We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,700
Open access books available

108,500
International authors and editors

1.7 M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
The Hybrid Intelligent Method Based on Fuzzy Inference System and Its Application to Fault Diagnosis

Yaguo Lei
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China

1. Introduction

Large-scale and complex mechanical equipments usually operate under complicated and terrible conditions such as heavy duty, erosion, high temperature, etc. Therefore, it is inevitable for the key components (bearings, gears and shafts, etc.) of these equipments to suffer faults with various modes and different severity degrees. However, faults of large-scale and complex mechanical equipments are characterized by weak response, multi-fault coupling, etc., and it is hard to detect and diagnose incipient and compound faults for these equipments.

One of the principal tools for diagnosing mechanical faults is vibration-based analysis [1-3]. Through the use of processing techniques of vibration signals, it is possible to obtain vital diagnosis information from the signals [4, 5]. Traditional fault diagnosis techniques are performed by diagnosticians observing the vibration signals and the spectra using their expertise and special knowledge. However, for mechanical equipments having complex structures, many monitoring cells and high degrees of automation, there is lots of data to be analyzed in the process of fault diagnosis. Obviously, it is impossible for diagnosticians to manually analyze so many data. Thus, the degree of automation and intelligence of fault diagnosis should be enhanced [6]. Researchers have applied artificial intelligent techniques to fault diagnosis of mechanical equipments, such as expert systems, fuzzy logic, neural networks, genetic algorithms, etc [7-10]. Correspondingly, prominent achievements have been obtained in the field of intelligent fault diagnosis. With the advancement of studies and applications, however, researchers find that individual intelligent techniques have their advantages and shortcomings as well. For incipient and compound faults of mechanical equipments, the diagnosis accuracy using an individual intelligent technique is quite low and the generalization ability is considerably weak. Thus, it is urgent and necessary to develop novel techniques and methods to solve these problems.
The combination of multiple intelligent techniques has been intensively studied to overcome the limitations of individual intelligent techniques and achieve better performance [11–13]. Multiple intelligent classifiers input different feature sets usually exhibit complementary classification behaviors. Thus, if the classification results of multiple intelligent techniques are combined to yield the final classification result, the final performance may be superior to the best performance of individual classifiers [14–16].

Based on the above analysis, a hybrid intelligent fault diagnosis method is presented in this chapter to diagnose incipient and compound faults of complex equipments. The method is developed by combining multiple adaptive neuro-fuzzy inference systems (ANFISs), genetic algorithms (GAs) and vibration signal processing techniques. The method employs signal preprocessing techniques to mine fault information embedded in vibration signals. Statistical features reflecting machinery health conditions from various aspects are synthesized to construct multiple feature sets and to fully reveal fault characteristics. Using an improved distance evaluation technique, the sensitive features are selected from all feature sets. Based on the independency and the complementary nature of multiple ANFISs with different input feature sets, a hybrid intelligent method is constructed using GAs. The hybrid intelligent method is applied to fault diagnosis of rolling element bearings. The experimental results show the method based on multiple fuzzy inference systems is able to reliably recognize both incipient faults and compound faults.

The rest of this chapter is organized as follows. Section 2 presents the hybrid intelligent method based on fuzzy inference system. Feature extraction and selection, and adaptive neuro-fuzzy inference system are also introduced in this section. Section 3 gives two cases of fault diagnosis for rolling element bearings. The hybrid intelligent method is applied to diagnosing bearing faults and the corresponding results are reported. Section 4 compares the proposed hybrid intelligent method with individual intelligent methods in the light of classification accuracy, and further discusses the causes of the improvement produced by the hybrid method. Finally, conclusions are given in Section 5.

2. The hybrid intelligent method based on fuzzy inference system

The hybrid intelligent method is shown in Fig. 1. It includes the following five steps. First, vibration signals are filtered, and at the same time they are decomposed by empirical mode decomposition (EMD) and intrinsic mode functions (IMFs) are produced. The filtered signals and IMFs are further demodulated to calculate their Hilbert envelope spectra. Second, six feature sets are extracted. They are respectively time- and frequency-domain statistical features of both the raw and preprocessed signals. Third, each feature set is evaluated and a few sensitive features are selected from it by applying the improved distance evaluation technique. Correspondingly, six sensitive feature sets are obtained. Forth, each sensitive feature set is input into one classifier based on ANFIS for training and testing. There are altogether six different classifiers corresponding to the six sensitive feature sets. Fifth, the weighted averaging technique based on GAs is employed to combine the outputs of the six ANFISs and come up with the final diagnosis results.
2.1 Feature extraction

