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1. Introduction 

Even tough the field of computer vision has seen huge improvement in the last few decades, 
computer vision systems still lack, in most cases, the efficiency of biological vision systems. 
In fact biological vision systems routinely accomplish complex visual tasks such as object 
recognition, obstacle avoidance, and target tracking, which continue to challenge artificial 
systems. The study of biological vision system remains a strong cue for the design of devices 
exhibiting intelligent behaviour in visually sensed environments but current artificial 
systems are vastly different from biological ones for various reasons. First of all, biologically 
inspired vision architectures, which are continuous-time and parallel in nature, do not map 
well onto conventional processors, which are discrete-time and serial. Moreover, the 
neurobiological representations of visual modalities like colour, shape, depth, and motion 
are quite different from those usually employed by conventional computer vision systems. 
Despite these inherent difficulties in the last decade several biologically motivated vision 
techniques have been proposed to accomplish common tasks. For example Siagian & Itti [14] 
developed an algorithm to compute the gist of a scene as a low-dimensional signature of an 
image, in the form of an 80-dimensional feature vector that summarizes the entire scene. The 
same authors also developed a biologically-inspired technique for face detection [13]. 
Interesting results have also been reported in generic object recognition and classification 
(see for example [15] [16] [12] [11]). Also on the sensor side the biological vision systems are 
amazingly efficient in terms of speed, robustness and accuracy. In natural systems visual 
information processing starts at the retina where the light intensity is converted into 
electrical signals through cones and rods. In the outer layers of the retina the photoreceptors 
are connected to the horizontal and bipolar cells. The horizontal cells produce a spatially 
smoothed version of the incoming signal while the bipolar cells are sensitive to the edges in 
the image. Signals output from the cells are then used for higher level processing. Several 
architecture have been proposed to mimic in part the biological system and to extract 
information ranging from low to high level. For example Higgins [10] proposed a sensor 
able to perform an elementary visual motion detector. Other researchers proposed sensor to 
detect mid-level image features like corners or junctions [4] or even to perform higher level 
tasks such as tracking [6] or texture classification [5]. Robotics represents a typical field of 
application for hardware implementations of biologically inspired vision architectures. 

Source: Vision Systems: Applications, ISBN 978-3-902613-01-1
Edited by: Goro Obinata and Ashish Dutta, pp. 608, I-Tech, Vienna, Austria, June 2007
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Robot vision routines such as self localization, or 3D perception via calibrated cameras 
require large computing capabilities. Autonomous robot platforms have limited space to 
dedicate to such high level tasks because on board computers are busy most the time with 
motor control, and sensorial data acquisition. Even more limited embedded hardware is 
available on small wheeled robots for which almost all sensory computation is delegated to 
remote machines. Also in the case of robots equipped with onboard computer, most 
processing focuses on motion control, and low level sensorial data elaboration while heavy 
computer vision tasks, like image segmentation and object recognition, are performed in 
background, via fast connections to a host computer. Emerging gigascale integration 
technologies offer the opportunity to explore alternative approaches to domain specific 
computing architectures that can deliver a significant boost to on-board computing when 
implemented in embedded, reconfigurable devices. This paper describes the mapping of 
low level feature extraction on a reconfigurable platform based on the Georgia Tech SIMD 
Pixel Processor (SIMPil).  
In particular, an adaptation of the Boundary webs Extractor (BWE) has been implemented 
on SIMPil exploiting the large amount of data parallelism inherently present in this 
application. The BWE [1] is derived from the original Grossberg’s Boundary Contour 
System (BCS) and extracts a dense map of iso-luminance contours from the input image. 
This map contains actual edges along with a compact representation of local surface 
shading, and it is useful for high level vision tasks like Shape-From-Stereo. The Fast 
Boundary Web Extraction (fBWE) algorithm has been implemented in fixed point as a feed-
forward processing pipeline thus avoiding BWE feedback loop, and achieving a 
considerable speed-up when compared against the standard algorithm. Application 
components and their mapping details are provided in this contribution along with a 
detailed analysis of their performance. Results are shown that illustrate the significant gain 
over a sequential implementation, and most importantly, the execution times in the order of 
170 µsec for a 256000 pixel image. These results allow ample room for real-time processing 
of typical subsequent tasks in a complete robot vision system. The rest of this chapter is 
organized as follows. Section II introduces the Georgia Tech SIMPil architecture, and 
implementation efforts on FPGA. Section III provides some remarks on the original 
Grossberg’s BCS, and its derived BWE model. In section IV the fBWE system is described, 
and its mapping onto SIMPil detailed. Section V reports extensive experiments with the 
fBWE compared with the BWE results, while in section VI some conclusions are drawn. 

