We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,000
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Fighting Virus and Parasites with Fish Cytotoxic Cells

M. Ángeles Esteban, José Meseguer and Alberto Cuesta

Fish Innate Immune System Group,
Department of Cell Biology and Histology,
Faculty of Biology, University of Murcia, Murcia
Spain

1. Introduction

Cell-mediated cytotoxic (CMC) activity is the main cellular immunological response to kill tumor cells, virus-infected cells and parasites (Groscurth, 1989). In mammalian species this is carried out by several leucocyte populations depending on the non-specific/innate and specific/adaptive immune response. Among the last ones, the CMC activity is carried out by cytotoxic T lymphocytes (CTLs), expressing the co-receptor CD8, after repeated antigen contact and restricted to major histocompatibility complex (MHC) I. Among the innate cytotoxic cells, acting without previous neither sensitization nor MHC I restriction, the most important are the natural killer (NK) cells, which consist on large granular lymphocytes (markers: CD16/56⁺ CD8⁻). However, other cell types such as the lymphokine-activated killer cells (LAK), adherent lymphokine-activated killer cells (ALAK), antibody-dependent cytotoxic cells (ADCC), macrophages, neutrophils and acidophils are also responsible for innate CMC activity (Groscurth, 1989). This CMC activity has been described in all the vertebrate animals with substantial differences. In the case of fish, the first vertebrate group showing both innate and adaptive immune system, they are not an exception. However, deeper studies are needed to clearly understand the appearance and evolution of the fish cytotoxic cells and their activity from an evolutionary point of view. Furthermore, the great potential of aquaculture industry and lack of commercial antiviral and antiparasitic vaccines for fish make necessary to increase the knowledge on the CMC activity of fish.

2. Cell-mediated cytotoxic activity in fish

In all the fish studied so far, different populations of leucocytes from head-kidney (the main haematopoietic tissue in fish), peripheral blood, spleen, thymus, peritoneal exudates or gut display variable cytotoxic activity. The fish innate CMC, not restricted to the MHC, is mainly carried out by the named non-specific cytotoxic cells (NCC), which show great differences at morphological and functional levels between fish species (Carlson et al., 1985; Evans et al., 1984a-d, 1987; Graves et al., 1984). The adaptive cytotoxic activity is restricted to the MHC, shows memory and is formed by CTLs (Fischer et al., 2006; Nakanishi et al., 2002, in press; Somamoto et al., 2000; Verlhac et al., 1990). Most of the data from fish CMC come from the activity against xenogeneic tumor cells but recently the interest to evaluate their
potential against viral infections and the generation of proper tools is increasing. One of the main problems associated with the study of the fish immune system, and the CMC in particular, is the lack of proper tools. Most of the studies are based on morpho-functional data but the lack of commercial antibodies is a serious task to definitely identify the leucocyte-types involved. Furthermore, most data obtained in mammalian CMC come from very few species such as human, rat and mouse which show some differences at molecular and cellular levels. However, in fish, the number of evaluated species is larger, including nurse shark (*Ginglymostoma cirratum*), rainbow trout (*Oncorhynchus mykiss*), common carp (*Cyprinus carpio*), tilapia (*Oreochromis niloticus* or *Tilapia mossambica*), channel catfish (*Ictalurus punctatus*), Atlantic salmon (*Salmo salar*), Japanese flounder (*Paralichthys olivaceus*), orange-spotted grouper (*Epinephelus coioides*), zebrafish (*Danio rerio*), European sea bass (*Dicentrarchus labrax*) or gilthead seabream (*Sparus aurata*), what greatly increases the variability and difficult the interpretation and correlation between species. However, most of the knowledge comes from the cytotoxic activity against xenogeneic or allogeneic cells and there is few information regarding the role and importance in combating fish virus and parasites.

2.1 Fish innate cytotoxic cells

First evidences showed that head-kidney leucocytes from several freshwater fish (common carp; crucian carp, *Carassius cuvieri*; grass carp, *Ctenopharyngodon idella*; pond loach, *Misgurnus anguillicaudatus*; and northern snakehead, *Channa argus*) were cytotoxic towards mammalian cell lines (Hinuma et al., 1980). Afterwards, a series of reports on channel catfish widely described the morphology, biochemical and physical requirements, killing mechanisms, etc. of these leucocytes (Carlson et al., 1985; Evans et al., 1984a-d, 1987; Graves et al., 1984). They showed for the first time that head-kidney catfish have small non-adherent, non-phagocytic and agranular cells displaying the cytotoxic activity, which were catalogued as monocyte-like but also resembled to lymphocytes (Evans et al., 1988). Obviously, they showed different morphological features than the mammalian NK cells, but very similar functional properties. These leucocytes were called non-specific cytotoxic cells (NCC) and are considered phylogenetical precursors of the mammalian NK cells. However, studies since then, including more fish species, have shown that there are many different leucocyte-types displaying the innate CMC activity but sharing the NK cell functions. Thus, the term of fish NCC population should be renamed as NCC activity more than a subpopulation since it is not a discrete and concrete leucocyte type. After that, fish NCCs have been characterized as single or heterogeneous population of leucocytes (Table 1) including lymphocytes, monocyte-macrophages and/or granulocytes (neutrophils and/or acidophils) (Bielek, 1988, 1991; Cammarata et al., 2000; Cuesta et al., 1999; Greenlee et al., 1991; Kurata et al., 1995; McKinney et al., 1986; Meseguer et al., 1994, 1996; Mulero et al., 1994; Ordás et al., 2011; Pettey & McKinney, 1983; Sasaki et al., 2002; Seeley & Weeks-Perkins, 1993).