2.1.1 Statistical features of raw signals

Twenty-four feature parameters \((p_1-p_{24})\), presented in Table 1, are extracted [6] in this study. Eleven parameters \((p_1-p_{11})\) are time-domain statistical features and thirteen parameters \((p_{12}-p_{24})\) are frequency-domain ones. Once faults occur in mechanical equipments, the time-domain signal may change. Both its amplitude and distribution will be different from those of signals collected under healthy conditions. In addition, the frequency spectra and its distribution may change as well, which indicates that new frequency components appear and the convergence of frequency spectra varies. Parameter \(p_1\) and \(p_{13}-p_{15}\) reflect the vibration amplitude and energy in time domain. Parameter \(p_2\) and \(p_6-p_{11}\) represent the time series distribution of the signal in time domain. Parameter \(p_{12}\) indicates the vibration energy in frequency domain. Parameter \(p_{13}-p_{15}\), \(p_{17}\), and \(p_{21}-p_{24}\) describe the convergence of the spectrum power. Parameter \(p_{16}\) and \(p_{18}-p_{20}\) show the position change of major frequencies.
Table 1. The feature parameters

<table>
<thead>
<tr>
<th>Time-domain feature parameters</th>
<th>Frequency-domain feature parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1 = \frac{\sum_{n=1}^{N} x(n)}{N})</td>
<td>(p_7 = \frac{\sum_{n=1}^{N} (x(n) - p_1)^4}{(N-1)p_2^4})</td>
</tr>
<tr>
<td>(p_2 = \sqrt{\frac{\sum_{n=1}^{N} (x(n) - p_1)^2}{N - 1}})</td>
<td>(p_{12} = \frac{\sum_{k=1}^{K} s(k)}{K})</td>
</tr>
<tr>
<td>(p_3 = \left(\frac{\sum_{n=1}^{N} \sqrt{x(n)}}{N} \right)^2)</td>
<td>(p_{19} = \sqrt{\frac{\sum_{k=1}^{K} f_k^2 s(k)}{K}})</td>
</tr>
<tr>
<td>(p_4 = \frac{\sum_{n=1}^{N} (x(n))^2}{N})</td>
<td>(p_{10} = \frac{\sum_{n=1}^{N} x(n)}{N})</td>
</tr>
<tr>
<td>(p_5 = \max</td>
<td>x(n)</td>
</tr>
<tr>
<td>(p_6 = \frac{\sum_{n=1}^{N} (x(n) - p_1)^3}{(N-1)p_2^3})</td>
<td>(p_{11} = \frac{\sum_{n=1}^{N} x(n)}{N})</td>
</tr>
<tr>
<td>(p_{12} = \frac{\sum_{k=1}^{K} s(k)}{K})</td>
<td>(p_{15} = \frac{\sum_{k=1}^{K} (f_k - p_{16})^3}{K p_{17}^3})</td>
</tr>
<tr>
<td>(p_{13} = \frac{\sum_{k=1}^{K} (s(k) - p_{12})^2}{K - 1})</td>
<td>(p_{16} = \frac{\sum_{k=1}^{K} f_k s(k)}{\sum_{k=1}^{K} s(k)})</td>
</tr>
<tr>
<td>(p_{14} = \frac{\sum_{k=1}^{K} (s(k) - p_{12})^3}{K (\sqrt{p_{13}})^3})</td>
<td>(p_{17} = \frac{\sum_{k=1}^{K} (f_k - p_{16})^2 s(k)}{K})</td>
</tr>
<tr>
<td>(p_{19} = \sqrt{\frac{\sum_{k=1}^{K} f_k^2 s(k)}{K}})</td>
<td>(p_{20} = \sqrt{\frac{\sum_{k=1}^{K} f_k^4 s(k)}{K}})</td>
</tr>
<tr>
<td>(p_{19} = \sqrt{\frac{\sum_{k=1}^{K} f_k^4 s(k)}{K}})</td>
<td>(p_{21} = \frac{p_{17}}{p_{16}})</td>
</tr>
<tr>
<td>(p_{22} = \frac{p_{17}}{p_{16}})</td>
<td>(p_{23} = \frac{\sum_{k=1}^{K} (f_k - p_{16})^3 s(k)}{K p_{17}^3})</td>
</tr>
<tr>
<td>(p_{24} = \frac{p_{17}}{p_{16}})</td>
<td>(p_{25} = \frac{\sum_{k=1}^{K} (f_k - p_{16})^4 s(k)}{K p_{17}^4})</td>
</tr>
<tr>
<td>(p_{26} = \frac{p_{17}}{p_{16}})</td>
<td>(p_{27} = \frac{p_{17}}{p_{16}})</td>
</tr>
<tr>
<td>(p_{28} = \frac{p_{17}}{p_{16}})</td>
<td>(p_{29} = \frac{p_{17}}{p_{16}})</td>
</tr>
</tbody>
</table>

where \(x(n) \) is a signal series for \(n = 1, 2, \ldots, N \), \(N \) is the number of data points.

