We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,800
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Evaluation for the UMA’s of Diversified Breeding in the Mixteca Poblana, México

Oscar Agustín Villarreal Espino Barros¹, José Alfredo Galicia Domínguez¹, Francisco Javier Franco Guerra¹, Julio Cesar Camacho Ronquillo¹ and Raúl Guevara Viera²

¹Benemérita Universidad Autónoma de Puebla
²Universidad de Camagüey
¹México
²Cuba

1. Introduction

The ethnic zone named Mixteca in the state of Puebla, Mexico; is a region with rough topography, arid and semi-arid climate, critical poverty, and isolated of the development. In that area, the white tail deer (*Odocoileus virginianus*) from the "mexicanus" subspecies is used, in Units for the Management and Wildlife Conservation or UMA’s, by means of the model called Diversified Breeding (livestock) (Villarreal, 2006). This technology is based on a productive model of Diversified Integrated and Self-sufficient type (Sustainable Farming Systems), where the exploitation of bovine of meat is diversified, by means of rational and sustained utilization of the white tailed deer, other species of the wild fauna and their habitat, in the hunting game and the tourism of nature. These sustainable models are an alternative for the conservation of the natural resources, since they’ll favor the recycling of nutrients, production of biomass and their movement across the ecosystem, achieving to establish schemes that integrate the productive managing, with the exchange of energy and nutrients, with a natural base of coherent performance (Pimentel, 2001). The objective of this work was to realize an ecological and socioeconomic evaluation of the application of the model of Diversified Breeding in the UMA's of white-tailed deer, in the Mixteca region in the south of the Mexican state of Puebla (Villarreal et al. 2008).

1.1 Study’s setting

The Mixteca poblana belongs to the dry tropic of the depression of the Balsas River (Fig. 1), with habitat whit tropical deciduous forest (Fig. 2), arid brushwood and oaks forest, among other vegetative types. It covers 47 Municipalities, with a principally mountainous surface of 10,565 km². Due to its geographical conditions the region shows under agricultural potential, the activities of the primary sector of the economy are the agriculture of temporarily and the extensive ranching of bovine’s and goats livestock. The secondary and tertiary activities concentrated in two growth points, the cities of Tehuacán and Izúcar of Matamoros (Villarreal, 2006). Due to the lack of opportunities of development the rural
population migrates principally to the New York, California and Texas states in the American Union. In the region the white tailed deer of the "mexicanus" subspecies, is distributed in 37 Municipalities by a surface of 547,550 ha. (Villarreal & Guevara, 2002).

Fig. 1. Map from location of Mixteca region, Puebla State, Mexico.

Fig. 2. Tropical deciduous forest in the Mixteca Poblana, México (Picture, Oscar Villarreal).
2. Materials and methods

The application of the Pressure-State-Response framework or PSR was used, which allows to analyze and to quantify the socioeconomic and environmental sustainability of agricultural systems to regional or local levels (De Camino & Muller, 1993; OCDE, 1993 Winograd, 1995). The work was realized by means of technologies of group by the farmers from seven UMA's, as well as the collection of information of all the UMA's in governmental dependences, into federal level as the Environment and Natural Resources Secretary (SEMARNAT), and Puebla State Government as, the Sustainable Environmental and Territorial Organization Secretary (SSAOT), and the Rural Development Secretary (SDR). The information was analyzed attending to a group of variables of the technological model such as: the population density, evaluation of the habitat, carrying capacity and diversity of the diet, the rate of crop and regional development between others. The determined results for the different variables used in the matrix appeared for unit of measure, or according to the type of action quantifiable.