2. SIMPil FPGA implementation 

The GeorgiaTech SIMD Pixel Processor (SIMPil) architecture consists of a mesh of SIMD 
processors on top of which an array of image sensors is integrated [8] [7]. A diagram for a 
16-bit implementation is illustrated in Figure 1. Each processing element includes a RISC 
load/store datapath plus an interface to a 4×4 sensor subarray. A 16-bit datapath has been 
implemented which includes a 32-bit multiply-accumulator unit, a 16 word register file, and 
64 words of local memory (the ISA allows for up to 256 words). The SIMD execution model 
allows the entire image projected on many PEs to be acquired in a single cycle. Large arrays 
of SIMPil PEs can be simulated using the SIMPil Simulator, an instruction level simulator. 
Early prototyping efforts have proved the feasibility of direct coupling of a simple 
processing core with a sensor device [3]. A 16 bit prototype of a SIMPil PE was designed in 
0.8 µm CMOS process and fabricated through MOSIS. A 4096 PE target system has been 
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used in the simulations. This system is capable of delivering a peak throughput of about 5 
Tops/sec in a monolithic device, enabling image and video processing applications that are 
currently unapproachable using today’s portable DSP technology. The SIMPil architecture is 
designed for image and video processing applications. In general, this class of applications 
is very computational intensive and requires high throughput to handle the massive data 
flow in real-time. However, these applications are also characterized by a large degree of 
data parallelism, which is maximally exploited by focal plane processing. Image frames are 
available simultaneously at each PE in the system, while retaining their spatial correlation. 
Image streams can be therefore processed at frame rate, with only nominal amount of 
memory required at each PE [8]. The performance and efficiency of the SIMPil have been 
tested on a large application suite that spans the target workload. 

Figure 1. The SIMPiL architecture

For the SIMPil processing element, an application suite is selected from the DARPA Image 
Understanding suite [17]. These applications, listed in Table 1, are expressed in SIMPil 
assembly language, and executed using an instruction level simulator, SIMPilSim which 
provides various execution statistics. This simulator provides execution statistics including 
dynamic instruction frequency, operand size profiles, PE utilization, and PE memory usage. 
All applications are executed on a simulated 4096 processing element system with 16 pixels 
mapped to each PE for an aggregate 256×256 image size. All applications run well within 
real-time frame-rates and exhibit large system utilization figures (90% or more for most 
application). Details can be found in [8]. To bring SIMPil performance onto robot platform, a 
reconfigurable platform based on FPGA devices is being developed. This platform uses a 
parameterized SIMPil core (SIMPil-K) described in the VHDL hardware description 
language. The SIMPil-K platform is an array of Processing Elements (PE) and 
interconnection registers which can be configured to fit any FPGA device at hand. Figure 2 
shows the high-level functional schema of a 4×4 SIMPil-K array and its NEWS 
interconnection network. Each NEWS register supports communication among a particular 
node (i.e. PE) and its north and west neighbours. By replicating this model, a NEWS (North, 
East, West, South) network is obtained, with every node connected to its four neighbours. 
SIMPil-K receives an instructions stream through a dedicated input port. The instruction 
stream is then broadcast to each PE. To upload and download image data, SIMPil-K uses a 
boundary I/O mechanism, supported by its boundary nodes (i.e. PEs laid on its East/West 
edge): every east-edge node uploads a K-bit data word from its boundary-input port to the 
general purpose register file; every west-edge node downloads a K-bit data word from its 
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register file to the boundary output port. An upload/download operation (one word per 
node) takes only one clock cycle. Both boundary input and output operations are enabled by 
a single instruction, XFERB. When a NEWS transfer instruction arrives, it needs only one 
clock cycle to transfer the data word from each node to a neighbour one, in a specified 
direction. The SIMPil-K platform can be reconfigured by varying a number of architectural 
parameters, as detailed in Table 2. This allows for experimentation with a large set of 
different system configurations, which is instrumental to determine the appropriate system 
characteristics for each application environment AW and RAW parameters set the address 
space of register file and memory, respectively. PPE specifies the number of image pixels 
mapped to each PE. The Influence parameter toggle between a fixed instruction width (24 
bit) and a variable one (8+K bits). The interface of a processing element is depicted in Figure 
3, below. There are two input ports for clock signals, a reset input port and the instruction 
stream port. NEWS transfers are carried through the three bidirectional dedicated ports 
(NEWS ports) which drive three NEWS buses, namely the North/West Bus, East Bus and 
South Bus. 