Each vibration signal is processed to extract eleven time-domain features and thirteen frequency-domain features from its spectrum. The time- and frequency-domain features are calculated as follows:

\[
\begin{align*}
\sum_{n=1}^{N} x(n) &= N \\
\sum_{n=1}^{N} x(n)^2 &= \frac{1}{N} \sum_{n=1}^{N} |x(n)|^2 \\
\max |x(n)| &= \max |x(n)| \\
\sum_{n=1}^{N} (x(n) - p_1)^3 &= \frac{1}{(N-1)p_2^3} \sum_{n=1}^{N} (x(n) - p_1)^3 \\
\sum_{n=1}^{N} (x(n) - p_1)^4 &= \frac{1}{(N-1)p_2^4} \sum_{n=1}^{N} (x(n) - p_1)^4 \\
\sum_{n=1}^{N} |x(n)| &= N \\
\sum_{k=1}^{K} s(k) &= K \\
\sum_{k=1}^{K} f_k^2 s(k) &= K \\
\sum_{k=1}^{K} f_k^4 s(k) &= K \\
\sum_{k=1}^{K} (f_k - p_{16})^3 s(k) &= K p_{17}^3 \\
\sum_{k=1}^{K} (f_k - p_{16})^4 s(k) &= K p_{17}^4 \\
\sum_{k=1}^{K} (s(k) - p_{12})^2 &= K - 1 \\
\sum_{k=1}^{K} (s(k) - p_{12})^3 &= K (\sqrt{p_{13}})^3 \\
\sum_{k=1}^{K} (s(k) - p_{12})^4 &= K p_{13}^4 \\
\sum_{k=1}^{K} f_k s(k) &= \sum_{k=1}^{K} s(k) \\
\sum_{k=1}^{K} f_k^2 s(k) &= \sum_{k=1}^{K} s(k) \\
\sum_{k=1}^{K} f_k^4 s(k) &= \sum_{k=1}^{K} s(k) \\
\sum_{k=1}^{K} (f_k - p_{16})^2 s(k) &= K \\
\sum_{k=1}^{K} (f_k - p_{16})^{1/2} s(k) &= K^{1/2} \sqrt{p_{17}} \\
\end{align*}
\]

where \(s(k) \) is a spectrum for \(k = 1, 2, \ldots, K \), \(K \) is the number of spectrum lines; \(f_k \) is the frequency value of the \(k \)th spectrum line.
extracted here are hereafter referred as feature set 1 and feature set 2, respectively. Therefore, feature sets 1 and 2 contain 11 and 13 feature values, respectively.

2.1.2 Statistical features of filtered signals

The examination of vibration signals indicates the presence of low-frequency interference. The signals are subjected to either high-pass or band-pass filtration to remove the low-frequency interference components. F filters are adopted and the selected filtration frequencies should completely cover the frequency components characterizing faults of mechanical equipments. The eleven time-domain features are extracted from each of the filtered signals. Therefore 11×F time-domain features are obtained and defined as feature set 3.

In addition, the interference within the selected frequency band can be minimized by demodulation. Demodulation detection makes the diagnosis process a little more independent of a particular machine since it focuses on the low-amplitude high-frequency broadband signals characterizing machine conditions [17]. By performing demodulation and Fourier transform on the F filtered signals, we can obtain F envelope spectra. The envelope spectra are further processed to extract another set of 13×F frequency-domain features. This feature set is referred as feature set 4.

2.1.3 Statistical features of IMFs

To extract more information, each of these raw signals is decomposed using the EMD method. EMD is able to decompose a signal into IMFs with the simple assumption that any signal consists of different simple IMFs [18]. For signal x(t), we can decompose it into I IMFs c₁,c₂,...,cᵢ and a residue rᵢ, which is the mean trend of x(t). The IMFs include different frequency bands ranging from high to low. The frequency components contained in each IMF are different and they change with the variation of signal x(t), while rᵢ represents the central tendency of signal x(t). A more detailed explanation of EMD can be found in Ref. [18].