Though very different in terms of origin and morphology, fish NCCs share the cytotoxic activity and showed the same mechanism as the mammalian NK cells (Groscurth, 1989; Lancki, 1998; Roitt et al., 1996): target recognition and binding, activation and delivery of the lethal hit and finally the target death. In the first step, some membrane molecules have been identified playing a role in the fish CMC. Vimentin-like proteins were identified in the...
<table>
<thead>
<tr>
<th>Fish species</th>
<th>Tissues</th>
<th>Effector cells</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ictalurus punctatus</td>
<td>HK, Sp, PBL</td>
<td>Small agranular, non-adherent leucocytes (NCC)</td>
<td>Evans et al., 1984c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Evans et al., 1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Graves et al., 1984</td>
</tr>
<tr>
<td>Oncorhynchus mykiss</td>
<td>HK, Th, PBL, Sp</td>
<td>Small agranular monocellular leucocytes RTS11 cell line</td>
<td>Greenlee et al., 1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hayden & Laux, 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moody et al., 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ordás et al., 2011</td>
</tr>
<tr>
<td>Salmo salar</td>
<td>HK, PBL, Sp</td>
<td>Small agranular monocellular leucocytes</td>
<td>Moody et al., 1985</td>
</tr>
<tr>
<td>Ginglymostoma cirratum</td>
<td>PBL</td>
<td>Macrophages</td>
<td>McKinney et al., 1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pettey & McKinney, 1983</td>
</tr>
<tr>
<td>Notemigonus crysoleucas</td>
<td>HK, PBL, Sp</td>
<td>ND</td>
<td>Moody et al., 1985</td>
</tr>
<tr>
<td>Stegastes partitus</td>
<td>HK, Sp</td>
<td>ND</td>
<td>McKinney & Schmale, 1994a</td>
</tr>
<tr>
<td>Oreochromis sp.</td>
<td>HK, PBL, Sp, PE</td>
<td>Lymphocytes, Monocyte-macrophages, Granulocytes</td>
<td>Faisal et al., 1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jaso-Friedmann & Evans, 1999</td>
</tr>
<tr>
<td>Fundulus heteroclitus</td>
<td>HK, Sp</td>
<td>ND</td>
<td>Faisal et al., 1991</td>
</tr>
<tr>
<td>Opsanus tau</td>
<td>HK, PBL, Sp, PE</td>
<td>Lymphocytes?</td>
<td>Seeley & Weeks-Perkins, 1993</td>
</tr>
<tr>
<td>Cyprinus carpio</td>
<td>HK, Sp, PBL, Th</td>
<td>Lymphocytes, Monocyte-macrophages, Neutrophils</td>
<td>Bielek 1988, 1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kurata et al., 1995</td>
</tr>
<tr>
<td>Sparus aurata</td>
<td>HK, PBL, Sp, PE, Th</td>
<td>Lymphocytes, Monocyte-macrophages, Acidophils</td>
<td>Cuesta et al., 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Meseguer et al., 1994, 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mulero et al., 1994</td>
</tr>
<tr>
<td>Diecentrarchus labrax</td>
<td>HK, PBL, Sp, PE, Th</td>
<td>Lymphocytes, Monocyte-macrophages, Neutrophils</td>
<td>Cammarata et al., 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Meseguer et al., 1994, 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mulero et al., 1994</td>
</tr>
<tr>
<td>Danio rerio</td>
<td>PE</td>
<td>ND</td>
<td>Moss et al., 2009</td>
</tr>
</tbody>
</table>

HK, head-kidney; PBL, peripheral blood leucocytes; Th, thymus; Sp, spleen; PE, peritoneal exudate; ND, not determined.

Table 1. Characteristics of representative fish NCCs.

catfish NCCs and inferred to be important in the recognition and binding to the target cells (Jaso-Friedmann et al., 1993). However, the best characterization of this first step was achieved by the finding of the non-specific cytotoxic cell receptor protein-1 (NCCRP-1) by the generation and selection of a monoclonal antibody (5C6) that completely blocked catfish NCC activity (Evans et al., 1988; Jaso-Friedmann et al., 1988, 2001). This receptor showed important features: 1) the 5C6 antibody recognizes the NCCs of most studied fish and even
the mammalian NK and LAK cells, demonstrating its conservation (Cuesta et al., 2005a; Evans et al., 1988; Jaso-Friedmann & Evans, 1999; McKinney & Schmale, 1997); 2) the NCC activity is blocked by the 5C6 antibody (Evans et al., 1988; Iwanowicz et al., 2004; Jaso-Friedmann et al., 1988, 2001); 3) the NCCRP-1 is a 32-34 kDa protein found in the membrane of NCCs and binds to a 42 and 46 kDa from the tumor targets and protozoan that they kill, respectively (Evans et al., 1996; Jaso-Friedmann et al., 1997a, 1997b, 2001; Lester et al., 1994); and 4) it is a type-III membrane protein and its activation led to tyrosine and serine phosphorylation and uses the Jak-STAT signalling pathway (Evans et al., 1999; Jaso-Friedmann et al., 1995, 2001). After binding to the target cell, mammalian NKs and fish NCCs share the same killing mechanisms including granule-dependent (release of perforin and granzymes) and granule-independent (Fas/FasL system) (Cuesta et al., 2003a; Hogan et al., 1999; Jaso-Friedmann et al., 2000; Shen et al., 2002). The release of perforin and granzyme contained in the granules is calcium-dependent and the NCC activity is greatly inhibited or completely abrogated by Ca\(^{2+}\)-chelators demonstrating their involvement in the NCC-mediated cytotoxic activity (Carlson et al., 1985; Hogan et al., 1999). In the last decade, fish perforin (Athanasopoulou et al., 2009; Hwang et al., 2004; Toda et al., 2011a) and granzyme (Huang et al., 2010; Praveen et al., 2004, 2006; Wernersson et al., 2006) sequences have been obtained but their gene expression or function has been scarcely related to the innate cytotoxic activity (Ordás et al., 2011; Praveen et al., 2006). The granule-independent killing mechanism has also been identified in fish NCCs by the use of commercial antibodies or functional studies (Ca-chelators) leading to the identification of the Fas/FasL system in fish NCCs (Bishop et al., 2002; Cuesta et al., 2003a; Evans et al., 2000, 2001; Jaso-Friedmann et al., 2000; Kaur et al., 2004; Long et al., 2004). After the delivery of the lethal hit, the killing of the target cells occurs by two conserved pathways: necrosis and apoptosis (Cuesta et al., 1999; Meseguer et al., 1994, 1996; Mulero et al., 1994). At the end of the cytotoxic reaction, while NK cells are able to recycle, inactivate or dye (Leibson, 1997) the very few data available in fish NCCs demonstrate that they are unable to recycle and dye by apoptosis after encounter the target cells and kill them (Bishop et al., 2000; Evans et al., 1984a). Finally, it is important to note that in most studies the ratios between fish NCCs and targets is usually higher than when using mammalian NK cells, a fact demonstrated by the very low fish NCC kinetic parameters (\(V_{\text{max}}\) or \(K_M\)) observed (Cuesta et al., 2002a; Evans et al., 1984a). Further characterization of the fish NCCs at molecular and cellular levels will help to elucidate their role in the immune response against virus-infected cells and parasites and the mechanisms involved.

