” from the main window, the
window shown in Fig. 6 will be displayed. The aim of this window is to allow the user to
select the appropriate theory and proof scheme that he will use in his proof. In addition, the
user can either select a theorem or define a new one.

After the appropriate selections, the user can proceed to the actual proof of the theorem by
selecting the button “Prove Correctness Theorem”. The window that appears next is shown in
Fig. 7. The aim of this window is to assist the user in the proof task. The theorem to be
proved and its logic specification are displayed in the corresponding position on the top-left
side of the window. This window has many functions. The user is able to choose theory
elements from the KB that will be used for the current proof step. After selection by the user
of the appropriate components for the current proof step the proper inference rule is
selected and it is applied automatically. The result of the proof step is shown to the user.
Moreover, the user is able to cancel the last proof step, or to create a report with all the
details of the proof steps that have been applied so far.

5.1.1 Illustration of a proof step

Let’s assume that the user has selected a theorem to be proved, its corresponding theory and
a proof scheme. Therefore, he has proceeded to the verification task. For example, he likes to
prove the following theorem:

Comp(Pr)  Spec  A |=  x1/seq(Z), x2/Z (sum(x1,x2) ↔ sumS(x1,x2))

The user has selected the “Incremental” proof scheme which requires proof by induction on
an inductive DT. Let assume that the correctness theorem has been transformed to the
following form:

www.intechopen.com

Knowledge Representation in a Proof Checker for Logic Programs

177

x1/seq(Z),x2/Z, sum(x1,x2) ↔ [x3/Z,x4/Z,x5/seq(Z),

 x1<>  x1=x4::x5  x1 <>  x1=x4::x5  x2=x4+x3

 sum(x5,x3)]

Fig. 6. The window for selecting Theory, Theorem and Proof Scheme

Fig. 7. The window for proving a correctness theorem

www.intechopen.com

Advances in Knowledge Representation

178

In order to proceed to the next proof step the following steps should be performed:

 First, the user selects “Logic Spec. of DT_Op” and then he selects the “Head” DT
operation:

x1/seq(a2),x3/a2,[head(x1,x3) ↔ [x1 < >  [x4/seq(a2),[x1=x3::x4/a2]]]]

 Then he selects the button “Apply Proof Step” and the result is shown in the next line of
the “Induction Step” area:

x1/seq(Z),x2/Z, sum(x1,x2) ↔ [x3/Z,x4/Z,x5/seq(Z),

 x1<> x1=x4::x5  head(x1, x4) x2=x4+x3 sum(x5,x3)]

The user continues applying proof steps until to complete the proof of the theorem.

6. Results

The results of this research work involve the development of a proof checker that can be
used efficiently by its users for the proof of correctness theorems for logic programs
constructed by our schema-based method (Marakakis, 1997). The system has been tested
and allows the verification of non-trivial logic programs. Our proof checker is highly
modular, and allows the user to focus on proof decisions rather than on the details of how to
apply each proof step, since this is done automatically by the system. The update of the KB
is supported by the proof-checker as well. The overall interface of our system is user–
friendly and facilitates the proof task.

The main features of our system which make it to be an effective and useful tool for the
interactive verification of logic programs constructed by the method (Marakakis, 1997) are
the following.

 The proof of the correctness theorem is guided by the logic-program construction
method (Marakakis, 1997). That is, the user has to select a proof scheme based on the
applied program schema for the construction of the top-level predicate of the logic
program whose correctness will be shown.

 Proof steps can be cancelled at any stage of the proof. Therefore, a proof can move to
any previous state.

 The system supports the proof of a new theorem as part of the proof of the initial
theorem.

 The update of the theories stored in the KB of the system is supported as well.

 The overall verification task including the update of the KB is performed through a
user-friendly interface.

 At any stage during the verification task the user can get a detailed report of all proof
steps performed up to that point. So, he can get an overall view of the proof performed
so far.

7. Conclusions

This chapter has presented our proof checker. It has been focused on the knowledge

representation layer and on its use by the main reasoning algorithms. Special importance on

www.intechopen.com

Knowledge Representation in a Proof Checker for Logic Programs

179

the implementation of the proof checker has been given on flexibility so the system being

developed could be enhanced with additional proof tasks. Finally, the main implementation

criteria for the knowledge representation are the support for an efficient and modular

implementation of the verifier.