Generally, first S IMFs containing valid information are selected to further analysis. Similar to the feature extraction method of the raw signals, the eleven features in time domain are extracted from each IMF. Then, we get an additional set of 11×S time-domain features referred as feature set 5.

Each IMF is demodulated and its envelope spectrum is produced. We extract the thirteen frequency-domain features from the envelope spectrum and finally derive another set of 13×S frequency-domain features defined as feature set 6.

2.2 Feature selection

Although the above features may detect faults occurring in mechanical equipments from different aspects, they have different importance degrees to identify different faults. Some features are sensitive and closely related to the faults, but others are not. Thus, before a feature set is fed into a classifier, sensitive features providing mechanical fault-related information need be selected to enhance the classification accuracy and avoid the curse of
dimensionality as well. Here, an improved distance evaluation technique is presented and it is used to select the sensitive features from the whole feature set [6].

Suppose that a feature set of C machinery health conditions is

\[\{ q_{m,c,j}; m = 1,2,\ldots,M_c; c = 1,2,\ldots,C; j = 1,2,\ldots,J \} , \]

(1)

where \(q_{m,c,j} \) is the jth eigenvalue of the mth sample under the cth condition, \(M_c \) is the sample number of the cth condition, and \(J \) is the feature number of each sample. We collect \(M_c \) samples under the cth condition. Therefore, for \(C \) conditions, we get \(M_c \times C \) samples. For each sample, \(J \) features are extracted to represent the sample. Thus, \(M_c \times C \times J \) features are obtained, which are defined as a feature set \(\{ q_{m,c,j} \} \).

Then the feature selection method based on the improved distance evaluation technique can be given as follows.

Step 1. Calculating the average distance of the same condition samples

\[d_{c,j} = \frac{1}{M_c \times (M_c - 1)} \sum_{m=1}^{M_c} |q_{m,c,j} - q_{l,c,j}| , \quad 1, m = 1,2,\ldots,M_c, l \neq m ; \]

(2)

then getting the average distance of \(C \) conditions

\[d_j^{(w)} = \frac{1}{C} \sum_{c=1}^{C} d_{c,j} . \]

(3)

Step 2. Defining and calculating the variance factor of \(d_j^{(w)} \) as

\[v_j^{(w)} = \frac{\max(d_{c,j})}{\min(d_{c,j})} . \]

(4)

Step 3. Calculating the average eigenvalue of all samples under the same condition

\[u_{c,j} = \frac{1}{M_c} \sum_{m=1}^{M_c} q_{m,c,j} ; \]

(5)

then obtaining the average distance between different condition samples

\[d_j^{(b)} = \frac{1}{C \times (C - 1)} \sum_{c,e=1}^{C} |u_{c,j} - u_{e,j}| , \quad c,e = 1,2,\ldots,C, c \neq e . \]

(6)

Step 4. Defining and calculating the variance factor of \(d_j^{(b)} \) as

\[v_j^{(b)} = \frac{\max(|u_{c,j} - u_{e,j}|)}{\min(|u_{c,j} - u_{e,j}|)} , \quad c,e = 1,2,\ldots,C, c \neq e . \]

(7)
Step 5. Defining and calculating the compensation factor as

\[
\lambda_j = \frac{1}{\max(v_j^{(w)}) + \max(v_j^{(b)})}
\] \hspace{1cm} (8)

Step 6. Calculating the ratio of \(d_j^{(b)}\) to \(d_j^{(w)}\) and assigning the compensation factor

\[
\alpha_j = \frac{\lambda_j d_j^{(b)}}{d_j^{(w)}}
\] \hspace{1cm} (9)

then normalizing \(\alpha_j\) by its maximum value and getting the distance evaluation criteria

\[
\bar{\alpha}_j = \frac{\alpha_j}{\max(\alpha_j)}
\] \hspace{1cm} (10)

Clearly, larger \(\bar{\alpha}_j\) (\(j = 1, 2, \ldots, J\)) indicates that the corresponding feature is better to distinguish the \(C\) conditions. Thus, the sensitive features can be selected from the feature set \(q_{m,c,j}\) according to the distance evaluation criteria \(\alpha_j\) from large to small.

2.3 Review of ANFIS

The adaptive neuro-fuzzy inference system (ANFIS) is a fuzzy Sugeno model of integration where the final fuzzy inference system is optimized using the training of artificial neural networks. It maps inputs through input membership functions and associated parameters, and then through output membership functions to outputs. The initial membership functions and rules for the fuzzy inference system can be designed by employing human expertise about the target system to be modeled. Then ANFIS can refine the fuzzy if-then rules and membership functions to describe the input/output behavior of a complex system. Jang [19] found that even if human expertise is not available it is possible to intuitively set up reasonable membership functions and then employ the training process of artificial neural networks to generate a set of fuzzy if-then rules that approximate a desired data set.

