We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,200 Open access books available
116,000 International authors and editors
125M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit: www.intechopen.com
1. Introduction

The study of knowledge and belief has a long tradition in philosophy. An early treatment of a formal logical analysis of reasoning about knowledge and belief came from Hintikka’s work [15]. More recently, researchers in such diverse fields as economics, linguistics, artificial intelligence and theoretical computer science have become increasingly interested in reasoning about knowledge and belief [1–5, 10–13, 18, 20, 24]. In wide areas of application of reasoning about knowledge and belief, it is necessary to reason about uncertain information. Therefore the representation and reasoning of probabilistic information in belief is important.

There has been a lot of works in the literatures related to the representation and reasoning of probabilistic information, such as evidence theory [25], probabilistic logic [4], probabilistic dynamic logic [7], probabilistic nonmonotonic logic [21], probabilistic knowledge logic [3] and etc. A distinguished work is done by Fagin and Halpern [3], in which a probabilistic knowledge logic is proposed. It expanded the language of knowledge logic by adding formulas like \(w_i(\varphi) \geq 2w_i(\psi) \) and \(w_i(\varphi) < 1/3 \), where \(\varphi \) and \(\psi \) are arbitrary formulas. These formulas mean “\(\varphi \) is at least twice probable as \(\psi \)” and “\(\varphi \) has probability less than 1/3”.

The typical formulas of their logic are \(a_1w_i(\varphi_1) + \ldots + a_kw_i(\varphi_k) \geq b \), “\(K_i(\varphi) \)” and “\(K^b_i(\varphi) \)”, the latter formula is an abbreviation of “\(K_i(w_i(\varphi) \geq b) \)”. Here formulas may contain nested occurrences of the modal operators \(w_i \) and \(K_i \), and the formulas in [4] do not contain nested occurrences of the modal operators \(w_i \). On the basis of knowledge logic, they added axioms of reasoning about linear inequalities and probabilities. To provide semantics for such logic, Fagin and Halpern introduced a probability space on Kripke models of knowledge logic, and gave some conditions about probability space, such as \(OBJ, SDP \) and \(UNIF \). At last, Fagin and Halpern concluded by proving the soundness and completeness of their probabilistic knowledge logic.

Fagin and Halpern’s work on probabilistic epistemic logic is well-known and original. However, there are several aspects worth further investigation: First, the completeness proof of Fagin and Halpern can only deal with the finite set of formulas for that their method reduces the completeness to the existence of a solution of a set of finitely many linear inequalities. In the case of an infinite set of formulas, their method reduces the problem to the existence of a solution of infinitely many linear inequalities with infinitely many variables, which does not seem to be captured by the axioms in [3] for their language only contains finite-length
formulas. Second, their inference system includes axioms about linear inequalities and probabilities, which makes the system complicated. Third, the semantics in [3] was given by adding a probability space on Kripke structure, correspondingly there are restrictions on probability spaces and accessible relations, but in fact a simpler model is possible for the semantics of probabilistic epistemic logic.

Kooi’s work [18] combines the probabilistic epistemic logic with the dynamic epistemic logic yielding a new logic, \(PDEL \), that deals with changing probabilities and takes higher-order information into account. The syntax of \(PDEL \) is an expansion of Fagin and Halpern’s logic by introducing formula \(\{\varphi_1, \varphi_2\} \), which can be read as “\(\varphi_2 \) is the case, after everyone simultaneously and commonly learns that \(\varphi_1 \) is the case”. The semantics of \(PDEL \) is essentially same as Fagin and Halpern’s semantics, which is based on a combination of Kripke structure and probability functions. Kooi proved the soundness and weak completeness of \(PDEL \), but like Fagin and Halpern’s paper, completeness of \(PDEL \) was not given.

In [22], the authors also propose a probabilistic belief logic, called \(PEL \), which is essentially a restricted version of the logic proposed by Fagin and Halpern. But in this chapter, the inference system was not given and the corresponding properties such as soundness and completeness of \(PEL \) were not studied.

In [16], Hoek investigated a probabilistic logic \(P_\infty D \). This logic is enriched with operators \(P_r^\omega \), \((r \in [0,1]) \) where the intended meaning of \(P_r^\omega \varphi \) is “the probability of \(\varphi \) is strictly greater than \(r \)”. The author gave a completeness proof of \(P_\infty D \) by the construction of a canonical model for \(P_\infty D \) considerably. Furthermore, the author also proved finite model property of the logic by giving a filtration-technique for the intended models. Finally, the author prove the decidability of the logic. In [16], the logic \(P_\infty D \) is based on a set \(F \), where \(F \) is a finite set and \(\{0,1\} \subseteq F \subseteq [0,1] \). The completeness of \(P_\infty D \) was not proved in [16] for the case that \(F \) is infinite. Hoek presented this problem as an open question and considered it as a difficult task. He think this problem may be tackled by introducing infinitary rules.

In this chapter, we propose some probabilistic belief logics. There is no axiom and rule about linear inequalities and probabilities in the inference system of probabilistic belief logics. Hence the inference system looks simpler and uniform than Fagin and Halpern’s logic. We also propose a simpler semantics for probabilistic belief logics, where is no accessible relation and can be generalized to description semantics of other probabilistic modal logics. Moreover, we present the new completeness proofs for our probabilistic belief logics, which can deal with infinite sets of formulas.

The remainder of the chapter is organized as follows: In Section 2, we propose a probabilistic belief logic, called \(PBL_\omega \). We provide the probabilistic semantics of \(PBL_\omega \), and prove the soundness and completeness of \(PBL_\omega \) with respect to the semantics. We are unable to prove or disprove the finite model property of \(PBL_\omega \) in this chapter even though we conjecture it holds. We turn to look at a variant of \(PBL_\omega \), which has the finite model property. In Section 3, we present a weaker variant of \(PBL_\omega \), called \(PBL_\infty \), which is the same as \(PBL_\omega \) but without Axiom 6 and Rule 6. We give the semantics of \(PBL_\infty \) and prove the soundness and finite model property of \(PBL_\infty \). As a consequence, the weak completeness of \(PBL_\infty \) is given, i.e., for any finite set of formulas \(\Gamma \), \(\Gamma \models_{PBL_\infty} \varphi \Rightarrow \Gamma \vdash_{PBL_\infty} \varphi \). But there is an infinite inference rule, namely Rule 5, in \(PBL_\infty \), which is inconvenient for application. Therefore we consider another variant \(PBL_\infty \) in Section 4. The axioms and rules of \(PBL_\infty \) are same as \(PBL_\infty \) except for Rule 5. \(PBL_\infty \) has a syntax restriction that the probability \(a \) in the scope of \(B_i(a, \varphi) \) must be a...
rational number. The soundness and finite model property of PBL_r are proved. From the finite model property, we obtain the weak completeness of PBL_r. Note that a logic system has the compactness property if and only if the weak completeness is equivalent to the completeness in that logic. The compactness property does not hold in PBL_r, for example, $\{B_i(1/2, \phi), B_i(2/3, \phi), \ldots, B_i(n/n + 1, \phi)\} \cup \{\neg B_i(1, \phi)\}$ is not satisfied in any PBL_r-model, but any finite subset of it has a model. Therefore the weak completeness of PBL_r is not equivalent to the completeness. PBL_r is proved to be weak complete. Furthermore, the decidability of PBL_r is shown. In Section 5, we mainly compare our logics with the logic in [3] in terms of their syntax, inference system, semantics and proof technique. The chapter is concluded in Section 6.

2. PBL_w and its probabilistic semantics

In this section, we first review the standard belief logic system and the standard Kripke semantics. Some examples are given to illustrate why it is necessary to extend belief to probabilistic belief. Then we introduce a probabilistic belief logic PBL_w.

In belief logic, the formula $B_i \phi$ says that agent i believes ϕ. Consider a system with n agents, say $1, \ldots, n$, and we have a nonempty set Φ of primitive propositions about which we wish to reason. We construct formulas by closing off Φ under conjunction, negation and modal operators B_i, for $i = 1, \ldots, n$ (where $B_i \phi$ is read as "agent i believes ϕ").

The semantics to these formulas is given by means of Kripke structure [19]. A Kripke structure for belief (for n agents) is a tuple $(S, \pi, R_1, \ldots, R_n)$, where S is a set of states, $\pi(s)$ is a truth assignment to the primitive propositions of Φ for each state $s \in S$, and R_i is an accessible relation on S which satisfies the following conditions: Euclidean property $(\forall s \forall s' \forall s'' (sR_i s' \land sR_i s'' \rightarrow s' R_i s''))$, transitivity $(\forall s \forall s' \forall s'' (sR_i s' \land sR_i s'' \rightarrow s' R_i s''))$ and definability $(\forall s \exists s'(sR_i s'))$.

We now assign truth values to formulas at each state in the structure. We write $(M, s) \models \phi$ if the formula ϕ is true at state s in Kripke structure M.

\[
(M, s) \models p \text{ (for } p \in \Phi) \text{ iff } \pi(s)(p) = \text{true}
\]

\[
(M, s) \models \neg \phi \text{ iff } (M, s) \not\models \phi
\]

\[
(M, s) \models \phi \land \psi \text{ iff } (M, s) \models \phi \text{ and } (M, s) \models \psi
\]

\[
(M, s) \models B_i \phi \text{ iff } (M, t) \models \phi \text{ for all } t \in R_i(s) \text{ with } R_i(s) = \{s'|(s, s') \in R_i\}
\]

The last clause in this definition captures the intuition that agent i believes ϕ in world (M, s) exactly if ϕ is true in all worlds that i considers possible.

It is well known that the following set of axioms and inference rules provides a sound and complete axiomatization for the logic of belief with respect to the class of Kripke structures for belief:

All instances of propositional tautologies and rules.

\[
(B_i \phi \land B_i(\phi \rightarrow \psi)) \rightarrow B_i\psi
\]

\[
B_i \phi \rightarrow \neg B_i \neg \phi
\]

\[
B_i \phi \rightarrow B_i B_i \phi
\]
\[\neg B_i\phi \rightarrow B_i\neg B_i\phi\]

\[\vdash \phi \Rightarrow \vdash B_i\phi\]

There are examples of probabilistic belief in daily life. For example, one may believe that the probability of “it will rain tomorrow” is less than 0.4; in a football game, one may believe that the probability of “team A will win” is no less than 0.7 and so on. In distribute systems, there may be the cases that “agent i believes that the probability of ‘agent j believes that the probability of \(\phi\) is at least \(a\)’ is no less than \(b\)”. Suppose there are two persons communicating by email, agent A sends an email to agent B. Since the email may be lost in network, A does not know whether B has received the email. Therefore A may believe that the probability of “B has received my email” is less than 0.99, or may believe that the probability of “B has received my email” is at least 0.8, and so on. On the other hand, B may believe that the probability of “A believes that the probability of \(B\) has received my email’ is at least 0.9” is less than 0.8. In order to reply to A, B sends an acknowledgement email to A, A receives the email, and sends another acknowledgement email to B, now B believes that the probability of “A believes that the probability of \(B\) has received my first email’ is equal to 1” is equal to 1. In order to represent and reason with probabilistic belief, it is necessary to extend belief logic to probabilistic belief logic. In following, we propose a probabilistic belief logic \(PBL_w\), the basic formula in \(PBL_w\) is \(B_i(a, \phi)\), which says agent \(i\) believes that the probability of \(\phi\) is no less than \(a\).

2.1 Language of \(PBL_w\)

Throughout this chapter, we let \(L^{PBL_w}\) be a language which is just the set of formulas of interest to us.

Definition 2.1 The set of formulas in \(PBL_w\), called \(L^{PBL_w}\), is given by the following rules:

(1) If \(\phi \in \text{Atomic formulas set Prop}\), then \(\phi \in L^{PBL_w}\);

(2) If \(\phi \in L^{PBL_w}\), then \(\neg \phi \in L^{PBL_w}\);

(3) If \(\phi_1, \phi_2 \in L^{PBL_w}\), then \(\phi_1 \land \phi_2 \in L^{PBL_w}\);

(4) If \(\phi \in L^{PBL_w}\) and \(a \in [0, 1]\), then \(B_i(a, \phi) \in L^{PBL_w}\), where \(i\) belongs to the set of agents \(\{1, \ldots, n\}\). Intuitively, \(B_i(a, \phi)\) means that agent \(i\) believes the probability of \(\phi\) is no less than \(a\).

2.2 Semantics of \(PBL_w\)

We will describe the semantics of \(PBL_w\), i.e., a formal model that we can use to determine whether a given formula is true or false. We call the formal model probabilistic model, roughly speaking, at each state, each agent has a probability on a certain set of states.

Definition 2.2 A probabilistic model \(PM\) of \(PBL_w\) is a tuple \((S, \pi, P_1, \ldots, P_n)\), where

(1) \(S\) is a nonempty set, whose elements are called possible worlds or states;

(2) \(\pi\) is a map: \(S \times \text{Prop} \rightarrow \{\text{true, false}\}\), where \(\text{Prop}\) is a set of atomic formulas;

(3) \(P_i\) is a map, it maps every possible world \(s\) to a \(PBL_w\)-probability space \(P_i(s) = (S, X_i(s), \mu_i(s))\).

Where \(X_i(s) \in \phi(S)\), which satisfies the following conditions:
(a) If \(p \) is an atomic formula, then \(\text{ev}_{PM}(p) = \{ s' | \pi(s', p) = \text{true} \} \in X_{i,s} \);
(b) If \(A \in X_{i,s}, \) then \(S - A \in X_{i,s} \);
(c) If \(A_1, A_2 \in X_{i,s}, \) then \(A_1 \cap A_2 \in X_{i,s} \);
(d) If \(A \in X_{i,s} \) and \(a \in [0,1], \) then \(\{ s' | \mu_i,s,(A) \geq a \} \in X_{i,s} \).

\(\mu_{i,s} \) is a \(\text{PBL}_{i,s} \)-finite additivity probability measure assigned to the set \(X_{i,s}, \) i.e., \(\mu_{i,s} \) satisfies the following conditions:

(a) \(\mu_{i,s}(A) \geq 0 \) for all \(A \in X_{i,s} \);
(b) \(\mu_{i,s}(S) = 1 \);
(c) (finite additivity) \(\mu_{i,s}(A_1 \cup A_2) = \mu_{i,s}(A_1) + \mu_{i,s}(A_2), \) where \(A_1 \) and \(A_2 \) are disjoint members of \(X_{i,s} \);
(d) If \(A \in X_{i,s} \) and \(\mu_{i,s}(A) \geq a, \) then \(\mu_{i,s}(\{ s' | \mu_i,s,(A) \geq a \}) = 1; \) if \(A \in X_{i,s} \) and \(\mu_{i,s}(A) < b, \) then \(\mu_{i,s}(\{ s' | \mu_i,s,(A) < b \}) = 1. \)

Notice that from the definition of \(X_{i,s} \), we have \(\{ s' | \mu_i,s,(A) \geq a \} \in X_{i,s} \) and \(\{ s' | \mu_i,s,(A) < b \} = S - \{ s' | \mu_i,s,(A) \geq b \} \in X_{i,s}. \) Intuitively, the probability space \(P_i(s) \) describes agent \(i \)'s probabilities on events, given that the state is \(s.\) \(W \) is the sample space, which is the set of states that agent \(i \) considers possible. \(X_{i,s} \) is the set of measurable sets. The measure \(\mu_{i,s} \) does not assign a probability to all subsets of \(S \) but only to the measurable sets.