3. Results and discussions

The socioeconomic and environmental evaluation by means of the PSR matrix to the UMA's of Diversified Breeding, threw the following results (Table 1): the increase of the population density of deer like response to the application of the technological model; though they are not spectacular for treating itself about animals in free life, represent a positive progression already brought in hunting ranches in the southwest of the United States, and UMA's the North-East of Mexico (Brown, 2004). On the other hand, the calculations "in situ" of the primary productivity of phytomass usable in the order of 0,79 and 0,88 ton./dry matter per year, has contributed in the decisions of managing of the population density and its relation with the capacity of load, which is between 7,28 and 9,41 has./UA (United Animal), besides 139 vegetable species which have been identified like consumed by the deer. As a consequence, it has produced an optimization itself in the employment of food supplements and waters in critical epochs (Villarreal, 2006). The consumption of herbaceous plants and tree and shrub in the diet constitutes an advantage for the system of corporal reservations in drought (Savory, 2005; Villarreal & Marín, 2005); that produced increases in the rates of crop of the deer. Another undeniable aspect though not quantified, it is the relative to environmental services for the capture of carbon of the biomass, and the recycling nitrogen in the soil (Savory, 2005). In relation to the use of land, has been observed that for the past period from March, 2001 to December, 2009, occurred unexpectedly an increase in the number of properties incorporated as UMA's from 13 to 72, which means the pass from 14.423,92 ha. to 82.522,02 ha., incorporated into this model which respects the biodiversity and takes advantage of the animal resource in rational form; in addition, of six initial Municipalities it has increased to 35. This information relates to the degree of adoption in the time of the technology in the region, where the works of conservation, managing and crop, developed by institutions of top education (Benemérita Universidad Autónoma de Puebla) and lenders of technical services for the UMA's, have had good results recognized and supported by the Federal institutions Environment and Natural Resources Secretary (SEMARNAT) and Government of Puebla State, that are the organisms tracers of the public policies in the rural way.
<table>
<thead>
<tr>
<th>Variables</th>
<th>Element</th>
<th>Indicator</th>
<th>Period or years</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deer’s population</td>
<td>Growth</td>
<td>Population density</td>
<td>Before Later</td>
<td>-- + +</td>
</tr>
<tr>
<td>Habitat</td>
<td>Components</td>
<td>Evaluation</td>
<td>Before Later</td>
<td>-- +</td>
</tr>
<tr>
<td>Deer’s supply</td>
<td>Phytomass</td>
<td>Capacity of load</td>
<td>Before Later</td>
<td>-- Evaluated in situ</td>
</tr>
<tr>
<td></td>
<td>Consumption of forage</td>
<td>Variety</td>
<td>Before Later</td>
<td>Unknown 139 Spp.</td>
</tr>
<tr>
<td>Big game trophies</td>
<td>Utilization</td>
<td>Rate of crop</td>
<td>Before Later</td>
<td>-- +</td>
</tr>
<tr>
<td>Management of land</td>
<td>Extension</td>
<td>Surfaces (has.)</td>
<td>2001 2009</td>
<td>14.423.92 82.522,02</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>UMA’s</td>
<td>Number of lands</td>
<td>2001 2009</td>
<td>13 Predios 72 Predios</td>
</tr>
<tr>
<td>Regional development</td>
<td>Municipalities</td>
<td>Numbers</td>
<td>2001 2009</td>
<td>13 35</td>
</tr>
<tr>
<td>Socio-economic Development</td>
<td>Generation of permanents</td>
<td>Increase of each 1000 ha., of operation</td>
<td>Before Later</td>
<td>00 2-3</td>
</tr>
<tr>
<td>Information and participation</td>
<td>Activities of training and capture of decisions</td>
<td>UMA’s Management plan.</td>
<td>Before Later</td>
<td>-- ++</td>
</tr>
<tr>
<td>Agreements and events</td>
<td>Agreements big game trophies</td>
<td>Regional Tournament and Mexican “Slam”</td>
<td>Before After</td>
<td>Non include Include</td>
</tr>
<tr>
<td>Investigations and consultations</td>
<td>Universities and ONG’s</td>
<td>Researching groups</td>
<td>2000 2011</td>
<td>1 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Working groups</td>
<td>2000 2011</td>
<td>Anyone 5</td>
</tr>
<tr>
<td>Conservation</td>
<td>Protected natural areas</td>
<td>Number of Municipalities</td>
<td>1998 2011</td>
<td>9 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nº hectares</td>
<td>1998 2011</td>
<td>145.715,8 161.662,8</td>
</tr>
</tbody>
</table>

Table 1. Analysis of PSR Matrix (framework) to model of Diversified Breeding from Mixteca Poblana region, Mexico

Other measured indicators in the PSR matrix are: the participation of the producers in the accomplishment of socio cultural events such as: the “Thummler Award” (Mexican Deer Super Slam) and the "Regional Tournament of Hunting Game, slams directed in order to obtain big game trophies, which confirms the validity of the technological adoption, in the search of the sustainability of the use of the natural resources, in harmony with the agricultural activities to attack the poverty and social inequality (Fig 3); which they are a
reason of emigration of the population in productive age to the United States, and that affect the sustainable regional development (Villarreal, 2002, 2006).