In order to improve the training efficiency and eliminate the possible trapping due to local minima, a hybrid learning algorithm is employed to tune the parameters of the membership functions. It is a combination of the gradient descent approach and least-squares estimate. During the forward pass, the node outputs advance until the output membership function layer, where the consequent parameters are identified by the least-squares estimate. The backward pass uses the back propagation gradient descent method to update the premise parameters, based on the error signals that propagate backward. More detailed description regarding ANFIS can be referred to Ref. [19].

2.4 The combination of multiple ANFISs

The hybrid intelligent method is implemented by combining multiple ANFISs using GAs. The idea of combining multiple classifiers into a committee is based on the expectation that
the committee can outperform its members. The classifiers exhibiting different behaviors will provide complementary information each other. When they are combined, performance improvement will be obtained. Thus, diversity between classifiers is considered as one of the desired characteristics required to achieve this improvement. This diversity between classifiers can be obtained through using different input feature sets.

In this study, the six different feature sets have been extracted and the relevant six sensitive feature sets have been selected. ANFIS is used as the committee member. The weighted averaging technique is utilized to combine the six classifiers based on ANFIS, and the final classification result of the hybrid intelligent method is given as follows:

\[
\hat{y}_n = \sum_{k=1}^{6} w_k \hat{y}_{n,k}, \quad n = 1, 2, \ldots, N, \quad k = 1, 2, \ldots, 6 ,
\]

subject to

\[
\begin{align*}
\sum_{k=1}^{6} w_k &= 1, \\
0 &\leq w_k \leq 1,
\end{align*}
\]

where \(\hat{y}_n \) and \(\hat{y}_{n,k} \) represent the classification results of the \(n \)th sample using the hybrid intelligent method and the \(k \)th individual classifier respectively, \(w_k \) is the weight associated with the \(k \)th individual classifier, and \(N \) is the number of all samples.

Here, the weights are estimated by using GAs to optimize the fitness function defined by Equation (13). Real-coded genomes are adopted and a population size of ten individuals is used starting with randomly generated genomes. The maximum number of generations 100 is chosen as the termination criterion for the solution process. Non-uniform-mutation function and arithmetic crossover operator [20] are used with the mutation probability of 0.01 and the crossover probability of 0.8, respectively.

\[
f = \frac{1}{1 + E'},
\]

where \(E \) is root mean square training errors expressed as

\[
E = \frac{1}{N^n} \sum_{n=1}^{N^n} (y_n - \hat{y}_n)^2 \right)^{\frac{1}{2}}, \quad n = 1, 2, \ldots, N^n,
\]

where \(y_n \) is the real result of the \(n \)th training sample, and \(N^n \) is the number of the training samples.

3. Applications to fault diagnosis of rolling element bearings

Rolling element bearings are core components of large-scale and complex mechanical equipments. Faults occurring in the bearings may lead to fatal breakdowns of mechanical equipments. Therefore, it is significant to be able to accurately and automatically detect
and diagnosis the existence of faults occurring in the bearings. In this section, two cases of rolling element bearing fault diagnosis are utilized to evaluate the effectiveness of the hybrid intelligent method. One is fault diagnosis of bearing test rig from Case Western Reserve University (CWRU), which involves bearing faults with different defect sizes [21]. The other is fault diagnosis of locomotive rolling bearings having incipient and compound faults. The vibration signals were measured under various operating loads and different bearing conditions including different fault modes and severity degrees in both cases.

3.1 Case 1: Fault diagnosis of bearings of CWRU test rig

Faults were introduced into the tested bearings using the electron discharge machining method. The defect sizes (diameter, depth) of the three faults (outer race fault, inner race fault and ball fault) are the same: 0.007, 0.014 or 0.021 inches. Each bearing was tested under four different loads (0, 1, 2 and 3 hp). The bearing data set was obtained from the experimental system under four different health conditions: (1) normal condition; (2) with outer race fault; (3) with inner race fault; (4) with ball fault. Thus, the vibration data was collected from rolling element bearings under different operating loads and health conditions. More information regarding the experimental test rig and the data can be found in Ref. [21].

We conduct three investigations over three different data subsets (A–C) of the rolling element bearings. The detailed descriptions of the three data subsets are shown in Table 2. Data set A consists of 240 data samples of four health conditions (normal condition, outer race fault, inner race fault and ball fault) with the defect size of 0.007 inches under four various loads (0, 1, 2 and 3 hp). Each of the four health conditions includes 60 data samples. Data set A is split into two sets: 120 samples for training and 120 for testing. It is a four-class classification task corresponding to the four different health conditions.