Apart from fish NCCs, other innate cytotoxic cells resembling the mammalian NK cells have been discovered. In catfish peripheral blood leucocytes (PBL), two populations of NK-like cells have been identified: one able to kill allogeneic, but not autologous, cells and the other able to kill virus-infected catfish cells (Hogan et al., 1996, 1999; Shen et al., 2002, 2004; Stuge et al., 1997, 2000; Yoshida et al., 1995). These NK-like cells were able to proliferate after weak alloantigen stimulation and presence of specific growth factors giving to clonal NK-like cells, what has greatly allowed further characterization. First, they morphologically resembled the mammalian NK cells and resulted in large granular lymphocytes, similarly to those previously identified in carp (Bielek, 1988, 1991; Shen et al., 2002, 2004). Second, they were negative for 5C6 antibody and this NCC-marker failed to block the NK-like cells-mediated cytotoxic activity (Shen et al., 2002, 2004). Moreover, they express neither T (T cell receptor –TCR- \(\alpha, \beta\) or \(\gamma\) chains) nor B (immunoglobulin -Ig- chains) lymphocyte markers...
Clonal catfish NK cells induced apoptosis in their target cells by means of the calcium-dependent perforin/granzyme-mediated secretory lytic pathway since Ca-chelators completely abolished their cytotoxic activity (Hogan et al., 1999). Moreover, an antibody against leucocyte-function-associated antigen (LFA)-1, which is an adhesion molecule, inhibited the clonal catfish NK-like cell activity (Yoshida et al., 1995). Finally, clonal catfish NK-like cells bound to IgM through an FcμR and exerted an ADCC activity (Shen et al., 2002, 2003, 2004), which has been related to the presence of a similar antibody receptor (CD16) in mammalian NK cells.

Unfortunately, very little is still known about the fish innate receptors involved in the proper recognition of target cells. In mammals, it is widely known the presence of activating and inhibitory NK receptors that mediate the recognition and differentiate between self, normal and altered cells (Bakker et al., 2000). In humans, they belong to the killer immunoglobulin (KIR) or C-type lectin membrane (NKG2/CD94) receptors with either activating (ITAM) or inhibitory (ITIM) intracellular motifs. In fish, orthologs to human KIR and NKG2/CD94 gene receptors have been identified and named novel immune-type receptor (NITR) and KLR, respectively (Litman et al., 2001; Yoder 2004). Functional characterization of these receptors will help to elucidate the innate cytotoxic populations in fish, their regulation and role in disease.

2.2 Specific cytotoxic cells or CTLs

First evidences of the existence of specific cytotoxic cells in fish come from in vivo studies of allograft rejection (skin and scales), graft-versus-host reaction or delayed hypersensitivity reaction (DTH) (Manning & Nakanishi 1996; Nakanishi et al., 2002, in press). These experiments showed a great infiltration of lymphocytes and macrophages to the graft site, thymectomy greatly reduced these responses and the second exposure greatly reduced the time of response and increased the fish survival. All together clearly demonstrated the necessity of repeated sensitization and suggested the role of T lymphocytes. Afterwards, with the use of specific antibodies, it has been clearly demonstrated that the infiltrated lymphocytes were T-type, and very recently that were CD4+ (T helper) and CD8+ (T cytotoxic or CTL) (Abelli et al., 1999; Nakanishi et al., in press). However, these aspects are not reviewed here in depth since these concepts do not apply to aquaculture industry.

