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Bearing-only Simultaneous Localization and 
Mapping for Vision-Based Mobile Robots 

Henry Huang, Frederic Maire and Narongdech Keeratipranon 
Faculty of Information Technology, Queensland University of Technology 

Australia

1. Introduction 

To navigate successfully, a mobile robot must be able to estimate the spatial relationships of 
the objects of interest accurately. A SLAM (Simultaneous Localization and Mapping) system 
employs its sensor data to build incrementally a map of an unknown environment and to 
localize itself in the map simultaneously. Thanks to recent advances in computer vision and 
cheaper cameras, vision sensors have become popular to solve SLAM problems (Bailey, 
2003; Costa et al., 2004; Davison et al., 2004; Goncavles et al., 2005;  Jensfelt et al., 2006; 
Mouragnon et al., 2006). The proposed bearing-only SLAM system requires only a single 
camera which is simple and affordable for the navigation of domestic robots such as 
autonomous lawn-mowers and vacuum cleaners.  
Solutions to SLAM problems when the mobile robot is equipped with a sensor that provides 
both range and bearing measurements to landmarks are well developed (Leonard & 
Durrant-Whyte, 1991; Zunino & Christensen, 2001; Spero, 2005; Bailey & Durrant-Whyte, 
2006). With a single camera, landmark bearings can be derived relatively easily from a 
grabbed image, however it is much more difficult to obtain accurate range estimates. Due to 
the low confidence in range estimates from vision data, it is desirable to solve SLAM 
problems with bearing only measurements.  
One of the fundamental tasks of a SLAM system is the estimation of the landmark positions 
in an unknown environment.  This task is called Landmark Initialization. A typical bearing-
only SLAM system requires multiple observations for landmark initialization through 
triangulation. With only one observation, a stereo vision can provide range measurements 
because its multiple cameras grab images from slightly different viewpoints. However the 
reliable vision range in a stereo vision is limited due to the distance between the two 
cameras. Several observations at different locations are required to provide a robust range 
estimate.
Structure From Motion (SFM) is a process to construct the map of an environment with the 
video input from a moving camera. SFM allows a single camera to grab images at some 
vantage points for landmark initialization, such as a sufficient baseline and a straight 
movement. The requirement of SFM is well satisfied with a mobile robot, some recent works 
had utilized SFM to bearing-only SLAM (Goncavles et al., 2005; Jensfelt et al., 2006). Our 
method to bearing-only SLAM is inspired from the techniques used in both stereo vision 
and SFM. 
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Existing approaches to bearing-only SLAM require the readings from an odometer to 
estimate the robot locations prior to landmark initialization. It can be argued that such 
approaches are not strictly bearing-only SLAM as they rely on odometric information. This 
chapter presents a new 2-dimensional bearing-only SLAM system that relies only on the 
bearing measurements from a single camera. Our proposed system does not require any 
other sensors like range sensors or wheel encoders. The trade-off is that it requires the robot 
to be able to move in a straight line for a short while to initialize the landmarks. Once the 
landmark positions are estimated, localization becomes easy. The induced map created by 
our method is only determined up to a scale factor as only bearing information is used (no 
range or odometry information). All the object coordinates in the map multiplied by a scale 
factor would not change the bearing values. 
The structure of this chapter is as follows. First, we introduce a direct localization method 
using only the bearings extracted from two panoramic views along a linear trajectory. We 
explain how to induce a Cartesian coordinate system with only two distinguishable 
landmarks. The method is then extended to landmark initialization with more landmarks in 
the environment.
In general, vision sensors are noisy. Dealing with sensory noise is essential. Two different 
methods are presented to compute the spatial uncertainty of the objects:  
1. A geometric method which computes the uncertainty region of each landmark as the 

intersection of two vision cones rooted at the observation points. 
2. A probabilistic method which computes the PDFs (Probability Density Functions) of the 

landmark positions. Formulas are derived for computing the PDFs when an initial 
observation is made.  

The proposed SLAM system requires only a single camera, an interesting setup for domestic 
robots due to its low cost. It can be fitted to a wheeled robot as well as a legged robot. 

2. Related work 

The term SLAM was first introduced by Leonard and Durrant-Whyte (1991), it refers to 
Simultaneous Localization and Mapping.  SLAM is one of the fundamental tasks in the 
navigation of an autonomous mobile robot. In robotic navigation, a map is a representation 
of the spatial relationship between the objects of interest in the environment. A map usually 
contains the positions of certain objects of interest, such as landmarks and obstacles. The 
process of a robot to determine its position in a map is called localization. GPS (Global 
Positioning System) is a popular localization system, in which the map is given for 
navigation. GPS is well suited for vehicles to navigate in a large scale outdoors environment, 
for instance, to navigate from city to city. For a domestic robot, however, a GPS is not 
accurate enough and does not work properly indoors and in some built-up areas. Further, 
the map of a particular environment may not be always available. A domestic robot cannot 
localize itself without a map. A SLAM system needs to build incrementally a map while it 
explores the environment and to determine its location in the map simultaneously.  
For localization the robot needs to know where the landmarks are, whereas to estimate the 
landmark positions the robot needs to know its own position with respect to the map. The 
problem of SLAM is considered as a “chicken-and-egg” problem (Siegwart & Nourbaksh, 
2004). To predict the position of the robot, conventional SLAM systems rely on odometry. 
Unfortunately, the accumulation of odometric errors (due mainly to wheel slippage) makes 
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the accuracy of the position estimates based only on odometry deteriorate rapidly. Updating 
the estimates with other sensory input is needed if the robot navigates for a long time.  
Solutions to SLAM can be found if both range and bearing measurements to landmarks are 
obtained through sensors (Leonard & Durrant-Whyte, 1991; Zunino & Christensen, 2001; 
Spero, 2005; Bailey & Durrant-Whyte, 2006). Such a sensor reading refers to a Full 
Observation. A full observation can be achieved by either a single sensor (i.e., a laser range 
finder) or a combination of two sensors (i.e., a sonar senor and a camera). Range and bearing 
measurements constitute a full state of the environment. The sensors which observe the full 
state of the environment (i.e., both range and bearing) are called range-bearing sensors. A full 
observation is sufficient to form an estimate, such as an uncertainty region, of a landmark 
position. A typical uncertainty region is a Gaussian distribution over the possible positions 
of a landmark. Updating an estimate can be achieved by fusing the estimates from the 
subsequent observations. However, a range-bearing sensor is too expensive for a domestic 
robot. Solving the SLAM problems with a cheaper sensor is desirable. 
A sensor reading with either range-only or bearing-only measurement to a landmark is 
called a Partial Observation. A partial observation is insufficient to completely determine a 
landmark position. A partial observation generates only a non-Gaussian distribution over an 
unbounded region for the landmark position (Bailey & Durrant-Whyte, 2006). Multiple 
observations from several vantage points are required to estimate the landmark position. A 
sensor reading obtained from a single camera constitutes only a partial observation because 
it provides bearing measurements but does not provide accurate range measurements. In 
general, a vision sensor is relatively cheaper than a range-bearing sensor. We wish to solve 
SLAM problems with bearing-only measurements. Next section reviews related work on 
vision based navigation for bearing-only SLAM. 