Data set B also contains 240 data samples. 120 samples with the defect size of 0.021 inches are used as the training set. The remaining 120 samples with the defect size of 0.007 inches are identical with the 120 training samples of data set A and form the testing samples of data set B. The purpose of using this data set is to test the classification performance of the proposed method to incipient faults when it is trained by the serious fault samples.

Data set C comprises 600 data samples covering four health conditions and four different loads. Each fault condition includes three different defect sizes of 0.007, 0.014 and 0.021 inches, respectively. The 600 data samples are divided into 300 training and 300 testing instances. For data set C, in order to identify the severity degrees of faults, we solve the ten-class classification problem.

As mentioned in Section 2, the statistical features are extracted from the raw signal, filtered signal and IMF of each data sample. Three band-pass (BP1–BP3) and one high-pass (HP) filters are adopted for this bearing data. The band-pass frequencies (in kHz) of the BP1–BP3 filters are chosen as: BP1 (2.2–3.8), BP2 (3.0–3.8), and BP3 (3.0–4.5), respectively. The cut-off frequency of the HP filter is chosen as 2.2 kHz. These frequencies are selected to cover the frequency components representing bearing faults.
In order to demonstrate the enhanced performance of the hybrid intelligent method based on fuzzy inference system, the method is compared with individual classifiers based on ANFIS. Considering the computational burden, in each investigation, only four sensitive features are selected from each of the six feature sets using the improved distance evaluation technique and then input into the corresponding classifier. For data set A, distance evaluation criteria $\bar{\alpha}_j$ of the six feature sets are shown in Fig. 2. The diagnosis results of the four data sets are shown in Table 3 and Fig. 3, respectively.

Observing the results in Table 3 and Fig. 3, we can get the following interesting things.

1. For data set A, since this classification problem is relatively simple, both the six individual classifiers and the hybrid intelligent method achieve the high training and testing accuracy (100%). However, comparing the classification error of the hybrid intelligent method with those of the individual classifiers plotted in Fig. 4, we can see that the classification error of the hybrid intelligent method is the least.

<table>
<thead>
<tr>
<th>Data set</th>
<th>The number of training samples</th>
<th>The number of testing samples</th>
<th>Defect size of training/testing samples (inches)</th>
<th>Health conditions</th>
<th>Label of classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30</td>
<td>30</td>
<td>0/0</td>
<td>Normal</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.007/0.007</td>
<td>Outer race</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.007/0.007</td>
<td>Inner race</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.007/0.007</td>
<td>Ball</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>30</td>
<td>0/0</td>
<td>Normal</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.021/0.007</td>
<td>Outer race</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.021/0.007</td>
<td>Inner race</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.021/0.007</td>
<td>Ball</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>30</td>
<td>0/0</td>
<td>Normal</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.007/0.007</td>
<td>Outer race</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.007/0.007</td>
<td>Inner race</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.007/0.007</td>
<td>Ball</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.014/0.014</td>
<td>Outer race</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.014/0.014</td>
<td>Inner race</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.014/0.014</td>
<td>Ball</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.021/0.021</td>
<td>Outer race</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.021/0.021</td>
<td>Inner race</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>0.021/0.021</td>
<td>Ball</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2. Description of three data subsets
The Hybrid Intelligent Method Based on Fuzzy Inference System and Its Application to Fault Diagnosis

Fig. 2. Distance evaluation criteria of six feature sets of data set A: (a) feature set 1, (b) feature set 2, (c) feature set 3, (d) feature set 4, (e) feature set 5, and (f) feature set 6.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Classifier 1</th>
<th>Classifier 2</th>
<th>Classifier 3</th>
<th>Classifier 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training</td>
<td>Testing</td>
<td>Training</td>
<td>Testing</td>
</tr>
<tr>
<td>A</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td>62.5</td>
<td>100</td>
<td>79.17</td>
</tr>
<tr>
<td>C</td>
<td>65.67</td>
<td>61</td>
<td>90</td>
<td>87.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data set</th>
<th>Classifier 5</th>
<th>Classifier 6</th>
<th>Average of six classifiers</th>
<th>Hybrid method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training</td>
<td>Testing</td>
<td>Training</td>
<td>Testing</td>
</tr>
<tr>
<td>A</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td>55.83</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>67.67</td>
<td>67</td>
<td>87.33</td>
<td>93.67</td>
</tr>
</tbody>
</table>

Table 3. Diagnosis results of the CWRU bearings using the hybrid intelligent classifier and individual classifiers.
Fig. 3. Diagnosis results of the CWRU bearings: (a) data set A, (b) data set B, and (c) data set C.