As an example, we consider a \(\text{PBL}_{i,s} \)-model such that \(PM = (S, \pi, P_i). \) Here \(S = \{ s_1, s_2, s_3 \}; \pi(s_1, p) = \text{false}, \pi(s_2, p) = \text{false}, \pi(s_3, p) = \text{true}, \pi(s_1, q) = \text{true}, \pi(s_2, q) = \text{true}, \pi(s_3, q) = \text{true}; \) \(P_i(s) = (S, X_{i,s}, \mu_{i,s}), \) where \(X_{s_1,s_1} = X_{s_2,s_2} = \emptyset(S), X_{s_3,s_3} = \{ \emptyset, \{ s_1, s_2 \}, \{ s_3 \}, S \}, \mu_{i,s}(\emptyset) = \mu_{i,s}(\{ s_1, s_2 \}) = \mu_{i,s}(\{ s_3 \}) = 0, \mu_{i,s}(\{ s_1 \}) = 1, \mu_{i,s}(\{ s_2 \}) = 1, \mu_{i,s}(\{ s_3 \}) = 1, \mu_{i,s}(\{ s_1, s_2 \}) = 1, \mu_{i,s}(\{ s_1, s_3 \}) = 1, \mu_{i,s}(\{ s_2, s_3 \}) = 1. \) It is easy to check that the above model satisfies the conditions in Definition 2.2. In this model, it is clear that the set of measurable sets \(X_{i,s} \) and probability measure \(\mu_{i,s} \) varies with \(s, \) and consequently the probability space also varies with \(s, \) hence we index probability space by \(s.\)

We now define what it means for a formula to be true at a given world \(s \) in a probabilistic model \(PM.\)

Definition 2.3 Probabilistic semantics of \(\text{PBL}_{i,s}.\)

\[
(PM,s) \models p \text{ iff } \pi(s, p) = \text{true}, \text{ where } p \text{ is an atomic formula;} \\
(PM,s) \models \neg \varphi \text{ iff } (PM,s) \not\models \varphi; \\
(PM,s) \models \varphi \land \psi \text{ iff } (PM,s) \models \varphi \text{ and } (PM,s) \models \psi; \\
(PM,s) \models B_i(a, \varphi) \text{ iff } \mu_{i,s}(\text{ev}_{PM}(\varphi)) \geq a, \text{ where } \text{ev}_{PM}(\varphi) = \{ s' | (PM,s') \models \varphi \}.
\]

The intuitive meaning of the semantics of \(B_i(a, \varphi) \) is that agent \(i \) believes that the probability of \(\varphi \) is at least \(a \) in world \((PM,s) \) if the measure of possible worlds satisfying \(\varphi \) is at least \(a.\)
In the above example, according to Definition 2.3, we have \((PM, s_1) \models B_1(1/2, q)\), \((PM, s_2) \models B_1(0, p \land q)\), \((PM, s_3) \models B_1(1, p \land q)\), etc.

In order to characterize the properties of probabilistic belief, we will characterize the formulas that are always true. More formally, given a probabilistic model \(PM\), we say that \(\varphi\) is valid in \(PM\), and write \(PM \models \varphi\), if \((PM, s) \models \varphi\) for every state \(s\) in \(S\), and we say that \(\varphi\) is satisfiable in \(PM\) if \((PM, s) \models \varphi\) for some \(s\) in \(S\). We say that \(\varphi\) is valid, and write \(\models \varphi\), if \(\varphi\) is valid in all probabilistic models, and that \(\varphi\) is satisfiable if it is satisfiable in some probabilistic model.

We write \(\Gamma \models \varphi\), if \(\varphi\) is valid in all probabilistic models in which \(\Gamma\) is satisfiable.

2.3 Inference system of \(\text{PBL}_w\)

Now we list a number of valid properties of probabilistic belief, which form the inference system of \(\text{PBL}_w\).

Axioms and inference rules of proposition logic

Axiom 1. \(B_i(0, \varphi)\) (For any proposition \(\varphi\), agent \(i\) believes that the probability of \(\varphi\) is no less than 0.)

Axiom 2. \(B_i(a, \varphi) \land B_i(b, \psi) \rightarrow B_i(\max(a + b - 1, 0), \varphi \land \psi)\) (For any \(\varphi\) and \(\psi\), if agent \(i\) believes that the probability of \(\varphi\) is no less than \(a\), and believes that the probability of \(\psi\) is no less than \(b\), then agent \(i\) believes that the probability of \(\varphi \land \psi\) is no less than \(\max(a + b - 1, 0)\).)

Axiom 3. \(B_i(a, \varphi) \rightarrow B_i(1, B_i(a, \varphi))\) (If agent \(i\) believes that the probability of \(\varphi\) is no less than \(a\), then agent \(i\) believes that the probability of his belief being true is no less than 1.)

Axiom 4. \(\neg B_i(a, \varphi) \rightarrow B_i(1, \neg B_i(a, \varphi))\) (If agent \(i\) believes that the probability of \(\varphi\) is less than \(a\), then agent \(i\) believes that the probability of his belief being true is no less than 1.)

Axiom 5. \(B_i(a, \varphi) \rightarrow B_i(b, \psi)\), where \(1 \geq a \geq b \geq 0\). (If agent \(i\) believes that the probability of \(\varphi\) is less than \(a\), and \(1 \geq a \geq b \geq 0\), then agent \(i\) believes that the probability of \(\varphi\) is no less than \(b\).)

Axiom 6. \(B_i(a + b, \varphi \land \psi) \rightarrow (B_i(a, \varphi) \lor B_i(b, \psi))\), where \(1 \geq a + b \geq 0\). (If agent \(i\) believes that the probability of \(\varphi \land \psi\) is no less than \(a + b\), then agent \(i\) believes that the probability of \(\varphi\) is no less than \(a\) or believes that the probability of \(\psi\) is no less than \(b\).)

Rule 1. \(\vdash \neg \varphi \Rightarrow \vdash B_i(1, \varphi)\) (If \(\varphi\) is a tautology proposition, then agent \(i\) believes that the probability of \(\varphi\) is no less than 1.)

Rule 2. \(\vdash \varphi \rightarrow \psi \Rightarrow \vdash B_i(a, \varphi) \rightarrow B_i(a, \psi)\) (If \(\varphi \rightarrow \psi\) is a tautology proposition, and agent \(i\) believes that the probability of \(\varphi\) is no less than \(a\), then agent \(i\) believes that the probability of \(\psi\) is no less than \(a\).)

Rule 3. \(\vdash \neg (\varphi \land \psi) \Rightarrow \vdash \neg (B_i(a, \varphi) \land B_i(b, \psi))\) for any \(a, b \in [0, 1]\) such that \(a + b > 1\). (If \(\varphi\) and \(\psi\) are incompatible propositions, then it is impossible that agent \(i\) believes that the probability of \(\varphi\) is no less than \(a\), and believes that the probability of \(\psi\) is no less than \(b\), where \(a + b > 1\).)

Rule 4. \(\vdash \neg (\varphi \land \psi) \Rightarrow \vdash B_i(a, \varphi) \land B_i(b, \psi) \rightarrow B_i(a + b, \varphi \lor \psi)\), where \(a + b \leq 1\). (If \(\varphi\) and \(\psi\) are incompatible propositions, agent \(i\) believes that the probability of \(\varphi\) is no less than \(a\), and believes that the probability of \(\psi\) is no less than \(b\), where \(a + b \leq 1\), then agent \(i\) believes that the probability of \(\varphi \lor \psi\) is no less than \(a + b\).)
Rule 5. $\Gamma \vdash B_i(a_n, \varphi)$ for all $n \in M \Rightarrow \Gamma \vdash B_i(a, \varphi)$, where $a = \sup_{n \in M}(\{a_n\})$. (If agent i believes that the probability of φ is no less than a_n, where n is any element in the index set M, then agent i believes that the probability of φ is no less than a, where $a = \sup_{n \in M}(\{a_n\})$.)

Rule 6. Given a set of formulas Σ, $\Gamma \cup \{\varphi\} \models \Sigma \Rightarrow \Gamma \vdash B_i(a, \varphi)$ for all $a \in \{\varphi\}$ for all $n \in M \Rightarrow \Gamma \vdash B_i(a, \varphi)$, \ldots, we need the following obvious lemmas.

Remark: In Rule 5, the index set M may be an infinite set, therefore we call Rule 5 an infinite inference rule. For example, let $\Gamma = \{B_i(1/2, \varphi), B_i(2/3, \varphi), \ldots, B_i(n/n + 1, \varphi), \ldots\}$, we have $\Gamma \vdash B_i(n/n + 1, \varphi)$ for all $n \in M = \{1, 2, \ldots, k, \ldots\}$, by Rule 5, we get $\Gamma \vdash B_i(1, \varphi)$ since $1 = \sup_{n \in M}(\{n/n + 1\})$.

In Rule 6, $\{B_i(a, \varphi)|0 \leq a \leq a_i, \varphi\} \cup \{\neg B_i(b, \varphi)|1 \geq b > a_i, \varphi\} \vdash \psi$ means that agent i believes the probability of ψ is exactly a_i, φ. Therefore $\Gamma \cup \{B_i(a, \varphi)|0 \leq a \leq a_i, \varphi\} \cup \{\neg B_i(b, \varphi)|1 \geq b > a_i, \varphi\} \vdash \psi$ for any $a_i, \varphi \in [0, 1]$ means that under any possible probabilistic belief of agent i for φ, ψ can be proved from Γ. Intuitively, in this case, the correctness of ψ is independent of the exact probability of φ that agent i believes, so we can get ψ from Γ. In Rule 6, formula φ here is generalized to arbitrary set Σ of formulas. Since the premises of Rule 6 are infinite, it is also an infinite inference rule.

We will show that in a precise sense these properties completely characterize the formulas of PBL_ω that are valid with respect to probabilistic model. To do so, we have to consider the notion of provability. Inference system PBL_ω consists of a collection of axioms and inference rules. We are actually interested in (substitution) instances of axioms and inference rules (so we in fact think of axioms and inference rules as schemes). For example, the formula $B_i(1, \varphi) \rightarrow B_i(0, \varphi)$ is an instance of the propositional tautology $B_i(0, \varphi) \rightarrow B_i(1, \varphi)$, obtained by substituting $B_i(0, \varphi)$ and $B_i(1, \varphi)$ respectively. A proof in PBL_ω consists of a sequence of formulas, each of which is either an instance of an axiom in PBL_ω or follows from an application of an inference rule. If $\varphi_1, \ldots, \varphi_n$ infer ψ, an instance of an inference rule, and if the formulas $\varphi_1, \ldots, \varphi_n$ have appeared earlier in the proof, then we say that ψ follows from an application of an inference rule. A proof is said to be from Γ to φ if the premise is Γ and the last formula is φ in the proof. We say φ is provable from Γ in PBL_ω, and write $\Gamma \vdash_{PBL_\omega} \varphi$, if there is a proof from Γ to φ in PBL_ω.

2.4 Soundness of PBL_ω

We will prove that PBL_ω characterizes the set of formulas that are valid with respect to probabilistic model. Inference system of PBL_ω is said to be sound with respect to probabilistic models if every formula provable in PBL_ω is valid with respect to probabilistic models. The system PBL_ω is complete with respect to probabilistic models if every formula valid with respect to probabilistic models is provable in PBL_ω. We think of PBL_ω as characterizing probabilistic models if it provides a sound and complete axiomatization of that class; notionally, this amounts to saying that for all formulas set Γ and all formula φ, we have $\Gamma \vdash_{PBL_\omega} \varphi$ if and only if $\Gamma \models_{PBL_\omega} \varphi$. The following soundness and completeness provide a tight connection between the syntactic notion of provability and the semantic notion of validity.

Firstly, we need the following obvious lemmas.

www.intechopen.com
Lemma 2.1 $\mu_{i,s}(A_1 \cup A_2) = \mu_{i,s}(A_1) + \mu_{i,s}(A_2)$, here A_1 and A_2 are any disjoint members of $X_{i,s} \Rightarrow$ for any members A_1 and A_2 of $X_{i,s}$, $\mu_{i,s}(A_1 \cup A_2) = \mu_{i,s}(A_1) + \mu_{i,s}(A_2)$.

Proof. $\mu_{i,s}(A_1 \cup A_2) = \mu_{i,s}(A_1 \cup (A_2 - A_1)) + \mu_{i,s}(A_1 \cap A_2) = \mu_{i,s}(A_1) + \mu_{i,s}(A_1 \cap A_2) + \mu_{i,s}(A_2 - A_1) = \mu_{i,s}(A_1) + \mu_{i,s}(A_2 - A_1) = \mu_{i,s}(A_1) + \mu_{i,s}(A_2)$.

Lemma 2.2 $\mu_{i,s}(A_1 \cap A_2) \geq \mu_{i,s}(A_1) + \mu_{i,s}(A_2) - 1$.

Proof. It follows from Lemma 2.1 immediately.

Lemma 2.3 $\mu_{i,s}(A_1) + \mu_{i,s}(A_2) \geq \mu_{i,s}(A_1 \cup A_2)$. If $A_1 \cap A_2 = \emptyset$, then $\mu_{i,s}(A_1) + \mu_{i,s}(A_2) = \mu_{i,s}(A_1 \cup A_2)$.

Proof. It follows from Lemma 2.1.

Now, we can prove the following proposition:

Proposition 2.1 (Soundness of PBL_ω) If $\Gamma \vdash_{PBL_\omega} \varphi$, then $\Gamma \models_{PBL_\omega} \varphi$.

Proof. We show each axiom and each rule of PBL_ω is sound, respectively.

Axiom 1: By the definition of the PBL_ω-probability measure, for any s, if $A \in X_{i,s}$ then $\mu_{i,s}(A) \geq 0$.

Since by the definition of $X_{i,s}$, for any φ, $ev_{PM}(\varphi) = \{s' | (PM,s') \models \varphi\} \in X_{i,s}$, we have $\mu_{i,s}(ev_{PM}(\varphi)) \geq 0$, therefore $B_i(0,\varphi)$ holds.

Axiom 2: Suppose $(PM,s) \models B_i(a,\varphi) \land B_i(b,\varphi)$, so $\mu_{i,s}(ev_{PM}(\varphi)) \geq a$ and $\mu_{i,s}(ev_{PM}(\varphi)) \geq b$. For $\mu_{i,s}$ is PBL_ω-probability measure, by Lemma 2.2, we get $\mu_{i,s}(ev_{PM}(\varphi \land \psi)) = \mu_{i,s}(ev_{PM}(\varphi)) \land \mu_{i,s}(ev_{PM}(\psi)) \geq \mu_{i,s}(ev_{PM}(\varphi)) + \mu_{i,s}(ev_{PM}(\psi)) - 1 \geq a + b - 1$, which implies $(PM,s) \models B_i(\max(a + b - 1,0),\varphi \land \psi)$.