Image Transforms Image Enhancement 

Discrete Fourier Transform Intensity Level Slicing 
Discrete Cosine Transform Convolution 
Discrete Wavelet Transform Magnification 
Image Rotation Median Filtering 

Image/Video Compression Image Analysis 

Quantization Morphological Processing
Vector Quantization Region Representation 
Entropy Coding Region Autofocus 
JPEG Compression K-means Classification 
Motion Estimation  
MPEG Compression  

Table 1. SIMPil Application Suite 

Figure 2. K-bit 4-by-4 SIMPil-K array 
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Boundary data input and output are carried through the two dedicated boundary ports. The 
processing element parameterized architecture is described in Figure 4. There are four 
communication buses shared by the functional units. All functional units can be 
reconfigured based on the datapath width selected. A single PE can perform integer 
operations on K-bits. Dedicated barrel shift unit and multiply-accumulate unit are 
instrumental to speed-up most image processing kernels. The Sleep Unit verifies and 
updates the node activity state, thus allowing execution flow control based on each PE local 
data. The SIMPil-K system has been simulated and synthesized on FPGA; synthesis statistics 
about employed resources has been generated and analyzed. Figure 5 shows resources use 
percentage achieved by implementing several 16-bit SIMPil-K versions on an eight million 
gates FPGA: particularly, 2-by-2, 4-by-4 and 8-by-8 16-bit SIMPil-K arrays have a resources 
use percentage respectively of 3.3%, 13.3%, and 53.3%. 

Parameter Function Values Constr. Def. 

K Word Width {8, 16, 32, 64} – 16 

X Array Columns X ∈ N 4

Y
Array Rows 
Register

Y ∈ N
X, Y = 2j, j ∈ Z

4

AW
File Address 
Width

AW ∈ N ∩ [1, 16]
I = off → AW  ≤ 4

I = on →

AW  ≤ (K/4)

4

RAW
Local RAM 
Address Width

RAW ∈ N ∩ [1, 16} RAW  ≤ (K/4) 4

PPE
Pixel per 
Processing

PPE ∈ N
PPE = p2, p ∈ N, 

PPE ≤ 2Κ 8

Influence 
(I)

Instructions 
Format
Change
Enable

I ∈ [on, off] – off 

Table 2. SIMPil-K Architectural Parameters 

Figure 3. The Processing Element Black Box 

3. The Boundary Webs Extractor 

The original BCS architecture was proposed by Grossberg and Mingolla [9] as a neural 
model, aimed to explain some psychological findings about perceptual grouping of contours 
in vision: it was part of a more complex theory regarding human perception of shapes and 
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colors. In this formulation, the BCS is a multi-layer recurrent network trained using a 
competitive/cooperative scheme until an equilibrium state is reached. BCS units have 
dynamic activations that are expressed using differential equations with respect to time. The 
network takes the input from a gray-level image, with a lattice of receptive fields computing 
local contrast in small areas. Output is provided as a 2D map of vectors, with the same 
spatial displacement of the input receptive fields, which are called boundary webs, and 
describe changes in brightness over the image. A boundary web is locally oriented along a 
constant brightness line, meaning that image contrast changes along the orthogonal 
direction. The amplitude of each boundary web is related to the strength of the local 
contrast. Boundary webs form a piecewise linear approximation of all image contours, while 
they follow iso-luminance paths inside smoothly shaded surfaces: consequently, they can be 
regarded as a compact description of image shading. a typical BCS analysis is described in 
Figure 7(b), while Figure 6 reports an outline of the BCS architecture. The network consists 
of an input stage used to collect contrast information, the so called OC Filter, and of three 
layers: Competition I, Competition II and Cooperation. The OC Filter is used to collect local 
image contrast along different directions without taking into account contrast orientation. 