2.1 Vision based navigation 

Vision based navigation for a mobile robot had been investigated since early nineties of last 
century. Levitt and Lawton (1990) developed a Qualitative Navigator based on vision 
sensors. This navigator was able to explore the environment and to determine the relative 
positions of all the objects of interest. In general, an image contains very rich information for 
mapping the corresponding environment. A certain feature can be recognized through its 
specific color, shape and size. The frame rate up to 30 Hz from a video camera also enhances 
to SLAM, in particular to solve the data association problem.  
Landmark bearings can be derived from a panoramic image taken by an omni-directional 
vision sensor (for example, a single camera aiming at a catadioptric mirror). A panoramic 

image offers a 0360  view of the environment. Because of the robustness of bearing estimates 

and the complete view of the environment, previous works have utilized omni-directional 
vision sensors in robotic navigation (Rizzi & Cassinis, 2001; Usher et al., 2003; Menegatti et 
al., 2004; Huang et al., 2005b). 
Stereo vision is another option used in robotic navigation. In addition to the bearing 
information, a stereo vision sensor can also measure the depth to a landmark (Murray & 
Jennings, 1998; Se et al., 2002; Sabe et al., 2004). A typical stereo vision sensor consists of two 
cameras, also known as a Binocular Vision. The disparity of the images taken from two 
slightly different viewpoints determines the landmark's range through triangulation. A 
Baseline in stereo vision is a line segment connecting the centres of two cameras’ lens. Some 
stereo vision systems consist of three cameras, they are called Trinocular Visions. Common 
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configuration of a trinocular vision is to put three cameras on a right angle polygonal line. A 
trinocular vision can achieve better results than a binocular vision because the second pair 
of cameras can resolve situations that are ambiguous to the first pair of cameras (Se et al., 
2002; Wooden, 2006). 
The length of the baseline is essential in stereo vision, because it affects the precision of 
depth estimation and the exterior design of robotic hardware. QRIO (Sabe et al., 2004), a 
humanoid robot having a 5cm baseline in its binocular vision. The error of the depth 
measurement at a distance of 1.5m is over 80mm. The depth estimates of objects with the 
distances of 2m or more are omitted. LAGR (Wooden, 2006), an outdoor robot equipped 
with a trinocular vision of Point Grey Bumblebee. A maximum vision range of 6m was 
reported with a baseline of 12cm. To maximize the vision range of a stereo vision sensor, a 
longer baseline is required. Based on the mobility of a mobile robot, it is possible to extend 
the distance of any two viewpoints of a single camera (called a Monocular Vision). If a robot 
can move straight, the estimation of a landmark range from a monocular vision will be the 
same as the estimation in a stereo vision. Such approach was first proposed by Huang et al. 
(2005a). In this paper, a localization method with two observed bearings along a linear 
trajectory was presented. The method is particularly useful and accurate if the robot can 
move straight, i.e., the robot’s yaw is toward to a specific landmark.  
In computer vision, Structure From Motion (SFM) refers to the process of building a 3D map 
of a static environment from the video input from a moving camera.  This is very similar to 
stereo vision where a 3D map is built from two simultaneous images of the same landmark. 
In both cases, the same landmark is taken into multiple images and the disparities of images 
are used to compute the landmark location. In stereo vision, the images are taken at 
different viewpoints simultaneously. In SFM, due to the robot's motion, the images are 
taken at different viewpoints at different time steps. Visual odometry (Nister et al., 2004) 
employs SFM to estimate the motion of a stereo head or a single moving camera based on 
video data. The front end of this system is a feature tracker. Point features are matched 
between pairs of frames and linked into image trajectories at video rate. SFM presents 
significant advantages compared with a stereo vision due to the low cost of a monocular 
vision and the flexible baseline. However, SFM can build a map with respect to a static 
environment only because of the images are obtained at different time steps. 
Goncavles et al. (2005) presented a framework to bearing-only SLAM based on SFM from 
three observations. They utilized a wall corner as the landmark for guiding the robot to 
move straight. Three images were taken while the robot was moving toward the wall 
corner. Each image was taken when the robot had moved 20cm approximately. A similar 
work (Jensfelt et al., 2006) was using N  images for landmark initialization, here N is a 

sufficient number to obtain an accurate estimation. To ensure a proper triangulation, the 
images were discarded if the robot had not moved more than 3cm (i.e., baseline under 3cm) 
or turned more than 1 degree (i.e., not a straight movement). Both of the approaches solve 
the bearing-only SLAM problem using a monocular vision. However, they require an 
odometer to determine robot’s motion. Our method to bearing-only SLAM is similar to SFM 
with a monocular vision, but does not rely on odometric information. 
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2.2 Dealing with uncertainty 