In vitro studies with PBLs from channel catfish, rainbow trout and gibel crucian carp (Carassius auratus langsdorfi) have been used as models for fish CTL characterization and have also demonstrated the restriction to the MHC class I (Fischer et al., 2006; Manning & Nakanishi 1996; Nakanishi et al., 2002, in press; Shen et al., 2002; Somamoto et al., 2002). These have demonstrated that immunized fish are able to kill hapten-modified autologous cells, allogeneic cell lines and allogeneic erythrocytes (Fischer et al., 1998; Nakanishi et al., 2002; Verlhac et al., 1990). In the case of channel catfish, the use of mixed leucocyte reactions (MLR) from PBLs and cloning of the cytotoxic effectors resulted in five types of clones (Stuge et al., 1997, 2000). The first type of clones (I) was related to catfish CTLs since they showed the following characteristics: exerted specific cytotoxic activity to the allogeneic cells used for immunization, expressed TCRαβ genes but not the Ig, were large granular lymphocytes and killed their targets by the calcium-dependent perforin/granzyme-mediated secretory lytic pathway (Shen et al., 2002; Stuge et al., 1997,
Unfortunately, it is not known whether they express the CD8αβ co-receptor that will definitely demonstrate that they are CTLs. This approach also produced other type of clones: group II) clones consisting on TCRαβ+ and CD4+ lymphocytes showing non-specific cytotoxic cells and killing the targets by both the perforin/granzyme and Fas/FasL system pathways (Edholm et al., 2007; Stuge et al., 2000; Zhou et al., 2001); group III) alloantigen-specific TCRαβ+ non-cytotoxic cells presumed to be T helper lymphocytes; group IV) TCRαβ− non-specific cytotoxic cells defined as NK-like cells and described above (Shen et al., 2002, 2004); and group V) TCRαβ− alloantigen-specific cytotoxic cells presumed to be γδT cells (Zhou et al., 2001). In the model using rainbow trout PBLs, the presence and function of CTLs has been documented thanks to the use of clonal trout effectors and MHC I-matching RTG-2 cell line targets, both sharing the same allele (Dijkstra et al., 2003). Sensitized-rainbow trout showed that only sorted IgM negative (sIgM−) PBLs were able to kill the targets in a specific manner (Fischer et al., 2003, 2006). These data suggested the involvement of trout CTLs that was further evidenced by the up-regulation of TCRα and CD8α genes in these sIgM− cells after allogeneic cell immunization. The generation of monoclonal antibodies for rainbow trout CD8α has allowed further characterization of this population (Takizawa et al., 2011). Sorted trout CD8α+ lymphocytes showed great expression of perforin or NK-lysin genes (related to the cytotoxic activity, either specific or not), as well as their up-regulation upon stimulation with the T-lymphocyte-mitogen PHA-L. However, further studies are still needed to clearly identify them as the trout specific cytotoxic cells or effectors since tissue distribution and gene expression pattern in CD8α+ cells show some contradictory results and deserve deeper analysis. In the last model, the use of clonal ginpuna crucian carp has been very productive. They firstly proved the existence of specific cytotoxic response against syngeneic virus-infected cells (Somamoto et al., 2000, 2002, 2006). Afterwards, they have purified CD8α+, CD4+, IgM+ and CD8α−CD4−IgM− leucocytes by means of house-produced antibodies and found that only the CD8α+ population was able to kill the allotargets in a specific manner, what definitely demonstrates the specific cytotoxic activity of fish CTLs (Toda et al., 2009). Moreover, they have also showed that these CTLs mediate the target cell killing by the perforin-mediated pathway since perforin and granzyme B inhibitors abolished almost completely the cytotoxic activity (Toda et al., 2011a, 2011b).

Further studies in other fish species have documented the presence of TCR and CD8 genes indicating presence of CTLs, but functional characterization of the CTL-mediated CMC activity is still lacking. Thus, CD8 genes, alpha or beta chains, have also been sequenced in fugu (Takifugu rubripes) (Suetake et al., 2007), Atlantic salmon (Salmo salar) (Moore et al., 2005), European sea bass (Buonocore et al., 2006), gilthead seabream (Randelli et al., 2006), Atlantic halibut (Hippoglossus hippoglossus) (Patel et al., 2008), common carp (Sun et al., 2007) or orange-spotted grouper (Xu et al., 2011). Unfortunately, CD8α gene might not be the definite CTL marker. In mammals, CTLs are characterized by the presence of the CD8αβ while the expression of the homodimer CD8αα is detected in NK cells, γδT cells and intestinal intraepithelial lymphocytes (Bonneville & Lang, 2002). Thus, unexpected data obtained in the functional characterization of CD8α−purified lymphocytes could reside in the potential purification of other cells different to CTLs with non-specific activity. However, further studies are needed to clearly ascertain the CTL presence, distribution and role in these fish species, some of them with aquaculture interest.
3. Cytotoxic response against fish tumors

Fish tumors are quite rare in the wild. However, aquaculture management, intensive culture conditions and environmental contamination may increase the incidence of fish tumors. Although some aspects, such as tumor structure and nature, metastasis or lethal effects have been studied, little information exists concerning the involvement of the immune system in protection against tumors (Campbell et al., 2001; McKinney & Schmale, 1994a, 1994b, 1997; Romano & Marozzi, 2004; Schmale et al., 1994, 2004; Thompson & Kostiala, 1990; Vicha & Schmale, 1994). Thus, most of the information regarding fish cytotoxic activity comes from the use of hapten-modified autologous cells or xenogeneic/allogeneic cell lines (Evans et al., 1984a-d, 1987; Fischer et al., 2006; Graves et al., 1984; Manning & Nakanishi, 1996; Nakanishi et al., 2002; Shen et al., 2002; Verlhac et al., 1990). So far, fish immune response against tumors has been slightly evaluated. In the bicolour damselfish naturally suffering of neurofibromatosis (DNF) (caused by a retrovirus), study of the immune response has provided information with respect to CMC activity, morphology and distribution, degranulation of eosinophilic granular cells (EGCs) and lymphocyte proliferation (Vicha & Schmale, 1994; McKinney and Schmale, 1994a, 1994b; Campbell et al. 2001; Schmale et al. 2004). Most of the cytotoxic activity of damselfish leucocytes against DNF-derived target cell lines resided in the spleen whilst in the head-kidney it was quite low. Interestingly, specificity suggested that this activity was likely carried out by CTLs in the spleen and by NCCs in the pronephros (McKinney & Schmale, 1994a). Later, they demonstrated that the 5C6+ lymphocytes showed all the cytotoxic activity against the retrovirus-infected DNF tumor cell lines, suggesting the presence and role of damselfish CTLs, whilst the 5C6− leucocytes were only able to kill xenogeneic erythrocytes (McKinney & Schmale, 1997). Unfortunately, deeper characterization of this CMC model has been abandoned.