Axiom 3: Suppose $(PM,s) \models B_i(a,\varphi)$, so $\mu_{i,s}(ev_{PM}(\varphi)) \geq a$. Let $\Lambda_i^a(\varphi) = \{s' | \mu_{i,s}(ev_{PM}(\varphi)) \geq a\}$, by the definition of $\mu_{i,s}$, we get $\mu_{i,s}(\Lambda_i^a(\varphi)) = 1$. Assume $s' \in \Lambda_i^a(\varphi)$, then $s' \in ev_{PM}(B_i(a,\varphi))$, hence $\Lambda_i^a(\varphi) \subseteq ev_{PM}(B_i(a,\varphi))$, so $\mu_{i,s}(ev_{PM}(B_i(a,\varphi))) = 1$, which implies $(PM,s) \models B_i(1,\neg B_i(a,\varphi))$.

Axiom 4: Suppose $(PM,s) \models \neg B_i(a,\varphi)$, so $\mu_{i,s}(ev_{PM}(\varphi)) < a$. Let $\Theta_i^a(\varphi) = \{s' | \mu_{i,s}(ev_{PM}(\varphi)) < a\}$, by the definition of $\mu_{i,s}$, we get $\mu_{i,s}(\Theta_i^a(\varphi)) = 1$. Assume $s' \in \Theta_i^a(\varphi)$, then $s' \in ev_{PM}(\neg B_i(a,\varphi))$, hence $\mu_{i,s}(ev_{PM}(\neg B_i(a,\varphi))) = 1$, which implies $(PM,s) \models B_i(1,\neg B_i(a,\varphi))$.

Axiom 5: Suppose $(PM,s) \models B_i(a,\varphi)$, so $\mu_{i,s}(ev_{PM}(\varphi)) \geq a$. If $1 \geq a \geq b \geq 0$, then $\mu_{i,s}(ev_{PM}(\varphi)) \geq b$, so $(PM,s) \models B_i(b,\varphi)$, therefore $B_i(a,\varphi) \rightarrow B_i(b,\varphi)$ holds.

Axiom 6: Suppose $(PM,s) \models B_i(a + b,\varphi \lor \psi)$, then $\mu_{i,s}(ev_{PM}(\varphi \lor \psi)) \geq a + b$. Since $\mu_{i,s}(ev_{PM}(\varphi)) + \mu_{i,s}(ev_{PM}(\psi)) \geq \mu_{i,s}(ev_{PM}(\varphi \lor \psi)) \geq a + b$, we have $\mu_{i,s}(ev_{PM}(\varphi)) \geq a$ or $\mu_{i,s}(ev_{PM}(\psi)) \geq b$. Hence $(PM,s) \models B_i(a,\varphi) \lor B_i(b,\varphi)$.

Rule 1: Since $\models \varphi$, for any possible world s, $\mu_{i,s}(ev_{PM}(\varphi)) \geq 1$, therefore $B_i(1,\varphi)$ holds.

Rule 2: Since $\models \varphi \rightarrow \psi$, so $ev_{PM}(\varphi) \subseteq ev_{PM}(\psi)$. Suppose $(PM,s) \models B_i(a,\varphi)$, therefore $\mu_{i,s}(ev_{PM}(\varphi)) \geq a$, by the property of PBL_ω-probability space, we get $\mu_{i,s}(ev_{PM}(\varphi)) \leq \mu_{i,s}(ev_{PM}(\psi))$. So $\mu_{i,s}(ev_{PM}(\psi)) \geq a$. Therefore $(PM,s) \models B_i(a,\varphi)$, and Rule 2 of PBL_ω holds.

Rule 3: Suppose $\models \neg (\varphi \land \psi)$, so $ev_{PM}(\varphi) \cap ev_{PM}(\psi) = \emptyset$. By the property of PBL_ω-probability space and Lemma 2.3, for any possible world s, we get $\mu_{i,s}(ev_{PM}(\varphi) \cup$
ev_{PM}(\psi) = \mu_{i,s}(ev_{PM}(\phi)) + \mu_{i,s}(ev_{PM}(\psi)) \text{ and } \mu_{i,s}(ev_{PM}(\phi) \cup ev_{PM}(\psi)) \leq 1, \text{ therefore }
\mu_{i,s}(ev_{PM}(\phi)) + \mu_{i,s}(ev_{PM}(\psi)) \leq 1. \text{ Assume } (PM,s) \models (B_i(a,\varphi) \land B_i(b,\varphi)) \text{ where } a + b > 1, \text{ then } \mu_{i,s}(ev_{PM}(\phi)) \geq a, \mu_{i,s}(ev_{PM}(\psi)) \geq b, \text{ but } a + b > 1, \text{ it is a contradiction.}

Rule 4: Suppose \models \neg(\varphi \land \psi) \text{ and for possible world } s, \text{ if } (PM,s) \models B_i(a,\varphi) \land B_i(b,\psi), \text{ so } ev_{PM}(\varphi) \cap ev_{PM}(\psi) = \emptyset, \text{ and } \mu_{i,s}(ev_{PM}(\varphi)) \geq a, \mu_{i,s}(ev_{PM}(\psi)) \geq b. \text{ By the property of } PBL_\omega-\text{probability space and Lemma 2.3, for any possible world } s, \text{ we get } \mu_{i,s}(ev_{PM}(\varphi) \cup ev_{PM}(\psi)) = \mu_{i,s}(ev_{PM}(\varphi)) + \mu_{i,s}(ev_{PM}(\psi)). \text{ Hence, } \mu_{i,s}(ev_{PM}(\varphi)) + \mu_{i,s}(ev_{PM}(\psi)) \geq a + b, \text{ which means } (PM,s) \models B_i(a+b,\varphi \lor \psi).

Rule 5: Suppose \Gamma \models B_i(a_n,\varphi) \text{ for all } n \in M, \text{ therefore for every } s, \text{ if } (PM,s) \models \Gamma, \text{ then } (PM,s) \models B_i(a_n,\varphi) \text{ for all } n \in M, \text{ so } \mu_{i,s}(ev_{PM}(\varphi)) \geq a_n \text{ for all } n \in M. \text{ We get } \mu_{i,s}(ev_{PM}(\varphi)) = \sup_{n \in M}(\{a_n\}), \text{ therefore } (PM,s) \models B_i(a,\varphi) \text{ and } a = \sup_{n \in M}(\{a_n\}) \text{ as desired.}

Rule 6: Suppose \Gamma \cup \cup_{\varphi \in \Sigma} \{B_i(a,\varphi)|0 \leq a \leq a_{i,\varphi}\} \cup \{\neg B_i(b,\varphi)|1 \geq b > a_{i,\varphi}\}) \models \psi \text{ for any } a_{i,\varphi} \in [0,1], \text{ let } (PM,s) \models \Gamma \text{ and } c_{i,\varphi} = \mu_{i,s}(ev_{PM}(\varphi)), \text{ it is clear that } c_{i,\varphi} \in [0,1] \text{ and } (PM,s) \models \Gamma \cup \cup_{\varphi \in \Sigma} \{B_i(a,\varphi)|0 \leq a \leq c_{i,\varphi}\} \cup \{\neg B_i(b,\varphi)|1 \geq b > c_{i,\varphi}\}). \text{ Since } \Gamma \cup \cup_{\varphi \in \Sigma} \{B_i(a,\varphi)|0 \leq a \leq a_{i,\varphi}\} \cup \{\neg B_i(b,\varphi)|1 \geq b > a_{i,\varphi}\}) \models \psi \text{ for any } a_{i,\varphi} \in [0,1], \text{ we have } (PM,s) \models \psi, \text{ therefore } \Gamma \models \psi.

2.5 Completeness of PBL_\omega

We shall show that the inference system of PBL_\omega provides a complete axiomatization for probabilistic belief with respect to a probabilistic model. To achieve this aim, it suffices to prove that every PBL_\omega-consistent set is satisfiable with respect to a probabilistic model. We prove this by using a general technique that works for a wide variety of probabilistic modal logic. We construct a special structure PM called a canonical structure for PBL_\omega. PM has a state s_1 corresponding to every maximal PBL_\omega-consistent set V and the following property holds: (PM,s_1) \models \varphi \iff \varphi \in V.

We need some definitions before giving the proof of the completeness. Given an inference system of PBL_\omega, we say a set of formulas \Gamma is a consistent set with respect to L^{PBL_\omega} exactly if false is not provable from \Gamma. A set of formulas \Gamma is a maximal consistent set with respect to L^{PBL_\omega} if (1) it is PBL_\omega-consistent, and (2) for all \varphi in L^{PBL_\omega} but not in \Gamma, the set \Gamma \cup \{\varphi\} is not PBL_\omega-consistent.

Definition 2.7 The probabilistic model PM with respect to PBL_\omega is (S,P_1,...,P_n,\pi).

(1) S = \{\Gamma|\Gamma is a maximal consistent set with respect to PBL_\omega\};
(2) P_i maps every element of S to a probability space: P_i(\Gamma) = (S_i,\mu_{i,\Gamma}), where S_i,\Gamma = \{X(\varphi)\}_{\varphi} is a formula of PBL_\omega, here X(\varphi) = \{\varphi|\varphi \in \Gamma\}; \mu_{i,\Gamma} is a probability assignment: X_{i,\Gamma} \rightarrow [0,1], \text{ and } \mu_{i,\Gamma}(X(\varphi)) = sup\{\alpha|B_i(a,\varphi) \in \Gamma\};
(3) \pi is a truth assignment as follows: for any atomic formula p, \pi(p,\Gamma) = true \iff p \in \Gamma.

Lemma 2.4 S is a nonempty set.

Proof. Since the rules and axioms of PBL_\omega are consistent, S is nonempty.

Lemma 2.5 X_{i,\Gamma} satisfies the conditions of Definition 2.2.
Proof. We only prove the following claim: if \(A \in X_{i, \Gamma} \), then \(\{ \Gamma' | \mu_{i, \Gamma'}(A) \geq a \} \subseteq X_{i, \Gamma} \). Other cases can be proved similarly. Since \(A \in X_{i, \Gamma} \), so there is \(\varphi \) with \(A = X(\varphi) \). It is clear that \(X(B_i(a, \varphi)) \in X_{i, \Gamma} \), so \(\{ \Gamma' | \mu_{i, \Gamma'}(X(\varphi)) \geq a \} = \{ \Gamma' | \mu_{i, \Gamma'}(X(\varphi)) \geq a \} = X(B_i(a, \varphi)) \in X_{i, \Gamma} \).

In classical logic, it is easy to see that every consistent set of formulas can be extended to a maximal consistent set, but with the infinitary rules in \(PBL_\omega \) it cannot simply be proved in a naive fashion because the union of an increasing sequence of consistent sets need no longer be consistent. Therefore we give a detailed proof for this claim in the following lemma.

Lemma 2.6 For any \(PBL_\omega \)-consistent set of formulas \(\Delta \), there is a maximal \(PBL_\omega \)-consistent set \(\Gamma \) such that \(\Delta \subseteq \Gamma \).

Proof. To show that \(\Delta \) can be extended to a maximal \(PBL_\omega \)-consistent set, we construct a sequence \(\Gamma_0, \Gamma_1, \ldots \) of \(PBL_\omega \)-consistent sets as follows. Let \(\psi_1, \psi_2, \ldots \) be a sequence of the formulas in \(L_{PBL_\omega} \). This sequence is not an enumeration sequence since the cardinal number of the set of real number is not enumerable, however, we can get a well-ordered sequence of the formulas by the choice axiom of set theory.

At first, we construct \(\Gamma_0 \) which satisfies the following conditions:

1. \(\Delta \subseteq \Gamma_0 \);
2. \(\Gamma_0 \) is consistent;
3. For any agent \(i \in \{ 1, \ldots, n \} \) and every \(\varphi \in L_{PBL_\omega} \), there is some \(c_{i, \varphi} \in [0,1] \) such that \(\{ B_i(a, \varphi) | 0 \leq a \leq c_{i, \varphi} \} \cup \{ \neg B_i(b, \varphi) | 1 \geq b > c_{i, \varphi} \} \subseteq \Gamma_0 \).

Let \(\Sigma_0 = \Delta \), then for agent 1 and every \(\varphi \in L_{PBL_\omega} \), there is some \(c_{1, \varphi} \in [0,1] \) such that \(\Sigma_0 \cup \{ \{ B_1(a, \varphi) | 0 \leq a \leq c_{1, \varphi} \} \cup \{ \neg B_1(b, \varphi) | 1 \geq b > c_{1, \varphi} \} \} \) is consistent, otherwise, for all \(a_{1, \varphi} \in [0,1] \), \(\Sigma_0 \cup \{ \{ B_1(a, \varphi) | 0 \leq a \leq a_{1, \varphi} \} \cup \{ \neg B_1(b, \varphi) | 1 \geq b > a_{1, \varphi} \} \} \) is false. By Rule 6, we have \(\Sigma_0 \vdash \text{false} \), and since \(\Sigma_0 = \Delta \) is consistent, it is a contradiction. Let \(\Sigma_1 = \Sigma_0 \cup \{ \{ B_1(a, \varphi) | 0 \leq a \leq c_{1, \varphi} \} \cup \{ \neg B_1(b, \varphi) | 1 \geq b > c_{1, \varphi} \} \} \), similarly, for agent \(i \) and for each \(\varphi \in L_{PBL_\omega} \) there is \(c_{i, \varphi} \in [0,1] \) such that \(\Sigma_{i-1} \cup \{ \{ B_i(a, \varphi) | 0 \leq a \leq c_{i, \varphi} \} \cup \{ \neg B_i(b, \varphi) | 1 \geq b > c_{i, \varphi} \} \} \) is consistent. Let \(\Sigma_i = \Sigma_{i-1} \cup \{ \{ B_i(a, \varphi) | 0 \leq a \leq c_{i, \varphi} \} \cup \{ \neg B_i(b, \varphi) | 1 \geq b > c_{i, \varphi} \} \} \) for \(i \in \{ 1, \ldots, n \} \) and \(\Gamma_0 = \bigcup_{i \in \{ 1, \ldots, n \}} \Sigma_i = \Sigma_n \), here \(\{ 1, \ldots, n \} \) is the set of agent. Since \(\Sigma_n \) is consistent, \(\Gamma_0 \) is also consistent.

Now we inductively construct the rest of the sequence according to \(\psi_k \): (a) in the case of \(k = n + 1 \), take \(\Gamma_{n+1} = \Gamma_n \cup \{ \psi_{n+1} \} \) if the set is \(PBL_\omega \)-consistent and otherwise take \(\Gamma_{n+1} = \Gamma_n \). (b) in the case that \(k \) is a limit ordinal, take \(\Gamma_k = \bigcup_{n < k} \Gamma_n \cup \{ \psi_k \} \) if the set is \(PBL_\omega \)-consistent and otherwise take \(\Gamma_k = \bigcup_{n < k} \Gamma_n \). Let \(\Gamma = \bigcup \Gamma_k \). We will prove that \(\Gamma \) is a maximal \(PBL_\omega \)-consistent set and \(\Delta \subseteq \Gamma \).