In general, vision sensors are noisy. Dealing with sensory noise is essential in robotic 
navigation. The uncertainty of an object location can be represented with a PDF (Probability 
Density Function). When a robot is initially placed in an unknown environment without any 
prior information, the PDF of the robot position is uniform over the whole environment. 
Once the robot starts to sense the environment, information gathered through the sensors is 
used to update the PDF. Smith and Cheeseman (1986) estimated the object locations by 
linking a series of observations through an approximate transformation. The transformation 
includes compounding and merging the uncertain spatial relationships from sensor 
readings. Stroupe et al. (2000) showed how to fuse a sequence of PDFs of 2-dimensional 
Gaussians estimated from noisy sensor readings. 
Robustness to sensory noise can be achieved with probabilistic methods such as Extended
Kalman Filters (EKF) or Particle Filters (PF). The PF follows the Sampling Importance 
Resampling (SIR) algorithm, also known as the Monte Carlo Localization (MCL) algorithm in 
robotics (Fox et al., 1999). In PF, the number of particles is an important factor to the 
computing complexity. Montemerlo et al.  (2003) proposed an efficient algorithm called 
FastSLAM based on PF with a minimized number of particles. Davison (2003) used a 
separate PF to estimate the distance from the observation point to the landmark with a 
single camera. The estimated distance is not correlated with other observations due to the 
limitation of the field of view. The follow-up work (Davison et al., 2004) improved the 
SLAM results by applying a wide-angle camera.  In (Menegatti et al., 2004), omnidirectional 
images were employed to the image-based localization combining with MCL technique. Sim 
et al. (2005) solved SLAM problem with PF using a stereo vision sensor.  
EKF is computationally efficient for positional tracking. However, an initial estimate of 
Gaussian distribution over the landmark position is required. This estimate can be refined 
efficiently with the estimates from subsequent observations. It is important to have an initial 
estimate relatively close to the real solution. Many works have focused on the problem of 
landmark initialization. In (Bailey, 2003), previous poses of the robot were stacked in the 
memory to perform the landmark initialization. Once the landmarks were initialized, the 
batch of observations was used to refine the whole map. Costa et al. (2004) presented an 
iterative solution to the landmark initialization of bearing-only SLAM problem with 
unknown data association (i.e., all landmarks are visually identical). The authors estimated 
landmark positions through Gaussian PDFs that were refined as new observations arrived.  
Bundle adjustment is a process which adjusts iteratively the robot’s pose and the landmark 
positions in order to obtain the optimal least squares solution. Combining EKF with bundle 
adjustment ensures a robust estimate. Such an optimization is usually calculated off line due 
to expensive in computation. In  (Mouragnon et al., 2006), landmark initialization was 
carried out with a bundle adjustment in an incremental way, in the order of video frames. 
An incremental method can improve the computing efficiency compared with the usual 
hierarchical method. 
Landmark initialization based on memorizing previous measurements or iterative methods 
cause time delay for estimation. These methods belong to the delayed methods of landmark 
initialization (Sola et al., 2005). Some immediate initialization methods to bearing-only 
SLAM called undelayed methods of landmark initialization were introduced; Kwok and 
Dissanayake (2004) presented a multiple hypotheses approach to solve the problem in a 
computationally efficient manner. Each landmark was initialized in the form of multiple 
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hypotheses distributed along the direction of the bearing measurement. The validity of each 
hypothesis was then evaluated based on the Sequential Probability Ratio Test (SPRT). Sola et 
al. (2005) gave a new insight to the problem and presented a method by initializing the 
whole vision cone  (see Figure 4(a)) that characterizes the direction of the landmark. This 
cone is covered by a sequence of ellipses that represent the likelihood of the landmark. 
Undelayed method of landmark initialization is efficient to identify the directions of all 
landmarks when the first bearing measurements are made. It does not state explicitly the 
locations of the landmarks. Further observations are still required to initialize the landmark 
positions. Lemaire et al. (2005) applied an undelayed initialization method to a 3D bearing-
only SLAM. The landmark initialization is similar to the method proposed in (Kwok & 
Dissanayake, 2004) by maintaining a mixture of Gaussians. The updating process was done 
by comparing the likelihoods of subsequent observations. If the likelihood falls below a 
certain threshold then the Gaussian is removed. Once only a single Gaussian is left in the 
cone, the landmark is initialized and added into the map for EKF-SLAM. 

2.3 Our approaches 

This chapter presents two methods to compute the spatial uncertainties of the objects based 
solely on bearing measurements only: namely a geometric method and a probabilistic 
method. These methods are similar to the approach of the undelayed method of landmark 
initialization. Since the estimate based on a partial observation (known bearing but 
unknown range) is insufficient to completely determine a landmark position, a second 
observation from a vantage position is required to generate an explicit estimate.  
In the geometric method, we manipulate directly each vision cone as a polyhedron instead 
of a sequence of Gaussians. Each cone contains a landmark position. After a second 
observation in a linear trajectory, the uncertainty region (the set of possible landmark 
positions that are consistent with the first and second observations) of the landmark 
becomes the intersection of two cones rooted at the two observation points, see Figure 4(b). 
Depending on the difference of bearings, the intersection is either a quadrangle (four-side 
polygon) or an unbounded polyhedron. For each estimation, we change the bases from the 
local frame (the robot-based frame, denoted by RF ) into the global frame (the landmark-

based frame, denoted by LF ). The uncertainties of all objects are re-computed with respect to 

LF  by the change of bases. A global map with the estimated positions of all objects and their 

associated uncertainties can be gradually built while the robot explores its environment. 

In the probabilistic method, a landmark position is represented by a PDF ),( αrp  in a polar 

coordinate where r and α  are independent. Formulas are derived for computing the PDF 

of landmark position when an initial observation is made. The updating of the PDF with the 
subsequent observations can be done by direct computing from the formulas. We select a 
number of sample points in the uncertainty region (computed from the geometric method)  
by the rejection method (Leydold, 1998). These sample points are used to represent the PDF 

in RF . By changing the bases from RF to LF , the PDFs of all object positions in the global 

frame LF can also be computed. 