The use of zebrafish as a model for human cancer would also help to understand the fish immune response against tumors, and concretely the role played by cytotoxic cells. As mentioned above, zebrafish showed NCCs in the peritoneal cavity that were positive for the 5C6 antibody and exerted cytotoxic activity against xenogeneic tumor cells (Moss et al., 2009). Moreover, the complete genome sequence allow to identify major molecules involved in the cytotoxic activity such as NCCRP-1, TCR, CD8, perforin, granzymes, Fas/FasL, etc. The easy generation of transgenic zebrafish and mutants would also be a very valuable tool to study the fish CMC activity against tumors. Further studies should focus on the leucocyte infiltration to the tumor site and identification of the potential molecules involved in the activity of the cytotoxic cells.

4. Cytotoxic response against parasites

Fish parasites represent a serious problem in the aquaculture since there are no available vaccines or effective treatments. Whilst some aspects of the fish immune response against parasites have been studied very little is known about the role of the cell-mediated cytotoxic activity (Buchmann et al., 2001; Jones, 2001). First study evaluated the NCC activity in catfish parasitized with *Ichthyophthirius multifiliis* (Graves et al., 1985a). They found that moribund *Ichthyophthirius multifiliis*-infected fish showed decreased NCC activity in the head-kidney against xenogeneic cells when compared to control specimens. Strikingly, this activity was increased in the PBLs of the same fish as consequence of an activation of the
NCC killing capacity and affinity (Graves et al., 1985a). A second study determined that catfish NCC were able to bind and kill 50-60% of *Tetrahymena pyriformis* after 10 h of coinubcation (Graves et al., 1985b). Furthermore, NCC binding to xenogeneic tumor cells and *Ichthyophthirius multifiliis* or *Tetrahymena pyriformis* parasites shared the same antigen, that in the case of parasites, consist on a 46 kDa (Evans et al., 1998a, 1996; Graves et al., 1985a; Jaso-Friedmann et al., 1997b; Lester et al., 1994). In another study, gilthead seabream specimens were parasitized with the enteric *Enteromyxum leei* parasite (Cuesta et al., 2006). This parasitation increased head-kidney NCC activity against tumor cells indicating that parasitized fish posses enhanced cytotoxic cells activity. Moreover, parasite-exposed fish either parasitized or not, showed increased NCC activity. However, no other study has evaluated the role of the cell-mediated cytotoxicity against fish parasites and deserves further evaluation due to the interest for aquaculture industry.

5. Cytotoxic response against viral infections

Viral diseases are responsible for most of the economic losses suffered in modern aquaculture since they produce high levels of mortality and no effective antiviral treatments are available. Moreover, fish farming practices such as growth under very high densities, introduction of species in new areas, continuous transport between hatcheries, nurseries and growing plants are increasing the spread of pathogens and the number of susceptible and reservoir species. However, while most available information focuses on the mechanisms involved in pathogen susceptible fish immune responses, further knowledge is also important in pathogen-reservoir fish systems. Among the major immune mechanisms to kill virus, the interferon (IFN) and the CMC are the most important, but most efforts have only focused on the IFN pathway (Ellis, 2001; Robertsen, 2006). Regarding the CMC activity against virus, this can be mediated by innate or specific cytotoxic cells (Table 2). Regarding the innate CMC activity against virus-infected cells, first studies demonstrated that salmonid kidney, spleen and PBL leukocytes were able to kill infectious pancreatic necrosis virus (IPNV)-infected cells much more than to non-infected cells (Moody et al., 1985; Yoshinaga et al., 1994), and similarly in catfish against channel catfish virus (CCV)-infected cells (Hogan et al., 1996), demonstrating the antiviral activity of fish NCC and NK-like cells, respectively. In the orange-spotted grouper, CD8+ PBLs also showed non-specific cytotoxic activity against nodavirus (nervous necrosis virus or NNV)-infected cells suggesting a role for NK-like or γδT cells (Chang et al., 2011). Fish exposure to virus also increases the fish innate cytotoxic activity. Thus, gilthead seabream injected with viral hemorrhagic septicemia virus (VHSV), which did not replicate at the assayed conditions, increased the NCC activity, demonstrating the importance of studying the antiviral immune response in reservoir fish species (Esteban et al., 2008). Moreover, NNV-infection increased the NCC activity of head-kidney leukocytes from 1 to 15 days post-injection in both gilthead seabream and European sea bass (unpublished data). Recently, we have also demonstrated that trout RTS11 (monocyte-macrophage cell line) cells exposed to VHSV increased their cytotoxic activity against xenogeneic tumor cells and up-regulated the NKEF (natural killer enhancing factor), granzyme and perforin gene expression whilst trout head-kidney leukocyte infection with the VHSV increased the innate cytotoxic activity but failed to significantly change the expression of these genes (Ordás et al., 2011).
<table>
<thead>
<tr>
<th>Fish</th>
<th>CMC activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel catfish</td>
<td>NK-like activity against CCV-infected cells</td>
<td>Hogan et al., 1996</td>
</tr>
<tr>
<td>Atlantic salmon</td>
<td>CMC activity against IPNV-infected cells</td>
<td>Moody et al., 1985</td>
</tr>
<tr>
<td>Rainbow trout</td>
<td>CMC activity against IPNV-infected cells</td>
<td>Moody et al., 1985, Yoshinaga et al., 1994</td>
</tr>
<tr>
<td></td>
<td>VHSV infection induced innate CMC activity, up-regulated NKEF, CD8α, perforin and granzyme genes</td>
<td>Cuesta & Tafalla, 2009, Utke et al., 2007, Unpublished data</td>
</tr>
<tr>
<td></td>
<td>VHSV infection elicited specific CMC activity, up-regulated CD8 α gene</td>
<td>Fischer et al., 2006, Utke et al., 2007</td>
</tr>
<tr>
<td></td>
<td>VHSV DNA vaccine elicited specific CMC activity</td>
<td>Utke et al., 2008</td>
</tr>
<tr>
<td></td>
<td>VHSV and IPNV DNA vaccines up-regulated NKEF, perforin and granzyme genes</td>
<td>Cuesta & Tafalla, 2009, Cuesta et al., 2010, Unpublished data</td>
</tr>
<tr>
<td></td>
<td>VHSV infection of RTS11 cells increased the CMC activity, up-regulated NKEF, granzyme and perforin genes</td>
<td>Ordás et al., 2011</td>
</tr>
<tr>
<td>Ginnbuna crucian carp</td>
<td>IPNV or EVA infection elicited specific CMC activity</td>
<td>Somamoto et al., 2000</td>
</tr>
<tr>
<td></td>
<td>CHNV infection elicited specific CMC activity, up-regulated TCRβ and CD8α genes</td>
<td>Somamoto et al., 2002, Somamoto et al., 2006</td>
</tr>
<tr>
<td></td>
<td>Generation of in vitro virus-specific CTLs and up-regulation of TCRβ and CD8 α genes</td>
<td>Somamoto et al., 2009</td>
</tr>
<tr>
<td></td>
<td>Anal immunization with CHNV-infected cells elicited specific CMC activity</td>
<td>Sato & Okamoto, 2010</td>
</tr>
<tr>
<td>Common carp</td>
<td>SVCV infection up-regulated, granzyme A/K or CD8α genes</td>
<td>Forlenza et al., 2008, Huang et al., 2010</td>
</tr>
<tr>
<td>Gilthead seabream</td>
<td>NCC activity induced by VHSV injection</td>
<td>Esteban et al., 2008</td>
</tr>
<tr>
<td></td>
<td>NCC activity induced by NNV infection</td>
<td>Unpublished data</td>
</tr>
<tr>
<td>Sea bass</td>
<td>NNV infection no affected TCRβ and CD8α genes</td>
<td>Scapigliati et al., 2010</td>
</tr>
<tr>
<td>Atlantic halibut</td>
<td>NNV infection no affected CD8α and CD8β genes</td>
<td>Patel et al., 2008</td>
</tr>
<tr>
<td>Orange-spotted grouper</td>
<td>CMC activity against NNV- or RSIV-infected cells</td>
<td>Chang et al., 2011</td>
</tr>
<tr>
<td></td>
<td>NNV infection elicited specific CMC activity, increased CD8α+ cells and CD8α gene</td>
<td>Chang et al., 2011</td>
</tr>
<tr>
<td>Japanese flounder</td>
<td>VHSV infection up-regulated CD8 gene</td>
<td>Byron et al., 2005</td>
</tr>
<tr>
<td></td>
<td>VHSV DNA vaccine up-regulated CD8 gene</td>
<td>Byron et al., 2006</td>
</tr>
</tbody>
</table>