Fig. 4. Classification errors: (a) classifier 1, (b) classifier 2, (c) classifier 3, (d) classifier 4, (e) classifier 5, (f) classifier 6, and (g) the hybrid intelligent classifier.
2. For data set B, we can see that the training accuracies of all the classifiers are 100%. However, the hybrid intelligent method produces better testing performance (90.83%) than any of the individual classifiers ranging from 55.83% to 81.67% (average 72.22%). This result validates that the hybrid intelligent classifier trained by the serious fault data can diagnose the incipient faults with a higher accuracy in comparison with the individual classifiers.

3. For data set C, the training success rates of all the classifiers decrease and range from 65.67% to 93.67% because it is a ten-class classification problem and therefore relatively difficult. But the highest training accuracy (93.67%) is still generated by the hybrid intelligent method. For testing, the classification success of the six individual classifiers is in the range of 61–87.67% (average 73.61%), whereas the classification success of the hybrid method is much higher (91.33%). These imply that the hybrid method can identify both the different fault modes and the different fault severities better.

3.2 Case 2: Fault diagnosis of locomotive rolling bearings

The test bench of locomotive rolling bearings is shown in Fig. 5. The test bench consists of a hydraulic motor, two supporting pillow blocks (mounting with normal bearing), a tested bearing (52732QT) which is loaded on the outer race by a hydraulic cylinder, a hydraulic radial load application system, and a tachometer for shaft speed measurement. The bearing is installed in a hydraulic motor driven mechanical system. 608A11-type ICP accelerometers with a bandwidth up to 5 kHz are mounted on the load module adjacent to the outer race of the tested bearing for measuring its vibrations. The Advanced Data Acquisition and Analysis System by Sony EX is used to capture the vibration data. Parameters in the experiment are listed in Table 4.

![Test bench of the locomotive rolling bearings](image_url)

Fig. 5. Test bench of the locomotive rolling bearings.

A bearing data set containing nine subsets is obtained from the experimental system under the nine different health conditions. The nine conditions of bearings, shown in Table 5, involve not only incipient faults but also compound faults. The incipient faults are actually slight rub of outer races, inner races or rollers. These faulty bearings are shown in Fig. 6. Each data subset corresponds to one of the nine conditions and it consists of 50 samples.
Each sample is a vibration signal containing 8192 sampling points. Thus, the bearing data set includes altogether 450 data samples, which is divided into 225 training and 225 testing samples. This data is used to demonstrate the effectiveness of the proposed hybrid intelligent method in simultaneously identifying incipient faults and compound ones.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing specs</td>
<td>52732QT</td>
</tr>
<tr>
<td>Load</td>
<td>9800N</td>
</tr>
<tr>
<td>Inner race diameter</td>
<td>160mm</td>
</tr>
<tr>
<td>Outer race diameter</td>
<td>290mm</td>
</tr>
<tr>
<td>Roller diameter</td>
<td>34mm</td>
</tr>
<tr>
<td>Roller number</td>
<td>17</td>
</tr>
<tr>
<td>Contact angle</td>
<td>0°</td>
</tr>
<tr>
<td>Sampling frequency</td>
<td>12.8 kHz</td>
</tr>
</tbody>
</table>

Table 4. Parameters in the experiment

<table>
<thead>
<tr>
<th>Condition</th>
<th>Rotating speed</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal condition</td>
<td>About 490 rpm</td>
<td>1</td>
</tr>
<tr>
<td>Slight rub fault in the outer race</td>
<td>About 490 rpm</td>
<td>2</td>
</tr>
<tr>
<td>Serious flaking fault in the outer race</td>
<td>About 480 rpm</td>
<td>3</td>
</tr>
<tr>
<td>Slight rub fault in the inner race</td>
<td>About 500 rpm</td>
<td>4</td>
</tr>
<tr>
<td>Roller rub fault</td>
<td>About 530 rpm</td>
<td>5</td>
</tr>
<tr>
<td>Compound faults in the outer and inner races</td>
<td>About 520 rpm</td>
<td>6</td>
</tr>
<tr>
<td>Compound faults in the outer race and rollers</td>
<td>About 520 rpm</td>
<td>7</td>
</tr>
<tr>
<td>Compound faults in the inner race and rollers</td>
<td>About 640 rpm</td>
<td>8</td>
</tr>
<tr>
<td>Compound faults in the outer and inner races and rollers</td>
<td>About 550 rpm</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 5. Health conditions of the locomotive rolling bearings

