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Utilising the Wavelet Transform  
in Condition-Based Maintenance:  

A Review with Applications  

Theodoros Loutas and Vassilis Kostopoulos 
Applied Mechanics Lab, Department of Mechanical Engineering and Aeronautics, 

University of Patras, Rio,  
Greece 

1. Introduction 

Condition monitoring of machinery can be defined as the continuous or periodic measurement 
and interpretation of data in order to indicate the condition of an machine and determine the 
need for maintenance. Condition monitoring thus is primarily involved with the diagnostics of 
faults and failures and aims at an accurate and as early as possible fault detection. It is thus 
oriented towards an unscheduled preventive maintenance plan with continuous monitoring of 
the machinery as opposed to scheduled periodic maintenance. The possibility of failures of 
course cannot be diminished, but confident early diagnosis of incipient failures is extremely 
useful to avoid machinery breakdown and thus ensure a more cost-effective overall operation 
reducing equipment down-times. Industrial safety is also enhanced as catastrophic events are 
avoided when a maintenance-for-cause plan is followed.  

When faults occur in machines, phenomena like excessive vibration and/or noise, increased 
temperatures, increased wear rate, etc. are observed. The concept is to monitor, continuously 
or periodically, these dynamic phenomena utilizing one or more sensors to capture this 
behavior. One of the earliest approaches was the sound emission monitoring. An expert 
human ear played the role of the sensor in the early applications, a sophisticated microphone 
can play the same role today. The most classic approach –widely used until the present- is the 
vibration monitoring with few or several accelerometers placed upon the machine. The 
principle is that when damage occurs, the signature of the vibration response changes in the 
frequency domain, giving a qualitative indication of fault existence. The Acoustic Emission 
(AE) technique, famous for its sensitivity in the high frequency domain of micro-damage 
evolution, has found important applications in gearboxes and bearings as Section 4 presents. 
Other monitoring techniques include oil condition monitoring (oil debris, oil conductivity or 
humidity etc.), current and voltage transients monitoring in electric motors as well as 
temperature measurements/thermography. More than 80% of the applications presented in 
Section 4 involve vibration monitoring, with AE finding more and more applications the last 
15 years and current/voltage measurements being always an option in electric machines. 
Monitoring generally results in a large number of complex signals with valuable diagnostic 
information hidden under noise or other irrelevant sources.  Over the years and the same time 
with several breakthroughs in the signal processing field, engineers and researchers realized 
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that the conventional FFT was not suitable to process signals of complex, dynamic nature, 
often transient and non-stationary, such as the signals from the vibrations of machinery. 
Among other disadvantages, FFT lacks time localization. To address this problem time-
frequency representations were sought and developed. Short-time Fourier Transform (STFT) 
was introduced as well as non-linear distributions such as the Wigner–Ville distribution 
(WVD). STFT suffers from the fact that it provides constant resolution for all frequencies since 
it uses the same window for the analysis of the entire signal. Wigner–Ville distribution and 
Pseudo-Wigner–Ville distribution are bilinear in nature and artificial cross terms appear in the 
decomposition results rendering the feature interpretation problematic. Their greatest 
disadvantage though is that they are generally non-reversible transforms.  Wavelet transform 
(WT) is a relatively recent advancement in the signal processing field. J. Morlet set the first 
foundations on wavelets back in 1970’s but it was not until 1985 when S. Mallat gave wavelets 
a jump-start through his work in digital signal processing. He discovered some relationships 
between quadrature mirror filters, pyramid algorithms, and orthonormal wavelet bases. 
Inspired in part by these results, Y. Meyer constructed the first non-trivial wavelets. A couple 
of years later, I. Daubechies used Mallat's work to construct a set of wavelet orthonormal basis 
functions that are perhaps the most elegant, giving a tremendous boost to wavelet applications 
in numerous scientific fields. The wavelet transform is actually a time-scale method, as it 
transforms a function from the time domain to the time-scale domain. Scale is indirectly 
associated with frequency. Furthermore, the wavelet transform is a reversible transform, 
which makes the reconstruction or evaluation of certain signal components possible, even 
though the inverse transform may not be orthogonal. 