In our proof checker, a proof is guided by the selected proof scheme. The selection of a proof

scheme is related with the construction of the top-level predicate of the program that will be

verified. The user-friendly interface of our system facilitates the proof task in all stages and

the update of the KB. Its modular implementation makes our proof checker extensible and

amenable to improvements.

The natural progression of our proof checker is the addition of automation. That is, we

intend to move proof decisions from the user to the system. The verifier should have the

capacity to suggest proof steps to the user. Once they are accepted by the user they will be

performed automatically. Future improvements aim to minimize the interaction with the

user and to maximize the automation of the verification task.

8. References

Clarke, E. & Wing, J. (1996). Formal Methods: State of the Art and Future Directions, ACM

Computing Surveys, Vol. 28, No. 4, pp. 626-643, December, 1996.

Gallagher, J. (1993). Tutorial on Specialization of Logic Programs, Proceedings of PERM’93,

the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Program

Manipulation, pp. 88-98, ACM Press, 1993.

Hill, P. M. & Gallagher, J. (1998). Meta-programming in Logic Programming, Handbook of

Logic in Artificial Intelligence and Logic Programming, vol. 5, edited by D. Gabbay, C.

Hogger, J. Robinson, pp. 421-497, Clarendon Press, Oxford, 1998.

Hill, P. M. & Lloyd, J. W. (1994). The Gödel Programming Language, The MIT Press,

1994.

Lindsay, P. (1988). A Survey of Mechanical Support for Formal Reasoning, Software

Engineering Journal, vol. 3, no. 1, pp.3-27, 1988.

Lloyd, J.W. (1994). Practical Advantages of Declarative Programming. In Proceedings of the

Joint Conference on Declarative Programming, GULP-PRODE’94, 1994.

Loveland, D. W. (1986). Automated Theorem Proving: Mapping Logic in AI, Proceedings of

the ACM SIGART International Symposium on Methodologies for Intelligent Systems, pp.

214-229, Knoxville, Tennessee, United States, October 22-24, 1986.

Marakakis, E. (1997). Logic Program Development Based on Typed, Moded Schemata and

Data Types, PhD thesis, University of Bristol, February, 1997.

Marakakis, E. (2005). Guided Correctness Proofs of Logic Programs, Proc. the 23th IASTED

International Multi-Conference on Applied Informatics, edited by M.H. Hamza, pp. 668-

673, Innsbruck, Austria, 2005.

Marakakis, E. & Gallagher. J.P. (1994). Schema-Based Top-Down Design of Logic Programs

Using Abstract Data Types, LNCS 883, Proc. of 4th Int. Workshops on Logic Program

Synthesis and Transformation - Meta-Programming in Logic, pp.138-153, Pisa, Italy,

1994.

www.intechopen.com

Advances in Knowledge Representation

180

Marakakis, E. & Papadakis, N. (2009). An Interactive Verifier for Logic Programs, Proc. Of

13th IASTED International Conference on Artificial Intelligence and Soft Computing , pp.

130-137, 2009.

www.intechopen.com

Advances in Knowledge Representation

Edited by Dr. Carlos Ramirez

ISBN 978-953-51-0597-8

Hard cover, 272 pages

Publisher InTech

Published online 09, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Advances in Knowledge Representation offers a compilation of state of the art research works on topics such

as concept theory, positive relational algebra and k-relations, structured, visual and ontological models of

knowledge representation, as well as detailed descriptions of applications to various domains, such as

semantic representation and extraction, intelligent information retrieval, program proof checking, complex

planning, and data preparation for knowledge modelling, and a extensive bibliography. It is a valuable

contribution to the advancement of the field. The expected readers are advanced students and researchers on

the knowledge representation field and related areas; it may also help to computer oriented practitioners of

diverse fields looking for ideas on how to develop a knowledge-based application.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Emmanouil Marakakis, Haridimos Kondylakis and Nikos Papadakis (2012). Knowledge Representation in a

Proof Checker for Logic Programs, Advances in Knowledge Representation, Dr. Carlos Ramirez (Ed.), ISBN:

978-953-51-0597-8, InTech, Available from: http://www.intechopen.com/books/advances-in-knowledge-

representation/knowledge-representation-in-a-proof-checker-for-logic-programs

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