Firstly, we prove that \(\Gamma_k \) is consistent by induction. We have already known that \(\Gamma_0 \) is consistent. Now we prove the claim when \(k > 0 \). In the case of (a), it is clear. In the case of (b), we only need to prove that \(\bigcup_{n < k} \Gamma_n \) is consistent. Suppose \(\bigcup_{n < k} \Gamma_n \) is not consistent, then there is a proof \(C \) of falsity from \(\bigcup_{n < k} \Gamma_n \). If this proof does not apply \(Rule 5 \) and \(Rule 6 \), then one of \(\Gamma_n \) contains the formulas in the proof, since \(\Gamma_n \) is consistent, then there is a contradiction. If this proof does apply \(Rule 5 \), since our construction of \(\Gamma_0 \) ensures: for some \(c_{i, \varphi} \in [0,1] \), \(\{ B_i(a, \varphi) | 0 \leq a \leq c_{i, \varphi} \} \cup \{ \neg B_i(b, \varphi) | 1 \geq b > c_{i, \varphi} \} \subseteq \Gamma_0 \), hence if \(B_i(a_{1, \varphi}), B_i(a_{2, \varphi}), \ldots \) can be deduced from \(\bigcup_{n < k} \Gamma_n \), then \(\{ B_i(a_1, \varphi), B_i(a_2, \varphi), \ldots \} \cup \{ B_i(c, \varphi) \} \subseteq \Gamma_0 \), here \(c = \ldots \).
probabilistic belief logics for uncertain agents

sup \{ a \in \mathbb{B} \mid B_i(a, \varphi) \}, hence \(\Gamma_0 \vdash B_i(c, \varphi) \). This proof can be transferred to a new proof of falsity from \(\bigcup_{n \leq k} \Gamma_n \), which does not apply Rule 5, this reduces to the case that the proof does not apply Rule 5. If this proof does apply Rule 6, since our construction of \(\Gamma \) ensures: for any \(\varphi \in \Sigma \) there is some \(c_{i,\varphi} \in [0,1] \), union \(\cup_{\varphi \in \Sigma} \{ B_i(a, \varphi) \mid 0 \leq a \leq c_{i,\varphi} \} \cup \{ -B_i(b, \varphi) \mid 1 \geq b > c_{i,\varphi} \} \subseteq \Gamma_0 \), hence if \(\bigcup_{n \leq k} \Gamma_n \cup \cup_{\varphi \in \Sigma} \{ B_i(a, \varphi) \mid 0 \leq a \leq a_{i,\varphi} \} \cup \{ -B_i(b, \varphi) \mid 1 \geq b > a_{i,\varphi} \} \not\vdash \psi \) for any \(a_{i,\varphi} \in [0,1] \) then \(\bigcup_{n \leq k} \Gamma_n \cup \Gamma_0 \not\vdash \psi \). Assume \(\bigcup_{n \leq k} \Gamma_n \cup \Gamma_0 \not\vdash \psi \). This case has been discussed above.

By the above discussion, we have a maximal PBLw-consistent set \(\Gamma \) such that \(\Delta \subseteq \Gamma \).

Lemma 2.7 For any \(\Gamma \), \(P_i(\Gamma) \) is well defined, i.e., for any \(S \in X_i(\Gamma) \), the value of \(\mu_{i,\Gamma}(S) \) is unique.

Proof. It suffices to prove the following claim: if \(S_1, S_2 \in X_i(\Gamma) \), then \(\mu_{i,\Gamma}(S_1) = \mu_{i,\Gamma}(S_2) \). Since \(S_1, S_2 \subseteq X_i(\Gamma) \), by the construction of \(X_i(\Gamma) \), there are \(\varphi \) and \(\psi \) such that \(S_1 = X(\varphi) \) and \(S_2 = X(\psi) \). Assume \(S_1 = S_2 \), then \(X(\varphi) = X(\psi) \). It is clear that \(\vdash \varphi \equiv \psi \), suppose not, w.l.o.g., assume \(\vdash \varphi \not\equiv \psi \) does not hold, then by Lemma 2.6, \(\varphi, \neg \psi \) is consistent and there is a maximal consistent set \(\Gamma' \) such that \(\varphi, \neg \psi \subseteq \Gamma' \). Furthermore, by rule: \(\vdash \varphi \not\equiv \psi \Rightarrow \vdash B_i(a, \varphi) \not\equiv B_i(a, \psi) \), we have \(\vdash B_i(a, \varphi) \not\equiv B_i(a, \psi) \), so \(\mu_{i,\Gamma}(X(\varphi)) = \mu_{i,\Gamma}(X(\psi)) \).

Lemma 2.8 Let \(Pro_{i,\Gamma}(\varphi) = \{ a \mid B_i(a, \varphi) \in \Gamma \} \), then \(sup(Pro_{i,\Gamma}(\varphi)) \in Pro_{i,\Gamma}(\varphi) \).

Proof. Suppose \(Pro_{i,\Gamma}(\varphi) = \{ a \mid B_i(a, \varphi) \in \Gamma \} \), therefore \(\Gamma \vdash B_i(a_n, \varphi) \) for all \(a_n \in Pro_{i,\Gamma}(\varphi) \), by Rule 5 of PBLw, \(\Gamma \vdash B_i(a, \varphi) \), where \(a = sup_n \in M(\{ a_n \}) = sup(Pro_{i,\Gamma}(\varphi)) \), so we get \(sup(Pro_{i,\Gamma}(\varphi)) \in Pro_{i,\Gamma}(\varphi) \) as desired.

Lemma 2.9 If \(A \in X_i(\Gamma) \), then \(0 \leq \mu_{i,\Gamma}(A) \leq 1 \). Furthermore, \(\mu_{i,\Gamma}(\emptyset) = 0, \mu_{i,\Gamma}(S) = 1 \).

Proof. By the construction of model, it is obvious that if \(A \in X_i(\Gamma) \), then \(0 \leq \mu_{i,\Gamma}(A) \leq 1 \).

By rule: \(\vdash \varphi \Rightarrow B_i(1, \varphi) \), therefore we have \(\mu_{i,\Gamma}(S) = \mu_{i,\Gamma}(X(true)) = 1 \) as desired. By axiom: \(B_i(0, false) \), we get \(B_i(0, false) \), so \(\mu_{i,\Gamma}(\emptyset) = \mu_{i,\Gamma}(X(false)) \leq 1 \). By rule: \(\vdash \neg(\varphi \land \psi) \Rightarrow B_i(a, \varphi) \land B_i(b, \psi) \not\vdash B_i(a + b, \varphi \lor \psi) \), where \(a + b \leq 1 \), we have \(\mu_{i,\Gamma}(S) = \mu_{i,\Gamma}(X(true \lor false)) \leq \mu_{i,\Gamma}(X(true \lor false)) \leq \mu_{i,\Gamma}(S) + \mu_{i,\Gamma}(\emptyset) \), since \(\mu_{i,\Gamma}(S) = 1, 1 \geq 1 + \mu_{i,\Gamma}(\emptyset) \), therefore \(\mu_{i,\Gamma}(\emptyset) = 0 \).

Lemma 2.10 If \(A_1 \) and \(A_2 \) are disjoint members of \(X_i(\Gamma) \), then \(\mu_{i,\Gamma}(A_1 \cup A_2) = \mu_{i,\Gamma}(A_1) + \mu_{i,\Gamma}(A_2) \).

Proof. Suppose \(A_1 = X(\varphi_1) \), and \(\vdash \neg(\varphi_1 \land \varphi_2) \). By Rule 4, \(\vdash B_i(a_1, \varphi_1) \land B_i(a_2, \varphi_2) \rightarrow B_i(a_1 + a_2, \varphi_1 \lor \varphi_2) \), therefore \(\mu_{i,\Gamma}(X(\varphi_1 \lor \varphi_2)) \geq \mu_{i,\Gamma}(X(\varphi_1)) + \mu_{i,\Gamma}(X(\varphi_2)) \). Since \(X(\varphi_1 \lor \varphi_2) \subseteq \mu_{i,\Gamma}(\emptyset) = 0 \).
Now we prove \(\mu_{i,\Gamma}(A_1 \cup A_2) \geq \mu_{i,\Gamma}(A_1) + \mu_{i,\Gamma}(A_2) \). Let \(\mu_{i,\Gamma}(A_1) = a_1, \mu_{i,\Gamma}(A_2) = a_2, \mu_{i,\Gamma}(A_1 \cup A_2) = a_1 + a_2 + 2e \). Choose \(e > 0 \) such that \(2e + a_1 + a_2 = \mu_{i,\Gamma}(A_1 \cup A_2) \). If we have \(\mu_{i,\Gamma}(A_1) < a_1 + e, \mu_{i,\Gamma}(A_2) < a_2 + e \).

Therefore we have \(\Gamma \models B_i(a_1 + a_2 + 2e, \varphi_1 \lor \varphi_2) \). By Lemma 2.4-2.12, it is obvious. It follows from Lemma 2.4 and Lemma 2.13.

Lemma 2.11 For any \(\varphi \), let \(\Delta_i^\varphi = \{ \Gamma' | \mu_{i,\Gamma'}(X(\varphi)) \geq a \} \). \(\mu_{i,\Gamma}(X(\varphi)) \geq a \), then \(\mu_{i,\Gamma}(\Delta_i^\varphi) = 1 \).

Proof. It is clear that \(B_i(a, \varphi) \in \Gamma \Rightarrow \Gamma \in \Delta_i^\varphi \). Therefore \(X(B_i(a, \varphi)) \subseteq \Delta_i^\varphi \). If \(B_i(a, \varphi) \rightarrow B_i(1, B_i(a, \varphi)) \), then \(\mu_{i,\Gamma}(X(B_i(a, \varphi))) = \sup \{ b | B_i(b, B_i(a, \varphi)) \in \Gamma \} = 1 \). For \(X(B_i(a, \varphi)) \subseteq \Delta_i^\varphi \), we have \(\mu_{i,\Gamma}(\Delta_i^\varphi) = 1 \) as desired.

Lemma 2.12 For any \(\varphi \), let \(\Theta_i^\varphi = \{ \Gamma' | \mu_{i,\Gamma'}(X(\varphi)) < a \} \). \(\mu_{i,\Gamma}(X(\varphi)) < a \), then \(\mu_{i,\Gamma}(\Theta_i^\varphi) = 1 \).

Proof. By the construction of the canonical model and Lemma 2.8, \(B_i(a, \varphi) \in \Gamma \Rightarrow \Gamma \in \Theta_i^\varphi \). Since \(\neg B_i(a, \varphi) \rightarrow B_i(1, \neg B_i(a, \varphi)) \), thereby \(\mu_{i,\Gamma}(X(\neg B_i(a, \varphi))) = \sup \{ b | B_i(b, \neg B_i(a, \varphi)) \in \Gamma \} = 1 \). For \(X(\neg B_i(a, \varphi)) \subseteq \Theta_i^\varphi \), we have \(\mu_{i,\Gamma}(\Theta_i^\varphi) = 1 \) as desired.

Lemma 2.13 For any \(\Gamma, P_i(\Gamma) \) is a PBL\(\omega \)-probability space.

Proof. By Lemma 2.4-2.12, it is obvious.

Lemma 2.14 The model \(PM \) is a PBL\(\omega \)-probabilistic model.

Proof. It follows from Lemma 2.4 and Lemma 2.13.

The above lemmas state that the probability space \(P_i(\Gamma) = (S, X, i, \mu_{i,\Gamma}) \) of the model satisfies all conditions in Definition 2.2, then as a consequence, the model \(PM \) is a PBL\(\omega \)-probabilistic model. In order to get the completeness, we further prove the following lemma, which states that \(PM \) is “canonical”.

Lemma 2.15 In the model \(PM \), for any \(\varphi \), \(PM(\Gamma) \models \varphi \Leftrightarrow \varphi \in \Gamma \).

Proof. We argue by the cases on the structure of \(\varphi \), here we only give the proof in the case of \(\varphi \equiv B_i(a, \psi) \).

It suffices to prove that: \((PM, \Gamma) \models B_i(a, \psi) \Leftrightarrow B_i(a, \psi) \in \Gamma \).

If \(B_i(a, \varphi) \in \Gamma \), by the definition of \(PM \), \(\mu_{i,\Gamma}(X(\varphi)) = b \geq a \), therefore \((PM, \Gamma) \models B_i(a, \varphi) \).

If \(B_i(a, \varphi) \notin \Gamma \), by Lemma 2.8, there exists \(b = \sup \{ c | B_i(c, \varphi) \in \Gamma \} \) such that \(B_i(b, \varphi) \in \Gamma \) and \(a > b \). By the definition of \(PM \), \(\mu_{i,\Gamma}(X(\varphi)) = b \), therefore \((PM, \Gamma) \not\models B_i(a, \varphi) \).

Now it is ready to get the completeness of PBL\(\omega \):

Proposition 2.2 (Completeness of PBL\(\omega \)) If \(\Gamma \models_{PBL \omega} \varphi \), then \(\Gamma \models_{PBL \omega} \varphi \).

www.intechopen.com
Proof. Suppose not, then there is a PBL\(\omega\) - consistent formulas set \(\Phi = \Gamma \cup \{ \neg \varphi \}\), and there is no model PM such that \(\Phi\) is satisfied in PM. For there is a PBL\(\omega\) - maximal consistent formula set \(\Sigma\) such that \(\Phi \subseteq \Sigma\), by Lemma 2.15, \(\Phi\) is satisfied in possible world \(\Sigma\) of PM. It is a contradiction.

Our proof of the above completeness is different from the proof in [3]. The main idea of our proof is to give a canonical model, which can be regarded as a generalization of canonical model method in Kripke semantics. In [3], Fagin and Halpern adopt another technique to get the completeness. Let \(\varphi\) be consistent with \(AX_{MEAS}\), they show firstly that an \(i\)-probability formula \(\psi \in Sub^+(\varphi)\) is provably equivalent to a formula of the form \(\Sigma_{s \in S} c_s \mu_s(\varphi_s) \geq b\), for some appropriate coefficients \(c_s\), where \(S\) consists of all maximal consistent subsets of \(Sub^+(\varphi)\). Then for a fixed agent \(i\) and a fixed state \(s\), they describe a set of linear equalities and inequalities corresponding to \(i\) and \(s\), over variables of the form \(x_{iss'}\), for \(s' \in S\). We can think of \(x_{iss'}\) as representing \(\mu_{is}(s')\), i.e., the probability of state \(s'\) under agent \(i\)'s probability distribution at state \(s\). Assume that \(\psi\) is equivalent to \(\Sigma_{s \in S} c_s \mu_s(\varphi_s) \geq b\). Observe that exactly one of \(\psi\) and \(\neg \psi\) is in \(S\). If \(\psi \in S\), then the corresponding inequality is \(\Sigma_{s \in S} c_s x_{iss'} \geq b\). If \(\neg \psi \in S\), then the corresponding inequality is \(\Sigma_{s \in S} c_s x_{iss'} < b\). Finally, we have the equality \(\Sigma_{s \in S} x_{iss'} = 1\). As shown in Theorem 2.2 in Fagin et al. [4], since \(\varphi_s\) is consistent, this set of linear inequalities and inequalities has a solution \(x_{iss'}\), \(s' \in S\). From their idea, it is clear that their proof depends tightly on the axioms of linear equalities and inequalities, whereas there are no such axioms in our inference system. On the other hand, their proof cannot deal with the case of infinite set of formulas, because in this case, we will get an infinite set of linear equalities and inequalities, which contains infinite variables. But their axioms seem insufficient to describe the existence of solutions of an infinite set of linear equalities and inequalities.