Figure 4. Processing Element K-bit Datapath 

All subsequent layers are arranged as a lattice of complex cells, with the same spatial 
displacement of the receptive fields. Each cell in the lattice has a pool of activation values 
which are related to the various contrast directions. The first two layers are competitive 
ones, and their purpose is to refine locally detected contours. The third (output) layer 
performs long range cooperation between neighboring cells in order to complete extended 
contours across the image. Finally, the feedback loop is again competitive, and is connected 
to the first layer in order to enforce winner cells activations. In the OC Filter circular 
receptive fields at position (i,j) sum up input pixels from a squared sub-image S = [Spq] in 
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two symmetric halves Lijk and Rijk defined for each mask at the k-th orientation. Assuming 
that [x]+ = max(x, 0), the resulting activation at position (i, j) and orientation k is: 

 (1) 

where Uijk and Vijk are the summed input in the mask’s halves, while α and β are suitable 
constants. The first competitive layer enforces local winner activations via the feedback 
signal and the input from the OC Filter, while tends to decrease activation in neighboring 
cells with the same orientation. In case of strong aligned activations induced by image 
contours, the aim of the first competitive stage is to reduce the activation diffusion beyond 
contours endpoints. 

Figure 5. Used resources on eight million gates FPGA 

Figure 6. The BCS architecture 

This effect results in the illusory contours completion phenomenon which is commonly 
observed in human perception. Activation laws are, in general, differential equations with 
respect to time, but in the BCS computational model they are computed at equilibrium 
(d/dt= 0). In the case of the Competition I layer the dynamic activation rule is: 

(2)
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and the equilibrium activation wijk for each cell in this stage is computed as: 

(3)

where vijk is the feedback signal, Apqij are the coefficient of a small kernel with cylindrical 
shape, while I and B are suitable constants. In following equations capital letters without 
indexes are constant values used to tune the model. The second competitive stage performs 
competition among orientations inside the same cell: this is a local contour refinement 
mechanism which will be enhanced by the cooperative stage. The activation law has the 
following form: 

(4)

where capital indexes are referred to orthogonal direction with respect to the current one. 
The cooperative stage performs long range cooperation between cells with the same 
orientation that are displaced in a wide neighborhood. In this way long contours completion 
is enabled. Considering the vector d connecting the position (i, j) with a generic neighbor 

(p,q), the following quantities can be defined Npqij = |d| and Qpqij = ∠ d, while the 
cooperative activation law is: 

(5)

where:

This very complex kernel has the form of two elongated blobs aligned with the orientation k,
and exponentially decreasing towards 0. In particular, P represents the optimal distance 
from the cooperative cell at which maximum input activation is collected. Finally, feedback 
is provided from the cooperative stage to the first competitive one, in order to enforce those 
activations that are aligned with emergent contours and decrease spurious ones. The form of 
the feedback signal is: 

(6)

where Wpqij are the coefficient of a small cylinder shaped kernel. BCS provides a compact 
description of image shading at selectable resolution levels: shading, in turn, can be used to 
perform shape estimation, while boundary webs can be used as low level features for 
contour extraction, alignment, or stereo matching. Possible uses of BCS have been explored 
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by some of the authors resulting in a software implementation of the BCS, called Boundary 
Web Extractor (BWE) which has been used as a low level feature extraction module in 
different vision systems. In particular, a neural shape estimation model has been proposed 
[1] coupling BWE analysis with a backpropagation network trained to classify BWE patterns 
as belonging to superquadrics surface patches. Input image surfaces are processed by BWE, 
and the BWE output pertaining to different ROIs is modeled in terms of superquadrics. 
Another approach [2] performs BWE analysis on stereo couples. Input images are analyzed 
both with standard correlation operator over pixels intensities, and with BWE as a 
supplementary feature. Candidates points are labeled using a measure of the matching 
probability with respect to both the preprocessing operators. Finally, a relaxation labeling 
algorithm provides matches for almost all points in the image, and disparities are obtained. 
The high resolution achievable by the BWE analysis enables dense depth maps. The main 
objective of BWE is to perform local brightness gradient estimation, without taking into 
account the support for perception theories. In this perspective BWE has been slightly 
modified with respect to BCS, to obtain sharp contrast estimation and emergent contours 
alignment. In particular, N couples of dually oriented Gabor masks have been used as 
receptive fields to obtain n activation values discarding, for each couple, the mask providing 
negative output. The resulting OC Filter is described by the following equation: 

(7)

where Uijk and Vijk are the outputs of two dual Gabor masks. The generic Gabor filter has 
been selected in our implementation with a width w equal 
to 8 pixels, 2N = 24. The filter equation is: 

(8)

Here s is the application step of the masks; the α...δ parameters have been heuristically 
tuned. The kernel in eqs. (3) and (6) have been selected with gaussian shape, and the 

subtractive term in the exponential part of kernel has been suppressed, and all 

constant values in the equations have been suitably tuned. To ensure the kernel to be 
symmetric, its central value has been forced to be 0 in order to avoid the exponential 

function to give a positive value when Npqij ≡ 0. Finally, we can give a formulation of the 
BWE structure as a 3D matrix containing, at each location (i, j), 2N activation values 
belonging to a star of vectors. 