Without range measurement, we assume the probability density of an object location is 
constant along the range. It is a more realistic assumption than the one made by other 
existing methods (Davison, 2003; Davison et al., 2004; Kwok & Dissanayake, 2004; Sola et al., 
2005) which assume that the probability density of the object location is a Gaussian or a 
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mixture of Gaussians. Indeed, if only bearing information is given, the probability that the 
landmark is between 4 and 5 metres should be the same as the probability that the landmark 
is between 5 and 6 metres. The representation with a Gaussian or a mixture of Gaussians 
fails in this constraint. With our PDF representation, the probability that the landmark is 
between 4 and 5 metres will be the same as the probability that the landmark is between 5 
and 6 metres. 

3. A direct localization method using only the bearings extracted from two 
panoramic views along a linear trajectory  

In this section, we describe a direct method (in the sense it does not use an iterative search) 
based solely on vision for localizing a mobile robot in a 2-dimensional space. This method 
relies only on the bearings derived from two images taken along a linear trajectory. We only 
assume that the robot can visually identify landmarks and measure their bearings. This 
method does not require any other sensors (like range sensors or wheel encoders) or the 
prior knowledge of relative distances among the objects. This method can be adopted in a 
localization system which utilizes only a single camera as the sensor for navigation. Given 
its low cost, such a system is well suited for domestic robots such as autonomous lawn-
mowers and vacuum cleaners. 

3.1 Method description 

In order to describe our method we need to introduce some notation. The robot position at 
thi  observation point is denoted by iO . The position of thj  landmark is denoted by jL . The 

notation j

iβ denotes the bearing measurement at iO  with respect to jL . The line going 

through two points 
1x  and 2x  will be denoted by ),( 21 xxΓ . This section shows how to 

compute the Cartesian coordinates of landmarks and the robot positions from the bearings 

measured at 1O and 2O  relatively to 1L and
2L . We consider two right-handed coordinate 

systems, the robot-based frame denoted by RF , and the landmark-based frame denoted by 

LF . In Figure 1(a), the coordinates of 1O and 2O in RF  are respectively ]'0,0[ and ]'0,1[ .

Similarly, in LF  (see Figure 1(b)), the coordinates of 1L and
2L  are respectively ]'0,0[ and 

]'0,1[ . The frame LF  is a global frame since all the landmarks are assumed static in the 

environment. The distance |||| 21 LL −  is taken as the measurement unit for the localization 

system.  

While the robot moves in a linear trajectory, two images are taken at 1O and 2O respectively.

The landmark bearings are derived from these two images. The position jL in RF  is 

computed as the intersection of two lines ),( 1 jLOΓ  and ),( 2 jLOΓ . The equations of this two 

lines can be obtained from the bearings j

1β and j

2β , and the coordinates of 1O and 2O  in RF .

Once jL is available in RF , we can determine the affine transformation that relates the 

coordinates )(xXL  and )(xX R
 of a point x  in the two coordinate systems LF  and RF . That 

is, an expression of the form bxXaxX RL += )(*)( , here a  is a matrix and b  is a vector. The 

coordinates of 1O  and 2O  in LF  are then easily derived.  
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Figure 1. From two landmark bearings observed at points 1O and 2O , the coordinates of 

1L and 2L  in RF are computed. Then a simple change of bases gives the positions of 1O and

2O in the global  frame LF

Figure 2. The estimated error e  on 2L  depends on the relative difference in bearings 

In order to determine the relative position of a landmark, this landmark should not be on 

the line ),( 21 OOΓ . For example, if 1L , 1O and 2O  are on the same line, then 

),(),( 1211 LOLO Γ∩Γ   is not a single point but a whole line. 

Experiments in simulation and on a real robot (see Section 3.2) indicate that the accuracy of 
this localization system is sensitive to the relative difference of bearings. Let e  be the 
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estimated error of landmark position. Figure 2 shows that )sin(*)sin(* 2

20 θβ edd == , here 
2

1

2

2
ββθ −= ,

0d  is the distance between 2L and )','( 22 LOΓ , and ||'|| 22 OOd −= . We have 

)sin(

)sin(* 2

2

θ

βde = . That is, e  is proportional to the landmark range d  and the inverse of the relative 

difference in bearings. Assume the landmark range is fixed and the bearings angles are 

small, the ratio d
e  will be approximately equal to 2

1

2

2

2

2

ββ

β

−
. This result confirms our intuition 

that a large relative change in bearings should give a more accurate position estimate. 

3.2 Empirical Evaluation 

Our localization method was evaluated on a Khepera robot equipped with a color camera 
(176 x 255 resolution). The average error between the measured and actual bearings is about 
± 2 degrees. In this experiment, the second landmark was placed 20 centimetres apart from 
the first landmark. Four different starting points were used, and 20 trials at each point were 
conducted. The moving distance in all cases was 30 centimetres. The moving directions were 
westwards parallel to the landmarks. The results are shown in Figure 3. In this figure, 
landmarks are denoted by stars, trajectories are shown as arrows, and the estimated 
positions by our localization method are displayed as scatter points. 
The localization error, average distances between the estimated positions and the actual 
positions, at positions a, b, c, and d (in Figure 3) are respectively 0.6, 1.2, 2.2, and 2.8 
centimetres. The errors are small compared to the diameter of the robot (6 centimetres). 
Other experimental results have confirmed that the error is inversely proportional to the 
relative difference in bearings. 

Figure 3. Estimated positions of the robot determined by the proposed localization method 

When more than two landmarks are present, the localization accuracy can be further 
improved by fusing the estimated positions, giving more importance to the estimation 
returned by the pair of landmarks that has a larger relative difference in landmark bearings. 
In summary, we have introduced a novel effective approach for robot self-localization using 
only the bearings of two landmarks. This technique can be viewed as a form of stereo-vision. 
The method we propose is well suited for real-time system as it requires very little 
computation.
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When more than two landmarks exist in the environment, the robot can determine the 
relative positions of the landmarks provided some weak visibility constraints are satisfied. 