Wavelet transform became very popular in condition monitoring the last 15 years as it is very 
attractive for the transaction of two major tasks in signals of complex (transient and/or non-
stationary) nature: de-noising and feature extraction. De-noising is conducted in order to 
reduce the fluctuation and pick out hidden or weak diagnostic information. Feature extraction 
provides usually –though not always- the input to an expert system towards autonomic health 
degradation monitoring and data-driven prognostics.  The generic pattern seen in many 
studies in the wavelet-based condition monitoring field is summarized in Fig. 1. 

 

Fig. 1. Schematic representation of wavelet-based condition monitoring philosophy 
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The current work is organized as follows. Section 2 presents the basic WT versions i.e. DWT, 
CWT and WPT. Then more recently developed and state-of-the-art wavelet transforms are 
presented in more detail such as the Dual-Tree Complex Wavelet Transform (DTCWT) as 
well as Second Generation Wavelet Transforms (SGWT). In section 3 a discussion on the 
optimum mother wavelet choice issue is conducted and in section 4 a large number of 
applications -categorized in five application fields- are presented. Section 5 summarizes the 
main conclusions of this work. 

2. Wavelet transforms 

2.1 Continuous Wavelet Transform (CWT) 

A wavelet is a wave-like oscillation that instead of oscillating forever like harmonic waves 
drops rather quickly to zero. The continuous wavelet transform breaks up a continuous 
function f(t) into shifted and scaled versions of the mother wavelet ψ. It can be defined as 
the convolution of the input data sequence with a set of functions generated by the mother 
wavelet:   

,ሺܹܽܥ  ܾሻ = ଵඥ|௔| ׬ ݂ሺݐሻ ∙ ߰∗ ቀ௧ି௕௔ ቁ∞ିஶ  (1)                                              	ݐ݀

with the inverse transform being expressed as: 

 ݂ሺݐሻ = ଵ஼ഗ ׬ ׬ ,ሺܹܽܥ ܾሻ ∙ ଵ௔మ ∙ ߰ஶିஶஶିஶ ቀ௧ି௕௔ ቁ ܾ݀ܽ݀                              (2) 

where α represents scale (or pseudo-frequency) and b represents time shift of the mother 
wavelet ψ. ψ* is the complex conjugate of the mother wavelet ψ. The WT’s superior time- 
localization properties result from the finite support of the mother wavelet: as b increases, 
the analysis wavelet scans the length of the input signal, and a increases or decreases in 
response to changes in the signal’s local time and frequency content. Finite support implies 
that the effect of each term in the wavelet representation is purely localized. This sets the 
WT apart from the Fourier Transform, where the effects of adding higher frequency sine 
waves are spread throughout the frequency axis. CWT can be applied with higher 
resolution to extract information with higher redundancy, that is, a very narrow range of 
scales can be used to pull details from a particular frequency band. 

2.2 Discrete Wavelet Transform (DWT) 

It turned out quite remarkably that instead of using all possible scales only dyadic scales can 
be utilized without any information loss. Mathematically this procedure is described by the 
discrete wavelet transform (DWT) which is expressed as:                           

,ሺ݆ܹܦ  ݇ሻ = √ʹ௝ ׬ ݂ሺݐሻ߰∗ሺʹ௝ݐ − ݇ሻାஶିஶ  (3) ݐ݀

where DW(j, k) are the wavelet transforms coefficients given by a two-dimensional matrix,  j  
is the scale that represents the frequency domain aspects of the signal and  k  represents the 
time shift of the mother wavelet. f(t) is the signal that is analyzed and ψ the mother wavelet 
used for the analysis (ψ* is the complex conjugate of ψ). The inverse discrete wavelet 
transform can be expressed as:  
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 ݂ሺݐሻ = ܿ ∑ ∑ ,ሺ݆ܹܦ ݇ሻ߰௝,௞ሺݐሻ௞௝ 	  (4) 

where c is a constant depending only on ψ. Practically DWT is realized by the algorithm 

known as Mallat’s algorithm or sub-band coding algorithm (Mallat, 1989). The DWT of a 

signal x is calculated by passing it through a series of filters. First the samples are passed 

through a low pass filter with impulse response h resulting in a convolution of the two. 