Proposition 2.1 and Proposition 2.2 show that the axioms and inference rules of PBL\(\omega\) give us a sound and complete axiomatization for probabilistic belief. Moreover, we can prove the finite model property and decidability of the provability problem for some variants of PBL\(\omega\) in the following sections.

It is not difficult to see that Axioms 1-6 and Rules 1-4 are not complete for our model. Because otherwise, the compactness property of PBL\(\omega\) holds, but we can give the following example to show that the compactness property fails in PBL\(\omega\): any finite sub set of \(\{ B_i(1/2, \varphi), B_i(2/3, \varphi), \ldots, B_i(n/n + 1, \varphi) \} \) has model, whereas the whole set does not. But we do not know whether Axioms 1-6 and Rules 1-5 are complete for our model, i.e., whether Rule 6 is redundant in the inference system. Although we believe that Rule 6 is not redundant, we have no proof up to now.

3. PBL\(\omega\) and its inner probabilistic semantics

As is often the case in modal logics, the ideas in our completeness proof can be extended to get a finite model property. Therefore the question arises whether finite model property holds for PBL\(\omega\), i.e., for every consistent formula \(\varphi\), whether there is a finite sates model satisfies \(\varphi\). Unfortunately, we cannot give a positive or negative answer here. Therefore, we seek for some weak variant of PBL\(\omega\) whose finite model property can be proved. We call the variant PBL\(\omega\), its reasoning system is the result of deleting Axiom 6 and Rule 6 from PBL\(\omega\). In the semantics of PBL\(\omega\), we assign an inner probability space to every possible world in the model, here “inner” means the measure does not obey the additivity condition, but obeys some weak additivity conditions satisfied by inner probability measure.

www.intechopen.com
The well formed formulas set L^{PBL_f} of PBL_f is the same as $L^{PBL_ω}$.

3.1 Semantics of PBL_f

Definition 3.1 An inner probabilistic model PM of PBL_f is a tuple $(S, π, P_1, ..., P_n)$, where

1. S is a nonempty finite set whose elements are called possible worlds or states;
2. $π$ is a map: $S \times Prop → \{true, false\}$, where $Prop$ is an atomic formulas set;
3. P_i is a map, it maps every possible world s to a PBL_f-probability space $P_i(s) = (S, X, μ_{i,s})$.

Here $X = \wp(S)$. $μ_{i,s}$ is an inner probability measure assigned to the set X, which means $μ_{i,s}$ satisfies the following conditions:

(a) $0 ≤ μ_{i,s}(A) ≤ 1$ for all $A ∈ X$.
(b) $μ_{i,s}(\emptyset) = 0$ and $μ_{i,s}(S) = 1$.
(c) If $A_1, A_2 ∈ X$ and $A_1 \subseteq A_2$, then $μ_{i,s}(A_1) ≤ μ_{i,s}(A_2)$;
(d) If $A_1, A_2 ∈ X$ and $A_1 \cap A_2 = \emptyset$, then $μ_{i,s}(A_1 \cup A_2) ≥ μ_{i,s}(A_1) + μ_{i,s}(A_2)$;
(e) If $A_1, A_2 ∈ X$, then $μ_{i,s}(A_1 \cap A_2) ≥ μ_{i,s}(A_1) + μ_{i,s}(A_2) - 1$;
(f) Let $Λ_{i,s} = \{s'|P_i(s) = P_i(s')\}$, then $μ_{i,s}(Λ_{i,s}) = 1$.

Remark: Since $X = \wp(S)$, therefore X is a constant set, and we omit the subscript of $X_{i,s}$ as was used in Definition 2.2. It is easy to see that the conditions (d) and (e) in Definition 3.1 are weaker than the finite additivity condition in Definition 2.2. One can check that if $μ$ is a probability measure, then inner measure $μ^*$ induced by $μ$ obeys the conditions (d) and (e) in Definition 3.1, i.e., the reason we call $μ_{i,s}$ inner probability measure.

The notation $Λ_{i,s}$ in the condition (f) represents the set of states whose probability space is same as the probability space of state s. Therefore the condition (f) means that for any state s, the probability space of almost all states is same as the probability space of s.

Definition 3.2 Inner probabilistic semantics of PBL_f

$(PM, s) \models p$ iff $π(s, p) = true$, where p is an atomic formula;
$(PM, s) \models \neg q$ iff $(PM, s) \not\models q$;
$(PM, s) \models \varphi_1 \land \varphi_2$ iff $(PM, s) \models \varphi_1$ and $(PM, s) \models \varphi_2$;
$(PM, s) \models B_i(a, \varphi)$ iff $μ_{i,s}(ev_{PM}(\varphi)) ≥ a$, where $ev_{PM}(\varphi) = \{s'|(PM, s') \models \varphi\}$.

3.2 Inference system of PBL_f

The inference system of PBL_f is the same as $PBL_ω$ except without Axiom 6 and Rule 6. Axiom 6 corresponds to the finite additivity property of probability. Since the inner probabilistic measure in the model of PBL_f does not obey the finite additivity property, therefore Axiom 6 fails with respect to the semantics of PBL_f.

www.intechopen.com
3.3 Soundness of PBL_f

The proof of soundness of PBL_f is similar to the proof in Proposition 2.1, but because there are some differences between PBL_{lo}-probabilistic model and PBL_f-probabilistic model, there are a few differences. For example, in the following proof, we can use the property $\mu_{i,s}(A_1 \cap A_2) \geq \mu_{i,s}(A_1) + \mu_{i,s}(A_2) - 1$ directly, rather than as a corollary of finite additivity property; we apply the property $\mu_{i,s}(\Lambda_{i,s}) = 1$ (where $\Lambda_{i,s} = \{s[P_i(s) = P_i(s')] \}$) in the proof which also differs from the last property of PBL_{lo}-probabilistic model (If $A \in X_{i,s}$ and $\mu_{i,s}(A) \geq a$, then $\mu_{i,s}\{\{s' | \mu_{i,s'}(A) \geq a\}\} = 1$; if $A \in X_{i,s}$ and $\mu_{i,s}(A) < b$, then $\mu_{i,s}\{\{s' | \mu_{i,s'}(A) < b\}\} = 1$).

Proposition 3.1 (Soundness of PBL_f) If $\Gamma \vdash_{PBL_f} \psi$, then $\Gamma \vdash_{PBL_f} \psi$.

Proof. We only discuss Axiom 2, Axiom 3 and Axiom 4 of PBL_f, other cases can be proved similarly as in Proposition 2.1.

Axiom 2: Suppose $(PM, s) \models B_i(a, \phi) \land B_i(b, \psi)$, so $\mu_{i,s}(ev_{PM}(\phi)) \geq a$ and $\mu_{i,s}(ev_{PM}(\psi)) \geq b$.

For $\mu_{i,s}$ is PBL_f-probability measure, we get $\mu_{i,s}(ev_{PM}(\phi \land \psi)) = \mu_{i,s}(ev_{PM}(\phi) \land ev_{PM}(\psi)) \geq \mu_{i,s}(ev_{PM}(\phi)) + \mu_{i,s}(ev_{PM}(\psi)) - 1 \geq a + b - 1$, which implies $(PM, s) \models B_i(a + b - 1, \phi \land \psi)$.

Axiom 3: Suppose $(PM, s) \models B_i(a, \phi)$, therefore $\mu_{i,s}(ev_{PM}(\phi)) \geq a$. Let $\Lambda_{i,s} = \{s'[P_i(s) = P_i(s')]\}$, then $\Lambda_{i,s} \subseteq X$ and $\mu_{i,s}(\Lambda_{i,s}) = 1$. Let $\Xi = \{s'[\mu_{i,s'}(ev_{PM}(\phi)) > a\}$, since $s' \in \Lambda_{i,s}$ implies $s' \in \Xi$, it is clear $\Lambda_{i,s} \subseteq \Xi$, so $\mu_{i,s}(\Xi) = 1$. If $s' \in \Xi$, then $s' \in ev_{PM}(B_i(a, \phi))$, therefore $\mu_{i,s}(ev_{PM}(B_i(a, \phi))) = 1$, we get $(PM, s) \models B_i(1, B_i(a, \phi))$ as desired.

Axiom 4: Suppose $(PM, s) \models \neg B_i(a, \phi)$, so $\mu_{i,s}(ev_{PM}(\phi)) < a$. Let $\Lambda_{i,s} = \{s'[P_i(s) = P_i(s')]\}$, then $\Lambda_{i,s} \subseteq X$ and $\mu_{i,s}(\Lambda_{i,s}) = 1$. Let $\Xi = \{s'[\mu_{i,s'}(ev_{PM}(\phi)) < a\}$, $s' \in \Lambda_{i,s}$ implies $s' \in \Xi$, it is clear $\Lambda_{i,s} \subseteq \Xi$, so $\mu_{i,s}(\Xi) = 1$. If $s' \in \Xi$, then $s' \in ev_{PM}(B_i(a, \phi))$, therefore $\mu_{i,s}(ev_{PM}(\neg B_i(a, \phi))) = 1$, we get $(PM, s) \models B_i(1, \neg B_i(a, \phi))$ as desired.

3.4 Finite model property of PBL_f

We now turn our attention to the finite model property of PBL_f. It needs to show that if a formula is PBL_f-consistent, then it is satisfiable in a finite structure. The idea is that rather than considering maximal consistent formulas set when trying to construct a structure satisfying a formula ϕ, we restrict our attention to sets of subformulas of ϕ.

Definition 3.3 Suppose ξ is a consistent formula with respect to PBL_f, $Sub^+(\xi)$ is a set of formulas defined as follows: let $\xi \in L^{PBL_f}$, $Sub(\xi)$ is the set of subformulas of ξ, then $Sub^+(\xi) = Sub(\xi) \cup \{\neg \psi | \psi \in Sub(\xi)\}$. It is clear that $Sub^+(\xi)$ is finite.

Definition 3.4 The inner probabilistic model PM_ξ with respect to formula ξ is $(S_\xi, P_{i|\xi}, ..., P_{n|\xi}, \pi_\xi)$.

1. Here $S_\xi = \{\Gamma | \Gamma$ is a maximal consistent formulas set with respect to PBL_f and $\Gamma \subseteq Sub^+(\xi)\}$.

2. For any $\Gamma \in S_\xi$, $P_{i|\xi}(\Gamma) = (S_\xi, X_{i|\xi}, \mu_{i|\xi})$, where $X_{i|\xi} = \{X(\phi) | X(\phi) = \{\Gamma | \phi$ is a Boolean combination of formulas in $Sub^+(\xi)$ and $\Gamma \vdash_{PBL_f} \phi\}; \mu_{i|\xi}$ is an inner probability assignment: $X_{i|\xi} \rightarrow [0,1]$, and $\mu_{i|\xi}(X(\phi)) = sup\{a | B_i(a, \phi) is provable from $\Gamma in PBL_f\}$.}

3. π_ξ is a truth assignment as follows: For any atomic formula p, $\pi_\xi(p, \Gamma) = true$ if $p \in \Gamma$.

www.intechopen.com
Similar to the proof of completeness of PBL_{ω}, we mainly need to show that the above canonical model PM_{ω} is a PBL_{ω}-inner probabilistic model. The following lemmas from Lemma 3.1 to Lemma 3.13 contribute to this purpose. Furthermore, Lemma 3.14 states that PM_{ω} is “canonical”, i.e., for any consistent formula $\phi \in Sub^*(\xi)$, there is a state s, such that $(PM_{\omega}, s) \models \phi$. Since we can prove that PM_{ω} is a finite model, these lemmas imply the finite model property of PBL_{ω}.

Lemma 3.1 S_ξ is a nonempty finite set.

Proof. Since the rules and axioms of PBL_{ω} are consistent, S_ξ is nonempty. For $Sub^*(\xi)$ is a finite set, by the definition of S_ξ, the cardinality of S_ξ is no more than the cardinality of $\phi(Sub^*(\xi))$.

Lemma 3.2 X_ξ is the power set of S_ξ.

Proof. Firstly, since $Sub^*(\xi)$ is finite, so if $\Gamma \in S_\xi$ then Γ is finite. We can let ϕ_1 be the conjunction of the formulas in Γ. Secondly, if $A \subseteq S_\xi$, then $A = X(\bigvee_{\Gamma \in A} \phi_\Gamma)$. By the above argument, we have that X_ξ is the power set of S_ξ.

Lemma 3.3 If ϕ is consistent (here ϕ is a Boolean combination of formulas in $Sub^*(\xi)$), then there exists Γ such that ϕ can be proved from Γ, hence Γ is a maximal consistent set with respect to PBL_{ω} and $\Gamma \subseteq Sub^*(\xi)$.

Proof. For ϕ is a Boolean combination of formulas in $Sub^*(\xi)$, therefore by regarding the formulas in $Sub^*(\xi)$ as atomic formulas, ϕ can be represented as disjunctive normal form. Since ϕ is consistent, so there is a consistent disjunctive term in disjunctive normal form expression of ϕ, let such term be $\psi_1 \land \ldots \land \psi_n$, then ϕ can be derived from the maximal consistent set Γ which contains $\{\psi_1, \ldots, \psi_n\}$.

Lemma 3.4 For any $\Gamma \in S_\xi$, $P_{\xi}(\Gamma)$ is well defined.

Proof. It suffices to prove the following claim: if $X(\phi) = X(\psi)$, then $\mu_{\xi,\Gamma}(X(\phi)) = \mu_{\xi,\Gamma}(X(\psi))$. If $X(\phi) = X(\psi)$, it is clear that $\vdash \phi \leftrightarrow \psi$. For suppose not, then $\phi \land \neg \psi$ is consistent, by Lemma 3.3, there is Γ' such that $\phi \land \neg \psi$ can be proved from Γ', therefore $\Gamma' \in X(\phi)$ and $\Gamma' \notin X(\psi)$, it is a contradiction. Thus $\vdash \phi \leftrightarrow \psi$. By rule: $\vdash \phi \rightarrow \psi \rightarrow \psi$. By rule: $\vdash B_1(a, \varphi) \rightarrow B_1(a, \psi)$, we get $\vdash B_1(a, \varphi) \leftrightarrow B_1(a, \psi)$, which means $\mu_{\xi,\Gamma}(X(\varphi)) = \mu_{\xi,\Gamma}(X(\psi))$.