Two band-pass (BP1 and BP2) and one high-pass (HP) filters are used to filter the vibration signals of locomotive rolling bearings. The band-pass frequencies (in kHz) of the BP1 and BP2 filters are chosen as 1.5–2.7 and 1.5–4, respectively. The cut-off frequency of the HP filter is chosen as 3kHz. Similar to case 1, four sensitive features are selected from each of the six feature sets using the improved distance evaluation technique and then input into the corresponding classifier. The classification results of the hybrid intelligent method and six individual classifiers are shown in Fig. 7.
It is seen that the training accuracies of six individual classifiers are from 70.67% to 98.60% (average 85.69%) and the testing accuracies from 65.33% to 98.60% (average 83.39%). For the proposed hybrid intelligent method, however, both the training and testing accuracies are 100%. This result shows that the hybrid method achieves obvious improvements in
recognition accuracy and provides a better generalization capability compared to the individual classifiers. Therefore, it is able to effectively identify not only incipient faults but also compound faults of locomotive rolling bearings.

4. Discussions

1. Comparing the diagnosis results of the proposed hybrid intelligent method with those of individual classifiers, we find that the testing accuracies of the hybrid intelligent method (100% for data set A, 90.83% for data set B and 91.33% for data set C in case 1; 100% in case 2) increase by 0, 18.61%, 17.72% and 16.61% compared with the average accuracies of the six individual classifiers. In addition, although the highest classification accuracy (100%) is obtained by all the classifiers for data set A in case 1, the classification error of the hybrid intelligent method is least among all classifiers. Thus, the proposed hybrid intelligent method is superior to the individual classifiers in the light of the classification accuracies.

2. All the above comparisons prove that the proposed hybrid intelligent method obtains significant improvements in fault diagnosis accuracy compared to the individual classifiers. It reliably recognizes both incipient faults and compound faults of rolling element bearings. The success obtained by the hybrid intelligent method may be attributed to the following three points. 1) Extracting both time- and frequency-domain features better reflects the machinery health conditions. 2) Selecting the sensitive features reflecting the fault characteristics avoids interference of other fault-unrelated features. 3) Combining multiple intelligent classifiers based on fuzzy inference system raises diagnosis accuracy.

3. The problems studied in this chapter cover single fault diagnosis, incipient fault diagnosis and compound fault diagnosis, and therefore they are typical cases of machinery fault diagnosis. The satisfactory experiment results demonstrate the effectiveness and generalization ability of the hybrid intelligent method. Although the proposed method is applied to fault diagnosis of the rolling element bearings successfully, it may also be employed to fault diagnosis of other rotating machinery.

5. Conclusions

In this chapter, a hybrid intelligent method based on fuzzy inference system is proposed for intelligent fault diagnosis of rotating machinery. In the method, several preprocessing methods, like empirical mode decomposition (EMD), filtration and demodulation, are utilized to mine fault information from vibration signals. In order to remove the redundant and irrelevant information, an improved distance evaluation technique is presented and used to select the sensitive features. Multiple fuzzy inference systems are combined using genetic algorithms (GAs) to enhance fault identification accuracy. The experimental results show that the hybrid intelligent method enables the identification of incipient faults and at the same time recognition of compound faults.

6. Acknowledgements

This research is supported by National Natural Science Foundation of China (51005172), the Fundamental Research Funds for the Central Universities and the Preferred Support Funds of the Scientific Research Project of the Ministry of Human Resources and Social Security of China for Returned Scholars.
7. References

This book is an attempt to accumulate the researches on diverse interdisciplinary field of engineering and management using Fuzzy Inference System (FIS). The book is organized in seven sections with twenty-two chapters, covering a wide range of applications. Section I, caters theoretical aspects of FIS in chapter one. Section II, dealing with FIS applications to management related problems and consisting three chapters. Section III, accumulates six chapters to commemorate FIS application to mechanical and industrial engineering problems. Section IV, elaborates FIS application to image processing and cognition problems encompassing four chapters. Section V, describes FIS application to various power system engineering problem in three chapters. Section VI highlights the FIS application to system modeling and control problems and constitutes three chapters. Section VII accommodates two chapters and presents FIS application to civil engineering problem.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

InTech open science | open minds

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China
Phone: +86-21-62489820
Fax: +86-21-62489821
© 2012 The Author(s). Licensee IntechOpen. This is an open access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.