Indeed, suppose there are two pairs of landmarks },{ 21 LL  and },{ 43 LL visible from a 

segment 21OO  (notice that },{ 21 LL  and },{ 43 LL do not have to be in direct line of sight). 

Then using three different bases, the first one 0B attached to 21OO , the second one 

2,1
B attached to },{ 21 LL , and the third one 

4,3
B attached to },{ 43 LL , we can determine the 

change of basis matrices 
2,10 ,BBM  and 

4,30 ,BBM . The matrix product 
4,302,10 ,

1

, ΒΒ

−

ΒΒ MM  allows us to 

compute the positions of the pairs of landmarks },{ 21 LL  and },{ 43 LL  relatively to each 

other.
This method enables a mobile robot to localize itself with only two observed bearings of two 
landmarks. Such a localization system will be invaluable to an indoor robot as well. As the 

bearings of the sides of a door frame can play the roles of the landmarks 1L and 2L  and tell 

the robot exactly where it stands relative to the door. In next section, we employ this method 
to solve the landmark initialization problem in bearing-only SLAM. 

4. Sensitivity Analysis to Landmark Initialization of Bearing-Only SLAM  
– A geometric approach 

In this section, we propose a geometric method to solve the landmark initialization problem 
in bearing-only SLAM. The assumptions and the localization method are the same as in 
Section 3, with the exception that vision error is taken into consideration. The estimate of a 
landmark position becomes an uncertainty region instead of a single point. In particular, we 
show how the uncertainties of the measurements are affected by a change of frames. That is, 

we determine what can an observer attached to a landmark-based frame LF deduced from 

the information transmitted by an observer attached to the robot-based frame RF .

4.1 Method description 

The notations in this section are the same as in Section 3.1. The uncertainty region of jL  is 

denoted by 
jLA . Assume that the error range for the bearing is ε± . In other words, at an 

observation point iO , a landmark position jL  is contained in the vision cone which is formed 

by two rays rooted at iO . The first ray is defined by iO  and the bearing εβ +j

i ; the second 

ray is defined by iO  and bearing εβ −j

i . Figure 4(a) shows the vision cones in the robot-

based frame RF  based on the reading of the landmark bearings from 1O .

After reading the bearing measurements from both 1O and 2O , the uncertainty region 
jLA

becomes the intersection of two cones rooted at 1O and 2O  respectively. Figure 4(b) shows 

that a typical intersection is a 4-sided polygon. If the cones are almost parallel, their 
intersection can be an unbounded polyhedron. 
The spatial relationships in Figure 4(b) are expressed in RF . Since the robot is moving over 

time, the base of RF changes too. Therefore, it is necessary to change coordinate systems to 

express all positions in the global frame LF . Figure 5 illustrates the difficulty of expressing 
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the robot centred information in the global frame LF . The uncertainty on the landmarks 

prevents us from applying directly a change of bases. In next section, we will show how to 
solve this problem. 

Figure 4. (a) The vision cones rooted at 
1O  contain the landmarks. Each cone represents the 

unbounded uncertainty of the associated landmark. The diagram is drawn with respect to 
the robot-based frame RF . (b) The intersections of the vision cones form the uncertainty 

region
jLA

Figure 5. When 1
L and

2L are not certain, a simple change of bases does not induce correct 

uncertainty regions of 3
L  and 

4L
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4.2 Uncertainty and change of frames 

From the uncertainties of landmark positions estimated in the robot-based frame RF , we 

would like to derive the uncertainty regions of the observed objects with respect to the 

landmark-based frame LF . Given a point x , if )(xXR  and )(xXL  denote the coordinate 

vector of x  in frames RF and LF  respectively. 

Consider the simple case of Figure 6(a) which contains only two landmarks and two robot 

positions. Assume the robot (the observer) sees 1
L clearly from 1O and 2O , but sees  

2L with 

some noise. The uncertainty region of  1
L in RF  is reduced to a single point (no ambiguity). 

Whereas, the uncertainty region of  
2L in RF  is a polyhedron. 

Figure 6. (a) A simple case in RF , where we assume 1
L  is clearly observed without 

ambiguity, the uncertainty region of 
2L  is 

2LA . The four vertices of 
2LA  are denoted by kL2 ,

4...1=k

(b) After the change of frames, the uncertainty regions of 1O  and 2O  are denoted by 
1OA

and
2OA . We obtain kO2  from Equation (4) with respect to kL2 , 4...1=k .

The uncertainty regions of 1O and 2O with respect to LF  can be obtained by considering all 

possible hypotheses for the location of 
2L consistent with the observations. That is, we 

consider the set of possible coordinate vectors )( 2LXR of
2L in RF . For each hypothesis 

22 )( hLXR = , a standard change of bases returns the coordinates )( 1OXL  and )( 2OXL  of 

respectively 1O and 2O  in LF . Making 2h  range over the vertices of 
2LA  in Figure 6(a), 

create the polyhedra 
1OA  and 

2OA  of uncertainty regions with respect to LF  (see Figure 

6(b)).
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In the general case, when uncertainty exists for both 1L  and 
2L , to transfer the information 

from RF to LF , we consider simultaneously all the possible locations of 1L and
2L  consistent 

with the observations. We hypothesize,  

11)( hLX R = , and 
22 )( hLXR =   (1) 

Let
21 ,hhτ  be the affine transformation function for changing frames from RF to LF . That is, 

]'0,0[))(()( 1,1 21

== LXLX RhhL τ  (2) 

]'0,1[))(()(
2,2 21

== LXLX RhhL τ  (3) 

The above constraints completely characterize
21 ,hhτ . For any point x , the coordinates 

transfer between the two frames is done with Equation (4). 