Lemma 3.5 Let $Pro_{\xi,\Gamma}(\phi) = \{a|B_1(a, \varphi) \in \text{can be proved from } \Gamma \text{ in } PBL_{\omega}\}$, then $sup(Pro_{\xi,\Gamma}(\phi)) \in Pro_{\xi,\Gamma}(\phi)$.

Proof. Suppose $Pro_{\xi,\Gamma}(\phi) = \{a|B_1(a, \varphi) \text{ can be proved from } \Gamma \text{ in } PBL_{\omega}\}$, therefore $\Gamma \vdash B_1(a, \varphi)$ for all $a \in Pro_{\xi,\Gamma}(\phi)$, by Rule 5 of PBL_{ω}, $\Gamma \vdash B_1(a, \varphi)$, where $a = \sup_{a \in M}\{a_n\} = \sup(Pro_{\xi,\Gamma}(\phi))$, so we get $sup(Pro_{\xi,\Gamma}(\phi)) \in Pro_{\xi,\Gamma}(\phi)$ as desired.

Lemma 3.6 If $A \in X_\xi$, then $0 \leq \mu_{\xi,\Gamma}(A) \leq 1$. Furthermore, $\mu_{\xi,\Gamma}(\emptyset) = 0, \mu_{\xi,\Gamma}(S_\xi) = 1$.

Proof. By the definition, if $B_1(a, \varphi)$ is a well formed formula, then $0 \leq a \leq 1$; furthermore, check the axioms and rules of PBL_{ω} for any formula derived from well formed formulas is also a well formed formula, so $0 \leq \mu_{\xi,\Gamma}(X(\varphi)) \leq 1$. Therefore, if $A \in X_\xi$, then $0 \leq \mu_{\xi,\Gamma}(A) \leq 1$.

By rule: $\vdash \varphi \Rightarrow \vdash B_1(1, \varphi)$, therefore we have $\mu_{\xi,\Gamma}(S_\xi) = 1$ as desired. By axiom: $B_1(0, \varphi)$, we get $B_1(0, \text{false})$, so $\mu_{\xi,\Gamma}(\emptyset) \geq 0$. By rule: $\vdash \neg(\varphi \land \psi) \Rightarrow \vdash \neg B_1(a, \varphi) \land \neg B_1(b, \psi) \rightarrow B_1(a + b, \varphi \lor \psi)$, where $a + b \leq 1$, we have $\vdash B_1(a, \text{false}) \land B_1(b, \text{true}) \rightarrow B_1(a + b, \text{false} \lor \text{true})$.

www.intechopen.com
hence \(\mu_{\xi, I, F}(S_\xi) \geq \mu_{\xi, I, F}(S_\xi) + \mu_{\xi, I, F}(\emptyset) \). Since \(\mu_{\xi, I, F}(S_\xi) = 1 \), so \(1 \geq 1 + \mu_{\xi, I, F}(\emptyset) \), therefore \(\mu_{\xi, I, F}(\emptyset) = 0 \) as desired.

Lemma 3.7 If \(A_1, A_2 \in \mathcal{X}_\xi \) and \(A_1 \subseteq A_2 \), then \(\mu_{\xi, I, F}(A_1) \leq \mu_{\xi, I, F}(A_2) \).

Proof. Since \(A_1, A_2 \in \mathcal{X}_\xi \), assume \(A_1 = X(\phi), A_2 = X(\psi) \). By \(\Gamma \vdash \phi \rightarrow \psi \Rightarrow \Gamma, b, D \rightarrow B_1(a, \psi) \), we have \(\mu_{\xi, I, F}(X(\phi)) \geq \mu_{\xi, I, F}(\emptyset) \). Therefore if \(A_1, A_2 \in \mathcal{X}_\xi \) and \(A_1 \subseteq A_2 \), then \(\mu_{\xi, I, F}(A_1) \leq \mu_{\xi, I, F}(A_2) \).

Lemma 3.8 If \(A_1, A_2 \in \mathcal{X}_\xi \) and \(A_1 \cap A_2 = \emptyset \), then \(\mu_{\xi, I, F}(A_1 \cup A_2) = \mu_{\xi, I, F}(A_1) + \mu_{\xi, I, F}(A_2) \).

Proof. Since \(A_1, A_2 \in \mathcal{X}_\xi \), assume \(A_1 = X(\phi), A_2 = X(\psi) \), by axiom: \(B_1(a, \phi) \land B_2(b, \psi) \rightarrow B_3(\max(a + b - 1, 0), \phi \land \psi) \), we have \(\mu_{\xi, I, F}(X(\phi) \land X(\psi)) \geq \mu_{\xi, I, F}(X(\phi)) + \mu_{\xi, I, F}(X(\psi)) \). Therefore if \(A_1, A_2 \in \mathcal{X}_\xi \) and \(A_1 \cap A_2 = \emptyset \), then \(\mu_{\xi, I, F}(A_1 \cup A_2) = \mu_{\xi, I, F}(A_1) + \mu_{\xi, I, F}(A_2) \).

Lemma 3.9 For any \(C, D \in \mathcal{X}_\xi \), \(\mu_{\xi, I, F}(C \cap D) \geq \mu_{\xi, I, F}(C) + \mu_{\xi, I, F}(D) - 1 \).

Proof. For \(\Gamma \) is a finite formulas set, therefore \(B_1^{-}(\Gamma) = X(\land \{ b_1(1, n) : b_1 \in \Gamma \}) \), by axiom: \(B_1(a, \phi) \land B_2(b, \psi) \rightarrow B_3(\max(a + b - 1, 0), \phi \land \psi) \), we have \(\land \{ b_1(1, n) : b_1 \in \Gamma \} \) can be proved from \(\Gamma \) in \(PBL_\xi \), so \(\mu_{\xi, I, F}(B_1^{-}(\Gamma)) = 1 \).

Lemma 3.10 Let \(\Lambda_\Gamma^{-} = \{ \varphi \in \mathcal{X}_\xi : \varphi \in \Gamma \} \), then \(\mu_{\xi, I, F}(\Lambda_\Gamma^{-}) = 1 \).

Proof. Suppose \(\Gamma \) is a finite formulas set, therefore \(B_1^{-}(\Gamma) = X(\land \{ b_1(1, n) : b_1 \in \Gamma \}) \), by axiom: \(B_1(a, \phi) \land B_2(b, \psi) \rightarrow B_3(\max(a + b - 1, 0), \phi \land \psi) \), we have \(\land \{ b_1(1, n) : b_1 \in \Gamma \} \) can be proved from \(\Gamma \) in \(PBL_\xi \), so \(\mu_{\xi, I, F}(\Lambda_\Gamma^{-}) = 1 \).

Lemma 3.11 Let \(\Lambda_\Gamma^{-} = \{ \varphi \in \mathcal{X}_\xi : \varphi \in \Gamma \} \), then \(\mu_{\xi, I, F}(\Lambda_\Gamma^{-}) = 1 \).

Proof. By Lemma 3.6 to Lemma 3.11, we can get the claim immediately.

Lemma 3.13 The inner probabilistic model \(PM_\xi \) is a finite model.

Proof. By the definition of \(S_\xi \), the cardinality of \(S_\xi \) is no more than the cardinality of \(\varphi(\text{Sub}^*(\xi)), \) which means \(|S_\xi| \leq 2^{\text{Sub}^*(\xi)} \).

Similar to the proof of completeness of \(PBL_\omega \), the above lemmas show that \(PM_\xi \) is a finite \(PBL_\xi \)-model and the following lemmas states that \(PM_\xi \) is canonical.

Lemma 3.14 For the finite canonical model \(PM_\xi \), for any \(\Gamma \in S_\xi \) and any \(\varphi \in \text{Sub}^*(\xi) \), \((PM_\xi, \Gamma) \models \varphi \Leftrightarrow \varphi \in \Gamma \).

Proof. We argue by cases on the structure of \(\varphi \), here we only give the proof in the case of \(\varphi \equiv B_1(a, \varphi) \):

It suffices to prove: \((PM_\xi, \Gamma) \models B_1(a, \varphi) \Leftrightarrow B_1(a, \varphi) \in \Gamma \).
If \(B_i(a, \psi) \in \Gamma \), by the definition of \(P M_\varepsilon, \mu_{\varepsilon, I}(X(\psi)) = b \geq a \), therefore \((P M_\varepsilon, \Gamma) \models B_i(a, \psi) \).

If \(B_i(a, \psi) \notin \Gamma \), by Lemma 3.5, there exists \(b = \sup\{ c \mid B_i(c, \psi) \in \Gamma \} \) such that \(B_i(b, \psi) \in \Gamma \) and \(a > b \). By the definition of \(P M_\varepsilon, \mu_{\varepsilon, I}(X(\psi)) = b \), therefore \((P M_\varepsilon, \Gamma) \not\models B_i(a, \psi) \).

From the above lemmas, we know that \(P M_\varepsilon \) is a finite \(PBL \)-model that is canonical. Now it is no difficult to get the following proposition.

Proposition 3.2 (Finite model property of \(PBL \)) If \(\Gamma \) is a finite set of consistent formulas, then there is a finite \(PBL \)-model \(PM \) such that \(PM \models PBL, \Gamma \).

Proof. By Lemma 3.14, there exists a finite \(PBL \)-model \(PM, \varepsilon \) such that \(\Gamma \) is satisfied in \(PM, \varepsilon \).

Proposition 3.3 (Weak completeness of \(PBL \)) If \(\Gamma \) is a finite set of formulas, \(\varphi \) is a formula, and \(\Gamma \models_{PBL} \varphi \), then \(\Gamma \models_{PBL} \varphi \).

Proof. Suppose not, then \((\wedge \Gamma) \wedge \neg \varphi \) is consistent with respect to \(PBL, \varepsilon \), by Proposition 3.2, there exists an inner probabilistic model \(PM_{(\wedge \Gamma) \wedge \neg \varphi} \) such that \((\wedge \Gamma) \wedge \neg \varphi \) is satisfied in \(PM_{(\wedge \Gamma) \wedge \neg \varphi} \), but this contradicts our assumption that \(\Gamma \models_{PBL} \varphi \), thus the proposition holds.

As to \(PBL_\omega \) case, the construction of canonical model like Definition 3.4 fails to get the finite model property. The main problem lies in how to define measure assignment \(\mu_{\varepsilon, I} \) in Definition 3.4, \(\mu_{\varepsilon, I}(X(\psi)) = \sup\{ a \mid B_i(a, \varphi) \) provable from \(\Gamma \) in \(PBL \} \), but Rule 6 fails under this definition. Thus there is an unsolved problem about how to construct a finite model with respect to a \(PBL_\omega \)-consistent formula.

Usually, in the case of modal logics, one can get decidability of the provability problem from finite model property. At first, one can simply construct every model with finite (for example, say \(2^{[\text{Sub}(\psi)]} \)) states. One then check if \(\varphi \) is true at some state of one of these models (note that the number of models that have \(2^{[\text{Sub}(\psi)]} \) states is finite). By finite model property, if a formula \(\varphi \) is consistent, then \(\varphi \) is satisfiable with respect to some models. Conversely, if \(\varphi \) is satisfiable with respect to some models, then \(\varphi \) is consistent.

But it becomes different for \(PBL \). Because there may be infinitely many \(PBL \)-inner probability measure assigned to the set \(X \) (since real number in \([0,1]\) is infinite), there are infinitely many probabilistic models associated to a given number of states (for example, say \(2^{[\text{Sub}(\psi)]} \)). Therefore the above argument fails. On the contrary, in the next section, we will present another variant-\(PBL \), and prove that the decidability of the provable problem holds for \(PBL \).

4. \(PBL \) and its inner probabilistic semantics

The inference systems of \(PBL_\omega \) and \(PBL \) both have the infinite inference rules, but in application, an infinite inference rule is inconvenient. Whether we can get the weak completeness for a variant of \(PBL_\omega \) or \(PBL \) without Rule 5? In this section, we propose another probabilistic belief logic-\(PBL \). The inference system of \(PBL \) is that of \(PBL \) without Rule 5. Another notable difference between \(PBL_\ell \) and \(PBL \) is that the probability \(a \) in the scope of \(B_i(a, \varphi) \) must be a rational number. Similar to the semantics of \(PBL \), we assign an inner probability space to every possible world in the model.

We prove the soundness and finite model property of \(PBL \). At last, as a consequence of the finite model property, we obtain weak completeness and decidability of the provability.
problem of \(PBL_f \). Roughly speaking, let \(\Gamma \) be a finite set of formulas, weak completeness means \(\Gamma \models \phi \Rightarrow \Gamma \vdash \phi \), and decidability of the provability problem of \(PBL_f \) means there is an algorithm that, given as input a formula \(\phi \), will decide whether \(\phi \) is provable in \(PBL_f \).

Definition 4.1 The set of well formed formulas set of \(PBL_r \), called \(L^{PBL_r} \), is given by the following grammar:

1. If \(\phi \in \text{Atomic formulas set} \), then \(\phi \in L^{PBL_r} \);
2. If \(\phi \in L^{PBL_r} \), then \(\lnot \phi \in L^{PBL_r} \);
3. If \(\phi_1, \phi_2 \in L^{PBL_r} \), then \(\phi_1 \land \phi_2 \in L^{PBL_r} \);
4. If \(\phi \in L^{PBL_r} \) and \(a \) is a rational number in \([0, 1]\), then \(B_i(a, \phi) \in L^{PBL_r} \).

Remark: A significant difference between \(PBL_r \) and \(PBL_{\omega}(PBL_f) \) is that in the definition of syntax, the probability in the scope of \(B_i(a, \phi) \) in the former is a rational number.

The inner probabilistic model of \(PBL_r \) is the same as the inner probabilistic model of \(PBL_f \), except that the value of \(PBL_r \)-inner probability measure is a rational number.

The inference system of \(PBL_r \) consists of axioms and inference rules of proposition logic and the Axioms 1-5 and Rules 1-4 of \(PBL_{\omega} \). But it is necessary to note that by the definition of well formed formulas of \(PBL_r \), all the probabilities in the axioms and inference rules of \(PBL_r \) should be modified to be rational numbers. For example, Axiom 5 of \(PBL_{\omega} \): “\(B_i(a, \phi) \rightarrow B_i(b, \phi) \), where \(1 \geq a \geq b \geq 0 \)” should be modified as “\(B_i(a, \phi) \rightarrow B_i(b, \phi) \), where \(1 \geq a \geq b \geq 0 \) and \(a, b \) are rational numbers” in \(PBL_r \). Since the probabilities \(a \) and \(b \) in the formulas \(B_i(a, \phi) \) and \(B_i(b, \phi) \) are rational numbers, so the probability \(\max(a + b - 1, 0) \) in the scope of \(B_i(\max(a + b - 1, 0), \phi \land \psi) \) in Axiom 2 and the probability \(a + b \) in the scope of \(B_i(a + b, \phi \lor \psi) \) in Rule 4 are also rational numbers.