The signal is also decomposed simultaneously using a high-pass filter g. The output from 

the high-pass filter gives the detail coefficients and the output from the low-pass filter 

gives the approximation coefficients. The two filters h, g are not arbitrarily chosen but are 

related to each other and they are known as a quadrature mirror filter. Since half the 

frequencies of the signal have now been removed, half the samples can be discarded 

according to Nyquist’s rule. The filter outputs are then sub-sampled by 2. This 

decomposition has halved the time resolution since only half of each filter output 

characterizes the signal. However, each output has half the frequency band of the input so 

the frequency resolution has been doubled. The approximation is then itself split into a 

second-level approximation and detail and the process is repeated as many times as it is 

desirable. This procedure can be repeated as many times as desirable by the user resulting 

in N levels of decomposition.  

The number of decomposition levels N is related to the sampling frequency of the signal 

being analyzed (fs). In order to get an approximation signal containing frequencies below 

frequency f, the number of decomposition levels that has to be considered is given by 

(Antonino-Daviu et al., 2007): 

 ܰ = ݐ݊݅ ቆ௟௢௚ቀ௙ೞ ௙ൗ ቁ௟௢௚ሺଶሻ ቇ  (5) 

2.3 Wavelet Packet Transform (WPT) 

Whereas DWT breaks up only the approximations, WPT simultaneously decomposes 

approximations and details. In the first resolution, j = 1, the signal is decomposed into two 

packets: A and D. The packet, A, represents the lower frequency component of the signal, 

while the packet D, represents the higher frequency component of the signal. Then, at the 

second resolution, j = 2, each packet is further decomposed into two sub-packets forming 

AA, AD, DA, DD. This decomposition process continues and at each subsequent 

resolution, the number of packets doubles while the number of data points in the packet 

are reduced by half. The wavelet packets contain the information of the signal in different 

time windows at different resolution. Each packet corresponds to a specific frequency 

band. 

Both of WPT and DWT operate within the framework of multi-resolution analysis (MRA). 

Unlike DWT though, WPT has the same frequency bandwidth in every level. Fig. 2 depicts 

the WPT decomposition tree with A and D corresponding to approximation and detail 

respectively. 

The WPT can thus be seen as a generalization of the wavelet transform and the wavelet 

packet function is also a time–scale function which can be described as: 
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 ௝ܹ,௞௡ ሺݐሻ = ʹ௝/ଶܹ൫ʹ௝ݐ − ݇൯,					݆, ݇ ∈ ܼ (6) 

where the integers j and k are the index scale and translation operations. 

 

 

 

Fig. 2. WPT decomposition tree 

The index n is an operation modulation parameter or oscillation parameter. The first two 
wavelet packets are the scaling function φ(t) and mother wavelet functions ψ(t):  

 ଴ܹ,଴଴ ሺݐሻ = ߮ሺݐሻ = √ʹ ∑ ℎሺ݇ሻ߮ሺʹݐ − ݇ሻ௞    (7) 

 ଴ܹ,଴ଵ ሺݐሻ = ߰ሺݐሻ = √ʹ ∑ ݃ሺ݇ሻ߮ሺʹݐ − ݇ሻ௞   (8) 

When n = 2;3;. . . the function can be defined by the following recursive relationships: 

 ଴ܹ,଴ଶ௡ሺݐሻ = √ʹ ∑ ℎሺ݇ሻ ଵܹ,௞௡ ሺʹݐ − ݇ሻ௞                                 (9) 