CMC, cell-mediated cytotoxicity; CCV, channel catfish virus; IPNV, infectious pancreatic necrosis virus; VHSV, viral hemorrhagic septicaemia virus; EVA, eel virus from America; CHNV, crucian carp haematopoietic virus; RSIV, red seabream iridovirus; SVCV, spring viremia carp virus; NNV, nervous necrosis virus; CTL, cytotoxic T lymphocytes; TCR, T cell receptor; NKEF, natural killer enhancing factor.

Table 2. Major studies evaluating the fish CMC activity against virus.
Viral infections also elicited the specific immune response by inducing antibody production and CTL activity (Table 2) (Nakanishi et al., in press). First studies demonstrated that isogeneic ginbuna crucian carp elicited CTL activity against virus. Thus, ginbuna crucian carps immunized with hematopoietic necrosis virus (CHNV) specifically killed CHNV-infected syngeneic cells in a viral antigen and MHC I-restricted manner (Somamoto et al., 2000, 2002), increased the TCRβ and CD8α gene expression (Somamoto et al., 2006) and helped to establish virus-dependent CTL clones in vitro (Somamoto et al., 2009). In rainbow trout, infection with VHSV greatly elicited specific- and MHC I-matched cytotoxic cells but a non-specific and MHC I-mismatched cytotoxic activity was also found (Fischer et al., 2006; Utke et al., 2007). Surprisingly, they found that specific CMC activity mediated by CTLs was produced much earlier than the innate activity, in sharp contrast to all the information at this respect. Strikingly, the NKEF gene expression followed the same time-profile than the CTL activity but in the case of CD8α was opposite, adding more controversy to these data (Utke et al., 2007). Furthermore, trout vaccination with VHSV DNA vaccines also elicited CMC activity against MHC I-matched infected cells, suggesting a role for CTLs (Utke et al., 2008). However, they also found a bit lower CMC activity against non-matching-infected cells or cells infected with a different virus, suggesting a role for NCCs or even the ADCC activity since these fish showed high antibody levels, but this has not been confirmed. In other studies, VHSV infection increased the trout NKEF and CD8α gene in vivo but failed to modulate the NKEF, perforin and granzyme genes in vitro (Cuesta & Tafalla, 2009; Ordás et al., 2011). VHSV and IPNV DNA vaccination also up-regulated the trout CD8α, perforin and granzyme gene expression (Cuesta et al., 2010; unpublished data), giving more consistency to the involvement of CMC activity against viral infections and its activation by DNA vaccines. Moreover, oral vaccination with inactivated CHNV elicited specific CMC activity that resulted viral antigen-specific and restricted to the MHC I (Sato & Okamoto, 2010). In the orange-spotted grouper, nodavirus infection also elicited a CTL response when viral antigens were properly presented by MHC I receptors, as well as increased the CD8α expression at gene and CTL surfaces (Chang et al., 2011). This study represents the first one demonstrating the CTL role against viral infection in marine fish species with great interest for aquaculture industry. Further studies would help to understand the CMC activity against viral infections and to design and probe viral vaccines.