Fig. 3. Arturo Villarreal, young hunter and his trophy of Mexican white tailed deer, taken in the Mixteca Poblana region (Picture from Oscar Villarreal).

In addition, it is necessary to indicate, the labor in favor of the wild fauna with game potential, since there are three groups of investigators that realize functions of researching, transferring of technology, extensions, promoting and advising (Villarreal et al. 2011). On the part of Benemérita Universidad Autónoma de Puebla (BUAP), stand out the groups of the Faculty of Veterinary and Animal Science (FMVZ) and the Biology School, besides the group of the Faculty of Veterinary and Animal Science, from Universidad Autónoma Metropolitana (UAM). The Benemérita Universidad Autónoma de Puebla has come organizing the “Symposiums on Game Animals of Mexico”, academic and national event that looks for the conservation of the natural resources and generation of socioeconomic benefits, using as tool the hunting game and the ecotourism.

On the other hand, the sector of the Non-Governmental Organizations (ONG’s), is represented in a general form by three groups that are employed at subject matters of forestry development join with wild fauna. Finally only there was only a natural protected area. The Biosphere Tehuacán-Cuicatlan Reserve (RBT-C), dependent organism on the National Commission of Natural Protected Areas (CONANP) from Environment and
Natural Resources Secretary, which includes nine Municipalities of the east of the region, with a surface of 145,715.8 ha., (Villarreal, 2006). On May 2, 2011, the Sustainable Environmental and Territorial Organization Secretary, of the Puebla State Government, had decreed the Natural Protected State Area “Tentzo’s Sierra”, which includes inside the Mixteca Poblana two north Municipalities with 15,947 ha. from the conservation and sustainable managing in to the region (Fig. 4).

Fig. 4. Dr. Rafael Moreno Valle, Governor of Puebla State and Eng. Juan Elvira Quesada, Minister of Environment and Natural Resources Secretary, during inauguration of Natural Protected State Area “Tentzo’s Sierra”. At right show up the Mexican royal (golden) eagle *Aquila chrysaetos canadensis* (Picture Oscar Villarreal).

4. Conclusion

We can conclude that the analysis-summary of the PSR matrix for the conservation and managing of the Mexican white-tailed deer in the UMA’s from Mixteca, demonstrated the potentials of the rational utilization of the cervid and its habitat, a regional level as resource of wild life inside the model of Diversified Breeding, to reach the sustainability of this technological model in the region, from the auto management, the empowerment and the community participation, respecting its biodiversity. Therefore, there is advisable the application of PSR matrix for similar valuations in other regions of Mexico.

We recommend to have care in the conservation and the appropriate managing of this biodiversity, since some threats besides the deforestation due to the advance of the urban borders, industrial and agricultural, it is the introduction of plants and species and
subspecies (geographical races) exotic animals, it means, foreign to the regional ecosystems, such as: the red deer (*Cervus elaphus*), sika deer (*Cervus nippon*), axis deer (*Axis axis*), fallow deer (*Dama dama*), Texan white tailed deer (*Odocoileus virginianus texanus*) and European wild boar (*Sus scropha*), among other exotic species (Alvarez et al. 2008). The society in general and the government in its three levels (Municipal, State and Federal) are correspondents of the conservation, managing and rational utilization and supported of the Mexican white tailed deer and its habitat for the benefit of the Puebla society, Mexico and the world.

5. References


New Advances and Contributions to Forestry Research consists of 14 chapters divided into three sections and is authored by 48 researchers from 16 countries and all five continents. Section Whither the Use of Forest Resources, authored by 16 researchers, describes negative and positive practices in forestry. Forest is a complex habitat for man, animals, insects and micro-organisms and their activities may impact positively or negatively on the forest. This complex relationship is explained in the section Forest and Organisms Interactions, consisting of contributions made by six researchers. Development of tree plantations has been man’s response to forest degradation and deforestation caused by human, animals and natural disasters. Plantations of beech, spruce, Eucalyptus and other species are described in the last section, Amelioration of Dwindling Forest Resources Through Plantation Development, a section consisting of five papers authored by 20 researchers. New Advances and Contributions to Forestry Research will appeal to forest scientists, researchers and allied professionals. It will be of interest to those who care about forest and who subscribe to the adage that the last tree dies with the last man on our planet. I recommend it to you; enjoy reading it, save the forest and save life!

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