(9)

Each vector represents the value of the image contrast along the orthogonal direction with 
respect to its phase. As a consequence of the modified OC Filter behaviour, the location Bij

of the BW matrix contains N couples, each of them having a null vector that corresponds to 
the negative output of the filter with at same orientation. 

(10)



Vision Systems: Applications 452

For computer vision purposes the average boundary webs are noticeable because they 
provide a single estimation of the local image contrast at each spatial location, both as 
intensity and direction. The average process is computed using a suitable average function 
fav:

(11)

The average function can be selected according to several criteria: the maximum value or the 
vector sum of all the elements at each location; we selected a form of fav that weights each 
intensity with the cosine of the angle between the phase value and a mean phase angle, 
obtained weighting each phase with the respective intensity. 

(12)

Figure 7 makes a comparison between the original BCS and BWE both for the actual output, 
and for the average one. 

(a) (b) (c) 

(d) (e) 

Figure 7. Comparison between BCS ((b),(d)) and BWE ((c),(e)) 
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4. The fBWE system 

The main idea about the fBWE implementation is to design a massively parallel algorithm 
that should be robust with respect to noise while producing an output as similar as possible 
to the true BWE architecture. The main performance drawbacks of the BWE network are the 
presence of a feedback loop aimed to put the whole system in a steady state, and the use of 
floating point calculations. The fBWE system is a feed-forward elaboration pipeline that is 
completely implemented using 16-bit integer maths, according to SIMPil-K requirements. In 
Figure 8 the fBWE pipeline is shown. The fBWE architecture relies on the cascade of the OC 
Filter, and a competitive-cooperative pipeline. The SIMPil-K configuration we used, is made 
of 32×32 PEs with a PPE equal to 64, that is each sub-image is 8×8 pixels wide. 

Figure 8. The fBWE pipeline 

The whole process has been applied to 256×256 images, and M = 64 so there is a 4 pixels 
overlapping along each direction between two adjacent neighborhoods. Gabor masks in the 
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OC Filter have been implemented using equation (8), and have been provided to the PE 
array as a suitable gray level image. The original floating point values obtained for the 
weights have been approximated to 8-bit integer values, and the minimum value has been 
added to each of them to obtain a correct dynamics in the range [0,....,255]. The set of Gabor 
masks is depicted in Figure 9. The same mask is loaded into all the PEs in one column. 

   

Figure 9. Arrangement of the Gabor masks for the PEs  

Each row of the first image contains only 16 different orientations repeated twice, while the 
second one depicts the last 8 orientations repeated four times. At loading time, the offset is 
subtracted from each Pixel Register in the PE to correct the weights. After loading the input 
image the true filtering starts. The R15 register of each PE contains the correct value for the 
orientation k in order to store the result in the correct position after each filtering step. Due 
to the overlapping, each mask is used to convolve four neighborhoods shifting only one half 
of a sub-image between two PEs at each step, according to the scheme West-North-East-
South. Finally, the Gabor masks image is shifted in the West direction by 8 pixels starting 
again the filtering cycle. The same procedure is adopted for the second Gabor masks image, 
but the filtering cycle is iterated only 8 times. After the filtering phase each PE contains four 
adjacent locations each containing N non null orientations due to the application of equation 
(7). The OC Filter output is quit precise in the determination of the orientations, but it 
suffers from its locality. Contours are not perfectly aligned, and they tend to double along a 
direction due to the activations present in couples of overlapped regions which intersect the 
same contour line. The competitive-cooperative pipeline tends to eliminate these problems 
without the use of a feedback scheme. Here the outputs of the OC Filter are grouped as N
orientation images 64×64 pixels wide. The pipeline is split into two parallel branches: at the 
first step each orientation image is processed with a 3×3 high pass filter in the left branch, 
and a median filter of the same size in the right one. The left processing is aimed to enrich 
details, and to strengthen the contours, while the median filter is a form of blurring intended 
force close orientations to align thus correcting the OC Filter spurious outputs. The 
implementation of these filters in SIMPil-K implies that each PE needs a frame of 12 values 
surrounding the ones stored in its local memory. So a suitable transfer routine has been set 
up to obtain these values form the 8-neighborhood surrounding the PE. The four filtered 
values are again stored in the PE’s local memory. The next step in both the pipeline branches 
is the suppression of uniform activation values. When an image region insisting on the 
location (i, j) exhibits a uniform luminance without perceivable contrast variation along any 
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direction the fBWE activations bijk are almost of the same magnitude and a sort of little star is 
visualized in the output. To avoid this behaviour the uniform activations suppression acts 
according to the following rule: 