6. Modulation of the fish cytotoxic activity

Fish CMC activity regulation has been widely evaluated and mostly focused on NCC modulation. Fish NCC activity has been shown to be modulated by several chemicals, cytokines, environmental contaminants, stress factors, immunostimulants, etc. First studies dealt with the NCC inhibition by blocking the binding to target in order to characterize the role of NCCRP-1, or inhibiting the killing mechanisms in order to evaluate the perforin- or Fas/FasL-mediated lytic pathway (Bishop et al., 2002; Carlson et al., 1985; Evans et al., 1988, 2000; Hogan et al., 1999; Iwanowicz et al., 2004; Jaso-Friedmann et al., 1988, 2001; Kaur et al., 2004; Shen et al., 2002). Further studies demonstrated that catfish NCC activity is increased by leucocyte treatment with ionophore A23187, A23187 plus phorbol myristate acetate (PMA) or vanadate but no with PMA alone or poly I:C (a mimic for viral infections) (Evans et al., 1984b, 1990, 1998b). Moreover, serum from stressed fish contained cytokine-like factors able to increase the tilapia NCC activity suggesting a role for FasL (Jaso-Friedmann
et al., 2000; Ruiz et al., 2001). Fish NCC activity is also increased by bacterial infections: Edwardsiella ictaluri in channel catfish (Evans et al., 1998b), Aeromonas salmonicida in brook trout (Salvelinus fontinalis) (Dautremepuits et al., 2006) or Streptococcus iniae in tilapia (Taylor et al., 2001). In our lab, we have been investigating the immunostimulatory role of many substances and conditions in the gilthead seabream, one of the most important farmed species in the marine aquaculture. This has allowed us to get a lot of information about the regulation of the seabream immune response, and concretely the NCC activity. Thus, we have shown in vitro and/or in vivo modulation of seabream NCC activity by vitamins C (Cuesta et al., 2002b), E (Cuesta et al., 2001), A (Cuesta et al., 2003b) and D3 (Cerezuela et al., 2009), chitin (Cuesta et al., 2003c; Esteban et al., 2000, 2001), levamisole (Cuesta et al., 2002c), lactoferrin (Esteban et al., 2005), melatonin (Cuesta et al., 2008a), propolis (Cuesta et al., 2005b), inulin (Cerezuela et al., 2008), unmethylated oligodeoxynucleotides (ODNs) containing cytosine-phosphodiester-guanosine (CpG) motifs (Cuesta et al., 2008b, 2008c), probiotic bacteria (Díaz-Rosales et al., 2006; Salinas et al., 2005, 2006, 2008), yeast (Cuesta et al., 2007; Ortúno et al., 2002; Reyes-Becerril et al., 2008; Rodriguez et al., 2003), fungi (Rodriguez et al., 2004), virus (Esteban et al., 2008), environmental contaminants (p,p′-DDE and lindane) (Cuesta et al., 2008d) or stress factors (air exposure, crowding and anaesthetics) (Cuesta et al., 2003d). In general, we have demonstrated great NCC increments after these treatments. Moreover, we have also observed that NCC activity reached the greatest activation, compared to other innate cellular immune responses such as phagocytosis or respiratory burst activity, and did at shorter treatment times and lower dosages. Unfortunately, most of this information has been obtained evaluating the NCC activity against xenogeneic tumor cells and whether this is correlated to the in vivo activity against viral infections deserves further investigation. In this sense, few recent studies have correlated the stimulatory role of immunostimulants with an increased viral disease resistance. Thus, probiotic-supplemented diets resulted in reduced mortality of Japanese flounder specimens exposed to lymphocystis disease virus (LCDV) (Harikrishnan et al., 2010) whilst feeding of shrimp with immunostimulant herbs reduced their mortality upon viral disease (Citarasu et al., 2006). Further characterization of the beneficial immunostimulants against viral diseases is needed to control the virus spreading and lethal effects.

Apart from the direct activation of fish cytotoxic activity, the expression of some CMC-related genes (NCCRP-1, CD8, perforin, granzyme, etc.) is also modulated (Table 2), suggesting an increase in the CMC activity. First, the NCCRP-1 gene expression was altered after bacterial infection (Reyes-Becerril et al., 2011; Sakata et al., 2005), administration of immunostimulants (Cuesta et al., 2008b, 2008d; Lazado et al., ; Reyes-Becerril et al., 2008), exposure to contaminants (Cuesta et al., 2008d) or bacterial vaccination (Caipang et al., 2008), depending on the fish species, tissue, time and dose of exposure, and suggests a parallel effect of fish NCC activity. Perforin gene expression is usually up-regulated after immunization of gibel crucian carp with tumor cells (Toda et al., 2011a), after PHA-L (Phaseolus vulgaris leucoagglutinin) stimulation of trout CD8α+ cells (Takizawa et al., 2011), after VHSV infection of RTS11 cell line (Ordás et al., 2011) and after viral infection or DNA vaccination in rainbow trout (unpublished data), whilst down-regulated after cadmium exposure (Auslander et al., 2008). In a similar fashion, granzyme genes are up-regulated by bacterial vaccination (Caipang et al., 2008), viral infections (VHSV in RTS11 cell line and SVCV in carp) (Huang et al., 2010; Ordás et al., 2011) and viral infection or DNA vaccination.
Health and Environment in Aquaculture

The transcript level of CD8 gene is related to the CTL presence, abundance and activity. Thus, fish CD8 transcripts are up-regulated by viral and bacterial infections, viral DNA vaccines, scale grafts, poly I:C or mitogens (Byon et al., 2005, 2006; Cuesta et al., 2010; Cuesta & Tafalla, 2009; Forlenza et al., 2008; Overturf & LaPatra, 2006; Somamoto et al., 2005, 2006; Utke et al., 2007; Xu et al., 2011). In some studies, these CD8 gene levels have been correlated with increased CTL activity. Finally, other genes related to the cytotoxic activity have received less attention. In this category, the natural killer enhancing factor (NKEF), which increase the cytotoxic activity in humans but its role is unknown in fish, is up-regulated by viral infections and DNA vaccines (Cuesta & Tafalla, 2009; Ordás et al., 2011; Utke et al., 2007) while granulysin, which is secreted together to granzymes and lyse target cells, gene is up-regulated in CD8+ lymphocytes by mitogen stimulation (Takizawa et al., 2011). Further studies are needed to clearly state the gene expression with either innate or specific cytotoxic activity in fish. Future development of more molecular tools will help to elucidate this fascinating and complex immune response.