 ଴ܹ,଴ଶ௡ାଵሺݐሻ = √ʹ ∑ ݃ሺ݇ሻ ଵܹ,௞௡ ሺʹݐ − ݇ሻ௞  (10)  

where h(k) and g(k) are the quadrature mirror filter associated with the predefined scaling 
function and mother wavelet function. The wavelet packet coefficients, ݓ௝,௞௡  are calculated as: 

௝,௞௡ݓ  = ,ሻݐሺ݂ۃ ௝ܹ,௞௡ ۄ = ׬ ݂ሺݐሻ ௝ܹ,௞௡  (11) . ݐ݀

The frequency interval of each node is given by ቀ௡ିଵଶೕశభ ௙ܵ , ௡ିଵଶೕశభ ௙ܵቃ,  where Sf is the sampling 

frequency, j the scale index and n the number of levels    n=1,2,…,16. 

2.4 Dual Tree Complex Wavelet (DTCWT) 

The dual-tree complex wavelet transform (DTCWT) is a relatively recent enhancement to 

the DWT (Kingsbury, 1998), with important additional properties: reduced aliasing effects, 
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nearly shift-invariance and directionally selective (useful in two and higher dimensions). 

The frequency aliasing is caused by the overlap of opposing-frequency pass-bands of the 

wavelet filters. The band-pass filter responses for the DTCWT have nearly all the pass-bands 

only on one side of zero frequency due to the adopted analytic filters. Thus, DTCWT may 

possess greatly reduced aliasing effects. Incidentally, this property of analytic filters is also 

the main reason for the DTCWT to achieve shift-invariance.  

In the dual-tree implementation of decomposition and reconstruction, two parallel DWTs 
with different low-pass and high-pass filters in each scale are used, as can be seen in Fig. 3. 
The two DWTs use two different sets of filters, with each satisfying the perfect 
reconstruction condition. Let ψh(t) and ψg(t) denote the real-valued wavelet used, 
respectively, in the dual-tree transform. Then a complex-valued wavelet ψC(t) can be 
obtained as:   

 ߰஼ሺݐሻ = ߰௛ሺݐሻ + ݆߰௚ሺݐሻ  (12) 

Thus, the two real wavelets constitute a complex analytical wavelet ψC(t), which is only 
supported on the positive of the frequency axis. Fig. 3 shows the frequency response  
of DTCWT basis and DWT basis functions. It can be seen that all shown basis functions  
are analytic except for the basis functions corresponding to the scaling coefficients and  
the first stage wavelet coefficients in comparison with the transfer functions of a real DWT.  
 

 

 

 

 
 

Fig. 3. Decomposition and reconstruction stages of DTCWT 
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Since DTCWT is composed of two parallel wavelet transforms, according to the wavelet 
theory, the wavelet coefficients ݀௟ோ௘ሺ݇ሻ and scaling coefficients ௝ܿோ௘ሺ݇ሻ of the upper tree can 

be computed via inner products (Wang et al., 2010): 

 ݀௟ோ௘ሺ݇ሻ = ʹ௟/ଶ ׬ ݐሻ߰௛ሺʹ௟ݐሺݔ − ݇ሻ݀ݐ,			݈ = ͳ, … , ஶିஶܬ      (13) 

 ௃ܿோ௘ሺ݇ሻ = ʹ௃/ଶ ׬ ݐሻ߮௛ሺʹ௃ݐሺݔ − ݇ሻ݀ݐ			∞ିஶ   (14) 

where l is the scale factor and J is the maximum scale. Similarly, ݀௟ூ௠ሺ݇ሻ and ܿ௟ூ௠ሺ݇ሻ 
coefficients of the lower tree can be computed if ψh(t) and φh(t) are replaced by ψg(t) and 
φg(t), respectively. The wavelet and scaling of the DTCWT coefficients can then be expressed 
by combining the output of the dual-tree as follows: 

 ݀௟஼ሺ݇ሻ = ݀௟ோ௘ሺ݇ሻ + ݆݀௟ூ௠ሺ݇ሻ,			݈ = ͳ, … ,  (15)   ܬ

 ௃ܿ஼ሺ݇ሻ = ௃ܿோ௘ሺ݇ሻ + ݆ ௃ܿூ௠ሺ݇ሻ   (16) 