))(()(
21 ,

xXxX RhhL τ=  (4) 

In other words, the uncertainty region 
iOA  of the robot position in LF  is 

))(()(
21

2211

,

,

iRhh

AhAh

OL OXAX
LL

i
τ

∈∈

=  (5) 

Figure 7. The uncertainty regions in LF  are derived from the uncertainty regions in RF  (see 

Figure 5). The centroids of the uncertainty regions are used to represent the estimated 
positions of different objects. The areas of the polyhedra quantify how uncertain the 
estimates are 

The uncertainty regions 
jLA  for 3L  and 

4L  in LF  are computed similarly, 
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))(()(
21

2211

,

,
j

LL

j LRhh

AhAh

LL AXAX τ
∈∈

=  (6) 

The computation in this example, we take the four vertices (the extreme points) kL1  and kL2

( 4...1=k ) from 
1LA  and 

2LA . Figure 7 shows the estimated uncertainties of 1O , 2O  and 

3L ,
4L  in LF . The polyhedron )(

iOL AX  approximates the set of all consistent points for iO

and the polyhedron )(
jLL AX  approximates the set of all consistent points for jL . Although 

the uncertainty region )(
jLL AX  is not a polyhedron, in practice it can be approximated by a 

polyhedron. We have tested the proposed method both in simulation and on a real robot. 
These results are presented in next section. 

4.3 Simulation 

We tested the proposed method in simulation in an environment with four landmarks (at 
unknown positions to the localization system). The robot moves in a polygonal line around 
the centre with some randomness. Since we focus on landmark initialization, Figure 8 shows 
only the estimated positions of the landmarks.

L
1

L
2

A
L
3

A
L
4

: True landmark
: Estimated landmark

O
1

O
2

Estimated uncertainty after initial movement

L
1

L
2

A
L
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A
L
4

: True landmark
: Estimated landmark

Estimated uncertainty after 3 movements
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2

A
L
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A
L
4

: True landmark
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Estimated uncertainty after 6 movements

L
1

L
2

A
L
3

A
L
4

: True landmark
: Estimated landmark

Estimated uncertainty after 9 movements

Figure 8. The uncertainty regions 
3LA and

4LA gradually shrink as the number of 

observations increases. The arrows represent the robot movements 

Two landmarks are arbitrarily selected as 1L and
2L . With the change of frames from 

RF to 

LF , the uncertainty regions 
3LA and

4LA are computed. When another pair of observations is 
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available after the robot has moved again, new 
3LA and

4LA  are obtained in the same 

manner. The estimated positions from all movements are unifiable since they are with 
respect to the same frame LF . Figure 8 shows how the uncertainty regions are refined after 

several movements. The polyhedra 
3LA and

4LA shrink gradually. A global map with the 

estimated positions and the corresponding uncertainties of all landmarks can be 
incrementally built. 

4.4 Evaluation on a Real Robot 

Our method was evaluated using a Khepera robot. The Khepera robot has a 6 centimetre 
diameter and is equipped with a color camera (176 x 255 resolution). A kheperaSot robot 
soccer playing field, 105 x 68 square centimetres, was used as the experimental arena (see 
Figure 15). There were four artificial landmarks in the playing field. Only one landmark was 
distinct from the others. The second landmark was placed 20 centimetres apart from the first 
landmark. 
During the experiments, the robot moved in a polygonal line. Two panoramic images were 
taken in each straight motion. Landmark bearings were extracted from the panoramic 
images using a color thresholding technique. Bearings from each pair of observations were 
used to estimate the landmark positions. The vision error ε  is limited to ±2 degrees.  

Figure 9(a) shows the estimated uncertainties of landmark positions after 10 pairs of 
observations. The actual landmark positions are denoted by stars, the estimated landmark 
positions are shown as circles, and the areas of the polyhedra represent the uncertainties. 

Figure 9. (a) Estimated landmark positions after 10 pairs of observations. (b) The 
uncertainties of the third and fourth landmarks 

The uncertainties of 3L  and 
4L decrease rapidly in the first few observations and does not 

change much after the third observation as shown in the top chart of Figure 9(b). The bottom 

chart of Figure 9(b) displays the estimated errors of 3L  and 
4L are 2 centimetres and 3 

centimetres respectively. The measurement unit in this chart equals to 20 centimetres.  
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We carried out another experiment to study the sensitivity of vision error ε . The top chart 

of Figure 10 shows the relationship between ε and the uncertainties of 3L . The amount of 

the vision error ε  was varied from 2 to 7 degrees. The uncertainties are proportional to ε
in a linear manner. The bottom chart of Figure 10 shows that the estimated error might not 
decrease monotonically. This is because we assign the centroid of the uncertainty region as 
the estimated landmark position. 
In this section, we introduced a method for analyzing how uncertainty propagates when 
information is transferred from one observer attached to a robot-based frame to an observer 
attached to a landmark-based frame. The accuracy of this method was demonstrated both in 
simulation and on a real robot. In next section we will employ a probabilistic method to 
compute the uncertainties of object positions. 

Figure 10. Uncertainties and estimated errors at different amounts of vision error ε in

degrees

5. Sensitivity Analysis to Landmark Initialization of Bearing-Only SLAM  
– A probabilistic approach 

In this Section, we describe a probabilistic method to solve the landmark initialization 
problem in bearing-only SLAM. The assumptions in this method are the same as Section 3. 

We characterize ),( αrp  the PDF of landmark position expressed in polar coordinates when 
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r  is independent on α . Formulas are derived for computing the PDF (Probability Density 

Function) when an initial observation is made. The updating of the PDF when further 
observations arrive is explained in Section 5.2.A. 

5.1 Method description 

Let ),( αrp  be the PDF of the landmark position in polar coordinates when only one 

observation has been made. We characterize  ),( αrp  when r  and α  are independent. Let  

β  denote the measured landmark bearing. Assume that the error range for the bearing is 

ε± . The landmark position is contained in the vision cone which is formed by two rays 

rooted at the observation point with respect to two bearings εβ − and εβ +  (see Figure 11). 