 (13) 
Here the threshold value of 0.8 has been selected on the basis of a trial and error process. 

After uniform activations suppression the maximum values  and  are selected at each 

location for the left and right branches thus obtaining two average boundary webs images, 
using max(  ) in place of the averaging function fav. High pass, and median filters give rise 
to extremely different dynamics in the two pipeline branches, so a gain element has been 
placed in the high pass branch to normalize these ranges. The gain factor has been 
determined as 

(14)

In all our experiments As assumed values between 6 and 7. Before the conjunction of the two 
branches with the union pixel by pixel of the left (WL) and right (WR) image, a sharp 
threshold S has been applied in order to join exactly WL and WR. The value of S has been 
selected as the 30% of the maximum activation in WL, and all the values in WR that are over 
the value of S are joined with all the values of WR that are beneath the same threshold. The 
joined image WJ can be defined as WJ = [(WJ,ij, kij)] where for each location (i, j) the 
amplitude, and the relative orientation value are defined. The last step is the cooperative 
filtering that generates the fBWE image W, and is aimed to enforce aligned neighboring 
activations. 
An activation is enforced if its orientation is slightly different from the one of the location at 
the center of the filter mask, otherwise it is decreased. The generic weight Mpq of the filter 
applied to the location (i, j) is defined as: 

(15)

Also in this case it is necessary for each PE to obtain 12 values from its eight neighbors. 

5. Experimental Results 

Several experiments have been conducted on a set of images with different pictorial 
features: real images with a lot of shading, highly textured images, high contrast ones, and 
artificial pictures with both high dynamics (like cartoons) and poor one (Kanizsa figures). In 
Figure 10 the BWE and fBWE images are reported along with a diagram of the local 

orientation differences . It can be noticed that the two 

implementations are perceptually equivalent, and the major differences are present in the 
uniform brightness regions. In these parts of the image the BWE exhibits some small 
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residual activations due to the feedback based stabilization process, while the fBWE 
suppresses them at all. In the case of Kanizsa figures with a few well distinct gray levels (see 
Figure 11) the OC Filter alone performs better of the fBWE, so it has been selected as the 
system output. As regards the performance, the BWE execution time in our experiments 
ranges from 14.94 sec. in the case of Kanizsa figure to 68.54 sec. for the Lena and Tank 
images, while fBWE has a constant execution time of 0.168 msec. This is an obvious finding 
because the fBWE is a feed-forward architecture, while the BWE is not, and its convergence 
to a steady state depends on the input brightness structure. 

a) Lena ( (b) Tank (c) Gear (d) Cartoon 

Figure 10. Experimental results, from top to bottom: input image, BWE output, fBWE 
output, difference 
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(a) (b) (c) 

Figure 11. Experimental results on a Kanizsa figure: (a) input image, (b) fBWE output, (c) 
OC Filter output 

6. Conclusion 

A Fast Boundary Web Extraction (fBWE) algorithm was presented in this paper as a fixed-
point, data parallel implementation of the BWE. fBWE was mapped on SIMPil-K 
reconfigurable FPGA based platform. 

Application components and their mapping details were provided along with a detailed 
analysis of their performance. Experimental results illustrate the significant gain achieved 
over the traditional BWE, with execution times allowing ample room for real-time 
processing of typical subsequent tasks in a complete robot vision system. Experimental 
results on an extensive data set illustrate the significant gain achieved over the traditional 
BWE implementation. Execution times are in the order of 170 µsec for a 256000 pixel image, 
thus allowing ample room for real-time processing of typical subsequent tasks in a complete 
robot vision system. 
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