7. Future directions

As summarized above, fish possess a wide range of cytotoxic cells with killing activity against tumor cells, virus-infected cells and parasites. Further studies in the future should identify, describe and characterize the cytotoxic cells and mechanisms in the most cultured fish species and those susceptible to be farmed in the future. Another issue is the generation of molecular tools to evaluate the fish CMC and clearly identify the function of NCCs, NK-like and CTLs as well as assay models such as clonal fish, cytotoxic cell clones or MHC I-paired effector and targets (virally infected or not). These tools will also help to design powerful and safe vaccines against problematic virus and parasites for fish aquaculture. Finally, these studies have also to be applied to marine fish, which culture is continuously increasing because of the human demand and high economic value.

8. Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCC</td>
<td>Antibody-dependent cytotoxic cells</td>
</tr>
<tr>
<td>ALAK</td>
<td>Lymphokine-activated killer cells</td>
</tr>
<tr>
<td>CCV</td>
<td>Channel catfish virus</td>
</tr>
<tr>
<td>CD4+</td>
<td>T helper lymphocyte</td>
</tr>
<tr>
<td>CD8+</td>
<td>T cytotoxic lymphocyte or CTL</td>
</tr>
<tr>
<td>CHNV</td>
<td>Crucian carp haematopoietic virus</td>
</tr>
<tr>
<td>CMC</td>
<td>Cell-mediated cytotoxicity</td>
</tr>
<tr>
<td>CpG</td>
<td>Cytosine-phosphodiester-guanosine</td>
</tr>
<tr>
<td>CTLs</td>
<td>Cytotoxic T lymphocytes</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNF</td>
<td>Damselshfish neurofibromatosis</td>
</tr>
<tr>
<td>DTH</td>
<td>Delayed hypersensitivity reaction</td>
</tr>
<tr>
<td>EGCs</td>
<td>Eosinophilic granular cells</td>
</tr>
<tr>
<td>EVA</td>
<td>Eel virus from America</td>
</tr>
<tr>
<td>HK</td>
<td>Head-kidney</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin M</td>
</tr>
<tr>
<td>IPNV</td>
<td>Infectious pancreatic necrosis virus</td>
</tr>
</tbody>
</table>

www.intechopen.com
ITAM Activating intracellular motifs
ITIM Inhibitory intracellular motifs
Jak Janus kinase
KIR Killer immunoglobulin
LAK Lymphokine-activated killer cells
LCDV Lymphocystis disease virus
LFA-1 Leucocyte-function-associated antigen-1
MHC Major histocompatibility complex
MLR Mixed leucocyte reaction
NCC Non-specific cytotoxic cells
NCCRP-1 non-specific cytotoxic cell receptor protein-1
NITR Novel immune-type receptor
NK Natural killer
NKEF Natural killer enhancing factor
NKG2/CD94 C-type lectin membrane receptors
NNV Nervous necrosis virus
ODNs Unmethylated oligodeoxynucleotides
PBL Peripheral blood leucocytes
PE Peritoneal exudate
PHA-L Phaseolus vulgaris leucoagglutinin
PMA Phorbol myristate acetate
RSIV Red seabream iridovirus
RTG-2 Rainbow trout gonad cell line
Sp Spleen
STAT Signal Transducer and Activator of Transcription
SVCV Spring viremia carp virus
TCR T cell receptor
Th Thymus
VHSV Viral hemorrhagic septicaemia virus

9. Acknowledgments
This work has been funded by national (AGL2008-05119-C02-01 and AGL2010-20801-C02-02) and regional projects (04538/GERM/06). A. Cuesta thanks to the Ministerio de Ciencia e Innovación for the Ramón y Cajal contract.

10. References

www.intechopen.com

Cuesta, A. & Tafalla, C. (2009). Transcription of immune genes upon challenge with viral hemorrhagic septicemia virus (VHSV) in DNA vaccinated rainbow trout (Oncorhynchus mykiss). Vaccine, Vol. 27, No. 2, pp. 280-289, ISSN 0264-410X.

Greenlee, A.R.; Brown, R.A. & Ristow, S.S. (1991). Nonspecific cytotoxic cells of rainbow trout (Oncorhynchus mykiss) kill YAC-1 targets by both necrotic and apoptic mechanisms. Developmental and Comparative Immunology, Vol.15, No.4, pp. 627-639, ISSN 0145-305X.

recognized by nonspecific cytotoxic cells. *Journal of Immunology*, Vol.141, No.8, pp. 2861-2868, ISSN 0022-1767.

Fighting Virus and Parasites with Fish Cytotoxic Cells

molecular immune responses of the sea bass (Dicentrarchus labrax) experimentally infected with betanodavirus. *Fish & Shellfish Immunology*, Vol.28, No.2, pp. 303-311, ISSN 1050-4648.

Aquaculture has been expanding in a fast rate, and further development should rely on the assimilation of scientific knowledge of diverse areas such as molecular and cellular biology, and ecology. Understanding the relation between farmed species and their pathogens and parasites, and this relation to environment is a great challenge. Scientific community is involved in building a model for aquaculture that does not harm ecosystems and provides a reliable source of healthy seafood. This book features contributions from renowned international authors, presenting high quality scientific chapters addressing key issues for effective health management of cultured aquatic animals. Available for open internet access, this book is an effort to reach the broadest diffusion of knowledge useful for both academic and productive sector.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