The proof of the soundness of \(PBL_r \) is similar to the soundness of \(PBL_f \), and we do not give the details.

Proposition 4.1 (Soundness of \(PBL_r \)) If \(\Gamma \models_{PBL_r} \phi \) then \(\Gamma \models_{PBL_r} \phi \).

4.1 Finite model property and decidability of \(PBL_r \)

In order to prove the weak completeness of \(PBL_r \), we first present a probabilistic belief logic - \(PBL_r(N) \), where \(N \) is given a natural number. The finite model property of \(PBL_r(N) \) is then proved. From this property, we get the weak completeness and the decidability of \(PBL_r \).

The syntax of \(PBL_r(N) \) is the same as the syntax of \(PBL_r \), except that the probabilities in formulas should be rational numbers like \(k/N \). For example, every probability in formulas of \(PBL_r(3) \) should be one of \(0/3, 1/3, 2/3 \) or \(3/3 \). Therefore, \(B_i(1/3, \phi) \) and \(B_i(2/3, B_i(1/3, \phi)) \) are well formed formulas in \(PBL_r(3) \), but \(B_i(1/2, \phi) \) is not a well formed formula in \(PBL_r(3) \).

The inner probabilistic model of \(PBL_r(N) \) is also the same as \(PBL_r \), except that the measure assigned to every possible world should be the form of \(k/N \) respectively. Therefore, in an inner probabilistic model of \(PBL_r(3) \), the measure in a possible world may be \(1/3, 2/3 \) and etc, but can not be \(1/2 \) or \(1/4 \).

The inference system of \(PBL_r(N) \) is also similar to \(PBL_r \) but all the probabilities in the axioms and inference rules should be the form of \(k/N \) respectively. For example, Axiom 5 of \(PBL_{\omega} \):
"B_i(a, ϕ) → B_i(b, ϕ), where 1 ≥ a ≥ b ≥ 0" should be modified to "B_i(a, ϕ) → B_i(b, ϕ), where 1 ≥ a ≥ b ≥ 0" in Axiom 5 of the inference system of PBL_r(N).

Since the probabilities a and b in the formulas B_i(a, ϕ) and B_i(b, ϕ) are in the form of k_1/N, k_2/N, so the probability max(a + b - 1, 0) in the scope of B_i(max(a + b - 1, 0), ϕ ∨ ψ) in Axiom 2 and the probability a + b in the scope of B_i(a + b, ϕ ∨ ψ) in Rule 4 are also in the form of k/N.

It is easy to see that the soundness of PBL_r(N) holds. We omit the detail proof here.

Proposition 4.2 (Soundness of PBL_r(N)) If Γ ⊨ PBL_r(N) ϕ then Γ ⊩ PBL_r(N) ϕ.

In the following, we prove the finite model property of PBL_r(N). By this proposition, we can obtain the weak completeness of PBL_r immediately.

Definition 4.2 Suppose ζ is a consistent formula with respect to PBL_r(N). Sub^*(ζ) is a set of formulas defined as follows: let ζ ∈ L^{PBL_r(N)}, Sub(ζ) is the set of subformulas of ζ, then Sub^*(ζ) = Sub(ζ) ∪ {¬ϕ | ϕ ∈ Sub(ζ)}. It is clear that Sub^*(ζ) is finite.

Definition 4.3 The inner probabilistic model PM_ζ with respect to formula ζ is (S_ζ, P_ζ, ρ_ζ, π_ζ).

(1) Here S_ζ = {Γ | Γ is a maximal consistent formulas set with respect to PBL_r(N) and Γ ⊆ Sub^*(ζ)}.

(2) For any Γ ∈ S_ζ, P_ζ(Γ) = (S_ζ, X_ζ, μ_ζ, |Γ|), where X_ζ = {X(ϕ) | X(ϕ) = {Γ | ϕ is a Boolean combination of formulas in Sub^*(ζ) and Γ ⊩ PBL_r(N) ϕ}}; μ_ζ, X(ϕ) is an inner probability assignment: X_ζ → [0, 1], and μ_ζ, X(ϕ) = sup{a | B_i(a, ϕ) is provable from Γ in PBL_r(N)}.

(3) π_ζ is a truth assignment as follows: for any atomic formula p, π_ζ(p, Γ) = true ⇔ p ∈ Γ.

The following lemmas show that the above model PM_ζ is an inner probabilistic model of PBL_r(N), and it is canonical: for any ζ ∈ S_ζ and any ϕ ∈ Sub^*(ζ), ϕ ∈ Γ ⇔ (PM_ζ, Γ) ⊩ ϕ. This implies the finite model property of PBL_r(N).

Lemma 4.1 S_ζ is a nonempty finite set.

Proof. Since the rules and axioms of PBL_r(N) are consistent, S_ζ is nonempty. For Sub^*(ζ) is a finite set, by the definition of S_ζ, the cardinality of S_ζ is no more than the cardinality of Sub^*(ζ).

Lemma 4.2 X_ζ is the power set of S_ζ.

Proof. Firstly, since Sub^*(ζ) is finite, so if Γ ∈ S_ζ then Γ is finite. We can let ϕ_Γ be the conjunction of the formulas in Γ. Secondly, if A ⊆ S_ζ, then A = X(∨Γ∈A ϕ_Γ). By the above argument, we have that X_ζ is the power set of S_ζ.

Lemma 4.3 If ϕ is consistent (here ϕ is a Boolean combination of formulas in Sub^*(ζ)), then there exists Γ such that ϕ can be proved from Γ, here Γ is a maximal consistent set with respect to PBL_r(N) and Γ ⊆ Sub^*(ζ).

Proof. For ϕ is obtainable from the Boolean connective composition of formulas in Sub^*(ζ), therefore by regarding the formulas in Sub^*(ζ) as atomic formulas, ϕ can be represented in disjunctive normal form. Since ϕ is consistent, there is a consistent disjunctive term in disjunctive normal form expression of ϕ, let such term be ϕ_1 ∧ ... ∧ ϕ_n, then ϕ can be derived from the maximal consistent set Γ that contains {ϕ_1, ..., ϕ_n}.
Lemma 4.4 For any $\Gamma \in S_\xi$, $P_\xi(\Gamma)$ is well defined.

Proof. It suffices to prove the following claim: if $X(\varphi) = X(\psi)$, then $\mu_{\xi,\Gamma}(X(\varphi)) = \mu_{\xi,\Gamma}(X(\psi))$. If $X(\varphi) = X(\psi)$, it is clear that $\vdash \varphi \leftrightarrow \psi$. For suppose not, $\varphi \land \neg \psi$ is consistent. By Lemma 4.3, there is Γ' such that $\varphi \land \neg \psi$ can be proved from Γ', therefore $\Gamma' \in X(\varphi)$ and $\Gamma' \notin X(\psi)$, it is a contradiction. Thus $\vdash \varphi \leftrightarrow \psi$. By rule: $\vdash \varphi \rightarrow \psi \Rightarrow \Gamma (a, \psi) \rightarrow \Gamma (a, \psi)$, we get $\Gamma (a, \varphi) \leftrightarrow \Gamma (a, \psi)$, which means $\mu_{\xi,\Gamma}(X(\varphi)) = \mu_{\xi,\Gamma}(X(\psi))$.

Lemma 4.5 Let $\mathcal{P}_{\xi,\Gamma}(\varphi) = \{a \mid B_i(a, \varphi) \in \Gamma\}$, then $sup(\mathcal{P}_{\xi,\Gamma}(\varphi)) \in \mathcal{P}_{\xi,\Gamma}(\varphi)$.

Proof. By the construction of model, $\mathcal{P}_{\xi,\Gamma}(\varphi)$ is one of the numbers $0/N, 1/N, ..., N/N$. Since the set $0/N, 1/N, ..., N/N$ is finite, therefore $sup(\mathcal{P}_{\xi,\Gamma}(\varphi)) \in \mathcal{P}_{\xi,\Gamma}(\varphi)$.

Lemma 4.6 If $A \in X_\xi$, then $0 \leq \mu_{\xi,\Gamma}(A) \leq 1$. Furthermore, $\mu_{\xi,\Gamma}(\emptyset) = 0$ and $\mu_{\xi,\Gamma}(S_\xi) = 1$.

Proof. By the construction of model, it is clear that $\mu_{\xi,\Gamma}$ has the following property: if $A \in X_\xi$, then $0 \leq \mu_{\xi,\Gamma}(A) \leq 1$.

By rule: $\vdash \varphi \Rightarrow \Gamma (1, \varphi)$, it is clear $\mu_{\xi,\Gamma}(S_\xi) = 1$. By axiom: $B_i(0, \varphi)$, we get $B_i(0, false)$, so $\mu_{\xi,\Gamma}(\emptyset) \geq 0$. By Rule 4 of PBL_ξ, we get $\mu_{\xi,\Gamma}(S_\xi) \geq \mu_{\xi,\Gamma}(S_\xi) + \mu_{\xi,\Gamma}(\emptyset)$, so $1 \geq 1 + \mu_{\xi,\Gamma}(\emptyset)$, which implies $\mu_{\xi,\Gamma}(\emptyset) = 0$.

Lemma 4.7 If $A_1, A_2 \subset X_\xi$ and $A_1 \subset A_2$, then $\mu_{\xi,\Gamma}(A_1) \leq \mu_{\xi,\Gamma}(A_2)$.

Proof. Since $A_1, A_2 \subset X_\xi$ assume $A_1 = X(\varphi)$, $A_2 = X(\psi)$. If $X(\varphi) \subseteq X(\psi)$, by rule: $\vdash \varphi \rightarrow \psi \Rightarrow \Gamma (a, \varphi) \rightarrow \Gamma (a, \psi)$, we have $\mu_{\xi,\Gamma}(A_1) \leq \mu_{\xi,\Gamma}(A_2)$. Therefore if $A_1, A_2 \subset X_\xi$ and $A_1 \subset A_2$, then $\mu_{\xi,\Gamma}(A_1) \leq \mu_{\xi,\Gamma}(A_2)$.

Lemma 4.8 If $A_1, A_2 \subset X_\xi$ and $A_1 \cap A_2 = \emptyset$, then $\mu_{\xi,\Gamma}(A_1 \cup A_2) \geq \mu_{\xi,\Gamma}(A_1) + \mu_{\xi,\Gamma}(A_2)$.

Proof. Since $A_1, A_2 \subset X_\xi$, assume $A_1 = X(\varphi)$, $A_2 = X(\psi)$. By rule: $\vdash \neg(\varphi \land \psi) \Rightarrow \vdash B_i(a_1, \varphi) \land B_i(a_2, \psi) \rightarrow B_i(a_1 + a_2, \varphi \lor \psi)$, where $a_1 + a_2 \leq 1$, we have $\mu_{\xi,\Gamma}(X(\varphi) \cup X(\psi)) \geq \mu_{\xi,\Gamma}(X(\varphi)) + \mu_{\xi,\Gamma}(X(\psi))$. Therefore if $A_1, A_2 \subset X_\xi$ and $A_1 \cap A_2 = \emptyset$, then $\mu_{\xi,\Gamma}(A_1 \cup A_2) \geq \mu_{\xi,\Gamma}(A_1) + \mu_{\xi,\Gamma}(A_2)$.

Lemma 4.9 For any $C, D \subset X_\xi$, $\mu_{\xi,\Gamma}(C \cup D) \geq \mu_{\xi,\Gamma}(C) + \mu_{\xi,\Gamma}(D) - 1$.

Proof. Since $C, D \subset X_\xi$, assume $C = X(\varphi)$, $D = X(\psi)$, by axiom: $B_i(a, \varphi) \land B_i(b, \psi) \rightarrow B_i(max(a + b + 1, 0), \varphi \land \psi)$, we get $\mu_{\xi,\Gamma}(X(\varphi) \land X(\psi)) \geq \mu_{\xi,\Gamma}(X(\varphi)) + \mu_{\xi,\Gamma}(X(\psi)) - 1$.

Lemma 4.10 Let $B^\Gamma_i(\Gamma) = \{\Gamma \mid X(\varphi) \in \Gamma \subseteq \Gamma^\prime\}$, then $\mu_{\xi,\Gamma}(B^\Gamma_i(\Gamma')) = 1$.

Proof. For Γ is a finite formulas set, therefore $B^\Gamma_i(\Gamma) = X(\land B_i(1, \varphi i) \in \Gamma \land \varphi i)$, by axiom: $B_i(a, \varphi) \land B_i(b, \psi) \rightarrow B_i(max(a + b + 1, 0), \varphi \land \psi)$, we have that $\land B_i(1, \varphi i) \rightarrow B_i(1, \land \varphi i)$, so $B_i(1, \land B_i(1, \varphi i)) \in \Gamma \land \varphi i$ can be proved from Γ in $PBL_\xi(N)$, so $\mu_{\xi,\Gamma}(B^\Gamma_i(\Gamma')) = 1$.

Lemma 4.11 Let $\Lambda_\xi(\Gamma) = \{\Gamma' \mid P_\xi(\Gamma') \supset P_\xi(\Gamma')\}$, then $\mu_{\xi,\Gamma}(\Lambda_\xi(\Gamma)) = 1$.

Proof. Suppose $\Gamma' \in B^\Gamma_i(\Gamma)$. If $B_i(a, \varphi) \in \Gamma$, by rule: $B_i(a, \varphi) \rightarrow B_i(1, B_i(a, \varphi))$, we get $B_i(1, B_i(a, \varphi)) \in \Gamma$, for $\Gamma' \in B^\Gamma_i(\Gamma)$, hence $B_i(a, \varphi) \in \Gamma'$. If $\neg B_i(a, \varphi) \in \Gamma$, by rule: $\neg B_i(a, \varphi) \rightarrow B_i(1, \neg B_i(a, \varphi))$, we get $B_i(1, \neg B_i(a, \varphi)) \in \Gamma$, for $\Gamma' \in B^\Gamma_i(\Gamma)$, hence $\neg B_i(a, \varphi) \in \Gamma'$. Therefore $B_i(a, \varphi) \in \Gamma$ iff $B_i(a, \varphi) \in \Gamma'$, which means for any $A \in X_\xi$, $\mu_{\xi,\Gamma}(A) = \mu_{\xi,\Gamma}(A)$, so $\Gamma \in \Lambda_\xi(\Gamma)$, and furthermore $B^\Gamma_i(\Gamma) \subseteq \Lambda_\xi(\Gamma)$. For $\mu_{\xi,\Gamma}(B^\Gamma_i(\Gamma')) = 1$, we get $\mu_{\xi,\Gamma}(\Lambda_\xi(\Gamma)) = 1$ as desired.
Lemma 4.12 For any \(\Gamma \in S_{\xi} \), \(P_{\xi}(\Gamma) \) is a \(PBL_{r}(N) \)-inner probability space.

Proof. By Lemma 4.2 to Lemma 4.11, we can get the claim immediately.

Lemma 4.13 The inner probabilistic model \(PM_{\xi} \) is a finite model.