Figure 11. The vision cone is rooted at the observation point. The surface of the hashed area 

is approximately  αddrr  for small  αd  and dr

The surface of the hashed area in Figure 11 for small dr  and αd  can be computed as 

[ ] [ ] αα
π

α
ππ ddrrddrdrr

d
rdrr ≅+=−+ 222 )(2

2

1

2
)(

Because the probability of the landmark being in the vision cone is 1, we have 

+

−
=

εβ

εβ
αα

max

min

1),(
R

R
ddrrrp  (7) 

In Equation (7), maxR and
minR  are the bounds of the vision range interval. We define )(RF  as 

the probability of the landmark being in the area ]},[],,[|),{( min εβεβαα +−∈∈ RRrr ,

)(RF can be represented as: 

+

−
=

εβ

εβ
αα

R

R
ddrrrpRF

min

),()(  (8) 
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We define ),( ∆Ψ R  as the probability of the landmark being in the dotted area in Figure 11. 

Since )()(),( RFRFR −∆+=∆Ψ , we have 

+

−

∆+

=∆Ψ
εβ

εβ
αα

R

R
ddrrrpR ),(),(  (9) 

If the range  r  and the angle  α  are independent, then ),( ∆Ψ R  is constant with respect 

to R . That is, 0
),(

=
∂

∆Ψ∂

R

R
. From Equation (9), we derive 

R

RF

R

RF

∂

∂
=

∂

∆+∂ )()(
 (10) 

Because of the independence of α  and r , ),( αrp can be factored as  

)()(),( αα grfrp =  (11) 

Without loss of generality, we impose that =1)( αα dg . After factoring, Equation (8) 

becomes =
R

R
drrrfRF

min

)()( . Because of the property of the integration, we have

RRf
R

RF
)(

)(
=

∂

∂
 (12) 

From Equations (10) and (12), we deduce that RRfRRf )()()( =∆+∆+ . Therefore, 

0)(
)()(

=∆++
∆

−∆+
Rf

RfRf
R . By making ∆  goes to zero, we obtain 0)()(' =+ RfRfR .

The equality RRfRf 1)()(' −=  can be re-written as )]'[log())]'([log( RRf −= .  After 

integrating both sides, we obtain 
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e
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cRRf
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log
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Where c  is a constant, let ce=ξ , we obtain 
R

Rf
ξ

=)(

From Equations (7) and (11), ξ  can be calculated and thus 
minmax

1

RR −
=ξ

rRR
rf

)(

1
)(

minmax −
=

Therefore, ),( αrp  can be re-written as  

)(
)(

1
),(

minmax

αα g
rRR

rp ×
−

=  (13) 

If we use a Gaussian function for )(αg  with mean β  and standard deviation σ , the PDF 
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),( αrp  can be re-written as Equation (14).  Figure 12 shows the PDF of ),( αrp

σπ

σ

βα

α
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)(
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)(

1
),(
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2

minmax

−
−

×
−

=
rRR

rp  (14)  

.

Figure 12. The PDF of the landmark position following Equation (14) 

5.2 Utilization of the PDF for bearing-only SLAM

We illustrate the application of the PDF for our bearing-only SLAM system. Section 5.2-A 
describes how the PDF can be updated with a second observation. In Section 5.2-B, we 
present experimental results on a real robot. 

A. Updating the PDF with a second observation 

When a second observation is made after a linear motion, the landmark position falls in the 
uncertainty region which is the intersection of two vision cones rooted at the first and the 

second observation points 1O  and 2O . We denote with 1p  and 2p  the PDFs of the landmark 

positions computed from Equation (14) with respect to 
1O  and 2O  respectively. Let p

denote the PDF of the landmark position after fusing the sensory readings from 1O  and 2O .

From the work of Stroupe et al. (2000), we have = 2121 ppppp .
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We want to approximate p  with a Gaussian distribution q . To compute the parameters of 

q , we generate a set S  according to the PDF p  by the Rejection Method (Leydold, 1998). We 

determine the maximum probability density maxp  of p  by computing 21 pp at the 

intersection of two bearings. The sampling process selects uniformly a sample point s and a 

random number }1,0{ ∈νν . If ν<max)( psp , s  is rejected, otherwise s  is accepted and 

added to S . The sampling process is repeated until enough points are accepted. Figure 13 

shows the generated samples in the uncertainty regions of four landmarks. 

The mean x and the covariance matrix C of q  are obtained by computing the mean and the 

covariance matrix of S  as previously done by Smith & Cheeseman (1986) and Stroupe et al. 

(2000). In Figure 13, the contour plots present the PDFs of landmark positions. 

The estimated PDFs in Figure 13 are expressed in the robot-based frame RF . Since the robot 

is moving over time, its frame changes too. Therefore, it is necessary to change the 

coordinate systems to express all the estimations in the global frame LF . We use the method 

introduced in Section 4 to transfer the samples in S  from RF  to LF . After the change of 

frames, the uncertainties of 
1L  and 2L are transferred to other objects. The samples of other 

objects are taken to approximate the PDFs of the object positions in LF . Figure 14 shows the 

distribution of the samples after the change of frames. The contour plots present the PDFs of 

the object positions in the global frame LF  associated to the points ),( 21 LL .

Figure 13. The PDFs and the contour plots of four landmarks in the robot-based frame RF ; in 

this example, the uncertainty region of each landmark is a bounded polygon. The generated 
samples are distributed in the uncertainty regions 
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Figure 14. After the change of frames from RF to LF , the PDFs and the contour plots of 1O ,

2O  and 3L , 4L  are presented in the global frame LF

B. Experimental Results 

Our method was evaluated using a Khepera robot equipped with a colour camera (176 x 255 
resolution). The Khepera robot has a 6 centimetres diameter. A KheperaSot robot soccer 
playing field, 105 x 68 square centimetres, was used for the experiment arena (see Figure 15). 
There were four artificial landmarks in the playing field. The first and second landmarks 
were placed at the posts of a goal, 30 centimetres apart from each other. 
The objective of the experiment is to evaluate the accuracy of the method by estimating the 
positions of the third and the fourth landmarks. At each iteration, the robot was randomly 
placed in the field. The robot took a panoramic image and then moved in a straight line and 
captured a second panoramic image. Landmark bearings were extracted from the 
panoramic images using colour thresholding. 