Proof. By the definition of \(S_{\xi} \), the cardinality of \(S_{\xi} \) is no more than the cardinality of \(\varphi(\text{Sub}(\xi)) \), which means \(|S_{\xi}| \leq 2^{\text{Sub}(\xi)} \).

Lemma 4.14 In the canonical \(PBL_{r}(N) \)-model \(PM_{\xi} \), for any \(\Gamma \in S_{\xi} \) and any \(\varphi \in \text{Sub}(\xi) \), \(\varphi \in \Gamma \Leftrightarrow (PM_{\xi}, \Gamma) \models \varphi \).

Proof. We prove the lemma by induction on the structure of \(\varphi \). In the following, we only prove that \(B_{i}(a, \psi) \in \Gamma \Leftrightarrow (PM_{\xi}, \Gamma) \models B_{i}(a, \psi) \).

If \(B_{i}(a, \psi) \in \Gamma \), by the construction of \(PM_{\xi} \), \(\mu_{\xi}(X(\psi)) = b \geq a \), we get \((PM_{\xi}, \Gamma) \models B_{i}(a, \psi) \).

If \(B_{i}(a, \psi) \notin \Gamma \), then \(\neg B_{i}(a, \psi) \in \Gamma \), by the construction of \(PM_{\xi} \) and Lemma 4.5, since \(\text{sup}(\text{Pro}_{\xi}(\psi)) \in \text{Pro}_{\xi}(\psi) \), so we have \(\text{sup}(\text{Pro}_{\xi}(\psi)) = b < a \), and \(\mu_{\xi}(X(\psi)) = b \), which implies \((PM_{\xi}, \Gamma) \not\models \neg B_{i}(a, \psi) \), therefore \((PM_{\xi}, \Gamma) \not\models B_{i}(a, \psi) \).

Proposition 4.3 (Finite model property of \(PBL_{r}(N) \)) If \(\Gamma \) is a finite set of consistent formulas, then there is a finite model \(PM \) such that \(PM \models_{PBL_{r}(N)} \Gamma \).

Proof. By Lemma 4.14, there exists a finite \(PBL_{r}(N) \)-model \(PM_{\xi} \) such that \(\Gamma \) is satisfied in \(PM_{\Gamma} \).

Since any inner probabilistic model of \(PBL_{r}(N) \) is also an inner probabilistic model of \(PBL_{r} \), and any formula of \(PBL_{r} \) can be regarded as a formula of \(PBL_{r}(N) \), given a consistent \(PBL_{r} \)-formula \(\xi \), we can construct a \(PBL_{r}(N) \)-inner probabilistic model \(PM_{\xi} \) that satisfies formula \(\xi \) by the above lemmas. Since \(PM_{\xi} \) is also \(PBL_{r} \)-inner probabilistic model, so we can construct a \(PBL_{r} \)-inner probabilistic model \(PM \) that satisfies the given consistent \(PBL_{r} \)-formula \(\xi \), this implies the finite model property of \(PBL_{r} \).

Proposition 4.4 (Finite model property of \(PBL_{r} \)) If \(\Gamma \) is a finite set of consistent formulas, then there is a finite model \(PM \) such that \(PM \models_{PBL_{r}} \Gamma \).

Proof. Let \(a_{1}, a_{2}, \ldots, a_{n} \) be all rational numbers that occur in the formulas in \(\Gamma \). Then there are natural numbers \(k_{1}, k_{2}, \ldots, k_{n}, N \) such that \(a_{i} = k_{i}/N \). Firstly, since the axioms and rules of \(PBL_{r}(N) \) is also the axioms and rules of \(PBL_{r} \), therefore it is clear that if a finite set of formulas \(\Gamma \) is consistent with \(PBL_{r} \), then it is also consistent with \(PBL_{r}(N) \). By Proposition 4.3, there is a finite model of \(PBL_{r}(N) \), \(PM \), satisfying \(\Gamma \). Since the model of \(PBL_{r}(N) \) is also a model of \(PBL_{r} \), so we get the proposition.

Proposition 4.5 (Weak completeness of \(PBL_{r} \)) If \(\Gamma \) is a finite set of formulas, \(\varphi \) is a formula, and \(\Gamma \models_{PBL_{r}} \varphi \), then \(\Gamma \vdash_{PBL_{r}} \varphi \).

Proof. Suppose not, then \((\Lambda \Gamma) \land \neg \varphi \) is consistent with respect to \(PBL_{r} \), by Proposition 4.4, there exists an inner probabilistic model \(PM_{(\Lambda \Gamma) \land \neg \varphi} \) such that \((\Lambda \Gamma) \land \neg \varphi \) is satisfied in \(PM_{(\Lambda \Gamma) \land \neg \varphi} \), but this contradicts our assumption that \(\Gamma \models_{PBL_{r}} \varphi \), thus the proposition holds.

From Proposition 4.4, we can get a procedure for checking if a formula \(\varphi \) is \(PBL_{r} \)-consistent. We simply construct every probabilistic model with \(2^{\text{Sub}(\varphi)} \) states (Remember that in the construction of the finite model of \(\varphi \), the values of inner probability measure are in the form
of k/N, where N is a constant natural number. Since there are finite numbers having the form of k/N, where $0 \leq k \leq N$, therefore the number of inner probability measures assigned to the measurable sets is also finite, and consequently, the number of models with $2^{\text{Sub}(\phi)}$ states is finite). We then check if ϕ is true at some state of one of these models. By Proposition 4.4, if a formula ϕ is PBL_r-consistent, then ϕ is satisfiable with respect to some models. Conversely, if ϕ is satisfiable with respect to some models, then ϕ is PBL_r-consistent.

As a consequence, we can now show that the provability problem for PBL_r is decidable.

Proposition 4.6 (Decidability of PBL_r) The provability problem for PBL_r is decidable.

Proof. Since ϕ is provable in PBL_r iff $\neg \phi$ is not PBL_r-consistent, we can simply check if $\neg \phi$ is PBL_r-consistent. By the above discussion, there is a checking procedure. Hence the provability problem for PBL_r is decidable.

5. Comparison of Fagin and Halpern’s logic with our work

The probabilistic knowledge logic proposed by Fagin and Halpern in [3] is a famous epistemic logic with probabilistic character. In this section, we mainly compare the logic in [3] with our logics in terms of their syntax, inference system, semantics and proof technique.

1. **Syntax.** The basic formulas of logic in [3] can be classified into two categories: the standard knowledge logic formula such as $K_i \phi$, and the probability formula such as $a_1 w_i(\phi_1) + ... + a_k w_i(\phi_k) \geq b$. The formula $K_i^A(\phi)$ is an abbreviation for $K_i(w_i(\phi) \geq b)$, intuitively, this says that “agent i knows that the probability of ϕ is greater than or equal to b”. Except the difference of knowledge and belief operators, the formula $K_i^A(\phi)$ is similar to the formula $B_i(b, \phi)$ of this chapter. But in this chapter, $B_i(b, \phi)$ is a basic formula, and there is no formula such as $a_1 w_i(\phi_1) + ... + a_k w_i(\phi_k) \geq b$, because $a_1 w_i(\phi_1) + ... + a_k w_i(\phi_k) \geq b$ contains non-logical symbols such as “×”, “+” and “≥”, and accordingly, the language and reasoning system have to deal with linear inequalities and probabilities. We get a tradeoff between expressive power and complexity, and the only basic formula of this chapter is $B_i(b, \phi)$, which makes the syntax and axioms of our logic system simpler.

2. **Inference system.** The inference system in [3] consists of four components: the first component includes axioms and rules for propositional reasoning; the second component includes the standard knowledge logic; the third component allows us to reason about inequalities (so it contains axioms that allow us to deduce, for example, that $2x \geq 2y$ follows from $x \geq y$); while the fourth is the only one that has axioms and inference rules for reasoning about probability. It is worthy to note that $W3 (w_i(\phi \land \psi) + w_i(\phi \land \neg \psi) = w_i(\phi))$ in [3] corresponds to finite additivity, not countable infinite additivity, i.e., $\mu(A_1 \cup A_2 \cup ... \cup A_n) = \mu(A_1) + \mu(A_2) + ... + \mu(A_n)$, is a countable collection of disjoint measurable sets. As Fagin and Halpern indicated, they think it is enough to introduce an axiom corresponding to finite additivity for most applications. They could not express countable infinite additivity in their language.

In this chapter, there are two components in our inference systems: the first component includes axioms and rules for propositional reasoning; the second component includes axioms and rules for probabilistic belief reasoning. In our system, when one perform reasoning, one need not to consider different kinds of axioms and rules that may involve linear inequalities or probabilities. In order to express the properties of probability (such as finite additivity,
monotonicity or continuity) by probabilistic modal operator directly instead of by inequalities and probabilities, we introduce some new axioms and rules. While in Fagin and Halpern’s paper, these properties are expressed by the axioms for linear inequalities or probabilities. Similar to Fagin and Halpern’s logic system, we only express finite additivity, but not countable infinite additivity, because we cannot express such property in our language, in fact, we believe that this property cannot be expressed by finite length formula in reasoning system. On the other hand, we think the finite additivity property is enough for the most of meaningful reasoning about probabilistic belief.

3. Semantics. In [3], a Kripke structure for knowledge and probability (for \(n \) agents) is a tuple \((S, \pi, K_1, ..., K_n, P)\), where \(P \) is a probability assignment, which assigns to each agent \(i \in \{1, ..., n\} \) and state \(s \in S \) a probability space \(P(i,s) = (S_{i,s}, X_{i,s}, \mu_{i,s}) \), where \(S_{i,s} \subseteq S \).

To give semantics to formula such as \(w_i(\varphi) \geq b \), the obvious way is \((M,s) \models w_i(\varphi) \geq b \iff \mu_{i,s}(S_{i,s}(\varphi)) \geq b \), here \(S_{i,s}(\varphi) = \{ s' \in S_{i,s} | (M,s') = \varphi \} \). The only problem with this definition is that the set \(S_{i,s}(\varphi) \) might not be measurable (i.e., not in \(X_{i,s} \)), so that \(\mu_{i,s}(S_{i,s}(\varphi)) \) might not be well defined. They considered two models. One model satisfies MEAS condition (for every formula \(\varphi \), the set \(S_{i,s}(\varphi) \) in \(X_{i,s} \)) to guarantee that this set is measurable, and the corresponding inference system \(AX_{MEAS} \) has finite additivity condition W3. The other model does not obey MEAS condition, and the corresponding inference system \(AX \) has no finite additivity condition W3. To deal with the problem in this case, they adopted the inner measures \((\mu_{i,s})^\ast \) rather than \(\mu_{i,s} \), here \((\mu_{i,s})^\ast(A) = \sup(\{ \mu_{i,s}(B) | B \subseteq A \text{ and } B \in X_{i,s} \}) \), here \(sup(A) \) is the least upper bound of \(A \). Thus, \((M,s) \models w_i(\varphi) \geq b \iff (\mu_{i,s})^\ast(S_{i,s}(\varphi)) \geq b \).

Similar to the model of \(AX_{MEAS} \) in [3], in the model of \(PBL_w \), \(X_{i,s} \) satisfies the following conditions: (a) If \(p \) is an atomic formula, then \(ev_{PM}(p) = \{ s' | \pi(s',p) = \text{true} \} \in X_{i,s} \); (b) If \(A \in X_{i,s} \), then \(S_{i,s} - A \in X_{i,s} \); (c) If \(A_1, A_2 \in X_{i,s} \), then \(A_1 \cap A_2 \in X_{i,s} \); (d) If \(A \in X_{i,s} \) and \(a \in [0,1] \), then \(\{ s' | \mu_{i,s}(A) \geq a \} \in X_{i,s} \).

In contrast with \(PBL_w \), the models of \(PBL_f \) and \(PBL_r \) are similar to the model of \(AX \) in [3]. There is an inner probability measure rather than probability measure in the models of \(PBL_f \) and \(PBL_r \). In the model of \(AX \), the semantics of formula is given by inner probability measure induced by probability measure. Meanwhile, in the models of \(PBL_f \) and \(PBL_r \), we introduce inner probability measure directly, which satisfies some weaker additivity properties.

Since there is no accessible relation in our model, we need not to consider the conditions about accessible relations. The only conditions we have to consider are probability space at different states, which simplifies the description and construction of model.

4. Proof technique of completeness. In [3], they prove the completeness by reducing the problem to the existence of solution of a finite set of linear inequalities. But this method does not provide the value of measure assigned to every possible world, and just assures the existence of measure. Moreover, this method cannot provide completeness property in the case of infinite set of formulas, which needs some linear inequalities axioms to characterize the existence of solutions of infinitely many linear inequalities that contain infinitely many variables. This seems impossible when we have only finite-length formulas in the language. In this chapter, the proof for completeness is significant different from the proof in [3]. There
are no auxiliary axioms such as the probability axioms and linear inequality axioms, which are necessary in the proof of [3]. We prove the completeness by constructing the model that satisfies the given consistent formulas set, our proof can also be used to deal with the case of infinite set of formulas. Furthermore, our proof can be generalized to get the completeness of other probabilistic logic systems because it depends very lightly on the concrete axioms and rules.

6. Conclusions

In this chapter, we proposed probabilistic belief logics PBL_{ω}, PBL_f and PBL_r, and gave the respective probabilistic semantics of these logics. Furthermore we proved the soundness and completeness of PBL_{ω}, the finite model property of PBL_f and the decidability of PBL_r. The above probabilistic belief logics allow the reasoning of uncertain information of agent in artificial intelligent systems.

The probabilistic semantics of probabilistic belief logic can also be applied to describe other probabilistic modal logic by adding the respective restricted conditions on probability space. Just as different assumptions about the relationship between worlds, can be captured with different axioms in modal logics, different assumptions about the interrelationships between probability assignment spaces at different states, can also be captured axiomatically. Furthermore, the completeness proof in this chapter can be applied to prove the completeness of other probabilistic modal logics.

It seems to us that some further research directions lie in the following several problems: whether the finite model property for PBL_{ω} holds, whether the decidability for the provability problem of PBL_{ω} or PBL_f holds, moreover, if the decidability holds, what is the complexity of the corresponding provability problem. These problems seem to be much more difficult and remain open. The techniques used in classical modal logics are not suit to solve such problems, and some new techniques may be necessary.

7. Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grants No. 60873025, and the Foundation of Provincial Key Laboratory for Computer Information Processing Technology of Soochow University under Grant No. KJS0920.

8. References

The current book is a nice blend of number of great ideas, theories, mathematical models, and practical systems in the domain of Semantics. The book has been divided into two volumes. The current one is the first volume which highlights the advances in theories and mathematical models in the domain of Semantics. This volume has been divided into four sections and ten chapters. The sections include: 1) Background, 2) Queries, Predicates, and Semantic Cache, 3) Algorithms and Logic Programming, and 4) Semantic Web and Interfaces. Authors across the World have contributed to debate on state-of-the-art systems, theories, mathematical models in the domain of Semantics. Subsequently, new theories, mathematical models, and systems have been proposed, developed, and evaluated.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