A total of 40 random movements were performed in this experiment. 
minR  was set to 3 

centimetres, maxR  was set to 120 centimetres, and the vision error ε  was ± 3 degrees. Figure 

16(b) shows the errors of the estimated landmark positions. For 3L , the estimated error was 

reduced from approximately 9 centimetres at the first iteration to less than 1 centimetre at 

the last iteration. For 4L , the error was reduced from 14 centimetres to 2.77 centimetres. The 

experiment shows that the estimated error of landmark position is sensitive to the relative 

distance with respect to 1L  and 2L .
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Figure 15. Experimental setup, the landmarks are the vertical tubes 

Figure 16. (a) Diagram of the experimental setup. (b) The errors of the estimated landmark 
positions

We made another experiment to test the sensitivity of the errors of the landmark positions 
with respect to the different directions of the robot’s moving trajectories. We let the robot 
move in four different directions with respect to three landmarks. In Figure 17(a), stars 
denote the landmark positions and arrows denote the moving trajectories. The robot 
repeated 10 iterations for each trajectory. 

The errors on  3L in four trajectories after the tenth iteration were 2.12, 1.17, 1.51, and 13.99 

centimetres respectively. The error of the fourth trajectory is large because the robot moves 

along a line that is close to 3L . Therefore, the vision cones at the first and the second 

observations are nearly identical. 
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The estimation of the landmark position is more accurate when the intersection of two 
vision cones is small. This is the case of the second trajectory where the intersection is the 
smallest among all trajectories.  

Figure 17. (a) Trajectories of the robot for the experiment to study the relationship between 

moving directions and estimated errors of landmark positions. (b) The errors on 3L at each 

iteration

Although the intersecting area of 3L for the first and the third trajectories are the same, the 

intersecting areas of  
1L  and 

2L for the first trajectory are much bigger than the areas from 

the third trajectory. This is the reason why the estimated error from the third trajectory is 
smaller than the one for the first trajectory.

6. Conclusion 

In this chapter, we proposed a vision-based approach to bearing-only SLAM in a 2-
dimensional space. We assumed the environment contained several visually distinguishable 
landmarks. This approach is inspired from techniques used in stereo vision and Structure 
From Motion. Our landmark initialization method relies solely on the bearing 
measurements from a single camera. This method does not require information from an 
odometer or a range sensor.  All the object positions can be estimated in a landmark-based 
frame. The trade-off is that this method requires the robot to be able to move in a straight 
line for a short while to initialize the landmarks. The proposed method is particularly 
accurate and useful when the robot can guide itself in a straight line by visually locking on 
static objects. 
Since the method does not rely on odometry and range information, the induced map is up 

to a scale factor only. In our method, the distance |||| 21 LL −  of two landmarks is taken as 

the measurement unit of the map. The selection of  
1L  and 

2L  is critical for the accuracy of 
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the map. In Section 3.1, the mathematical derivation shows that the estimated error of a 
landmark position is proportional to the range of the landmark and the inverse of the 
relative change in landmark bearings.  Choosing 

1L  and 
2L with larger change in bearings 

produces a more accurate mapping of the environment.  
In the sensitivity analysis, we showed how the uncertainties of the objects’ positions are 
affected by a change of frames. We determine how an observer attached to a landmark-
based frame LF  can deduce the uncertainties in LF  from the uncertainties transmitted by an 

observer attached to the robot-based frame RF . Each estimate of landmark uncertainties 

requires a pair of the observations in a straight movement. The simulation in Section 4.3 
shows how the uncertainties of landmark positions are refined when the robot moves in a 
polygonal line. 
With dead reckoning, the error of the estimated robot’s location increases with time because 
of cumulated odometric errors. In our method, we set 

1O  and 
2O  (pair of observation 

points in a straight movement) at ]'0,0[  and  ]'0,1[  in RF . There is no dead reckoning error 

on
1O  and 

2O by construction.  In practice, the robot’s movement may not be perfectly 

straight.  However, the non-straight nature of the trajectory can be compensated by 
increasing the size of the confidence interval of the bearing. 
The induced map created by our method can be refined with EKF or PF algorithms. With 
EKF, the uncertainty region computed from the geometric method can be translated into a 
Gaussian PDF.  With PF, the weights of the samples can be computed with the formulas 
derived in Section 5.1.  Since the samples are drawn from the uncertainty region, the 
number of samples is minimized.   
The accuracy of our method was evaluated with simulations and experiments on a real 
robot. Experimental results demonstrate the usefulness of this approach for a bearing-only 
SLAM system. We are currently working on the unknown data association when all 
landmarks are visually identical. In future work, we will deal with the problems of object 
occlusion and non-planar environments. That is, the system will be extended from a 2-
dimensional to a 3-dimensional space. 
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the environment. It also leads us to marvel at the functioning of our own vision system. In this book we have

collected the latest applications of vision research from around the world. It contains both the conventional

research areas like mobile robot navigation and map building, and more recent applications such as, micro

vision, etc.The fist seven chapters contain the newer applications of vision like micro vision, grasping using

vision, behavior based perception, inspection of railways and humanitarian demining. The later chapters deal

with applications of vision in mobile robot navigation, camera calibration, object detection in vision search, map

building, etc.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Henry Huang, Frederic Maire and Narongdech Keeratipranon (2007). Bearing-only Simultaneous Localization

and Mapping for Vision-Based Mobile Robots, Vision Systems: Applications, Goro Obinata and Ashish Dutta

(Ed.), ISBN: 978-3-902613-01-1, InTech, Available from:

http://www.intechopen.com/books/vision_systems_applications/bearing-

only_simultaneous_localization_and_mapping_for_vision-based_mobile_robots



© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.