Furthermore, when other coefficients are set to zero, the scaling or wavelet coefficients can 
be individually reconstructed using the following equations: 

 ݀௟ሺݐሻ = ʹሺ௟ିଵሻ/ଶൣ∑ ݀௟ோ௘ሺ݇ሻ߰௛ሺʹ௟ݐ − ݇ሻ + ∑ ݀௟ூ௠ሺ݇ሻ߰௚ሺʹ௟ݐ − ݉ሻ௠௡ ൧,				݈ = ͳ, … ,  (17)   ܬ

 ௃ܿሺݐሻ = ʹሺ௃ିଵሻ/ଶൣ∑ ௃ܿோ௘ሺ݇ሻ߮௛ሺʹ௃ݐ − ݇ሻ + ∑ ௃ܿூ௠ሺ݇ሻ߮௚ሺʹ௃ݐ − ݉ሻ௠௡ ൧  (18) 

Coefficients ݀௟ሺݐሻ and ௃ܿሺݐሻ  are real and have equal length with original signal x(t) being 

different from ݀௟஼ሺݐሻ and ௃ܿ஼ሺݐሻ. Specifically, for the tree Re, the corresponding decomposed 

scaling coefficients (approximation) ܿ௟ோ௘ሺ݇ሻ and wavelet coefficients (details) ݀௟ோ௘ሺ݇ሻ	as well 
as the inverse transform between the two consecutive resolution levels  l and l+1 can be 
derived by: 

 ܿ௟ାଵோ௘ ሺ݇ሻ = ∑ ℎ଴ሺ݉ − ʹ݇ሻܿ௟ோ௘ሺ݉ሻ௠     (19) 

 ݀௟ାଵோ௘ ሺ݇ሻ = ∑ ℎଵሺ݉ − ʹ݇ሻܿ௟ோ௘ሺ݉ሻ௠  (20) 

 ܿ௟ோ௘ሺ݇ሻ = ∑ ℎ෨଴ሺ݇ − ʹ݉ሻܿ௟ାଵோ௘ ሺ݉ሻ௠ + ∑ ℎ෨ଵሺ݇ − ʹ݉ሻ݀௟ାଵோ௘ ሺ݉ሻ௠  (21) 

Similarly ܿ௟ூ௠ሺ݇ሻ, ݀௟ூ௠ሺ݇ሻ for the tree Im can be obtained by: 

 ܿ௟ାଵூ௠ ሺ݇ሻ = ∑ ݃଴ሺ݊ − ʹ݇ሻܿ௟ூ௠ሺ݊ሻ௡   (22) 

 ݀௟ାଵூ௠ ሺ݇ሻ = ∑ ݃ଵሺ݊ − ʹ݇ሻܿ௟ூ௠ሺ݊ሻ௡   (23)  

 ܿ௟ூ௠ሺ݇ሻ = ∑ ෤݃଴ሺ݇ − ʹ݊ሻܿ௟ାଵூ௠ ሺ݊ሻ௡ + ∑ ෤݃ଵሺ݇ − ʹ݊ሻ݀௟ାଵூ௠ ሺ݊ሻ௡   (24) 

Note that a complex transform implemented in this way is no longer critically sampled, 
because two independent wavelet transforms are required. Thus DTCWT can be 
implemented using existing DWT software. The computational cost is significantly lower 
(only 2 times that of the basic DWT). In addition, the transform is naturally parallelized for 
efficient hardware implementation. Figs. 4 and 5 show the decomposition with DWT and 
DTCWT respectively of an artificial signal containing four fundamental frequencies: 
x(t)=2sin(2π·50t)+ 2sin(2π·100t)+ 5sin(2π·150t)+ 2sin(2π·400t). 
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Fig. 4. 3-level decomposition with DWT of x(t) 

 

 

Fig. 5. 3-level decomposition with DTCWT of x(t) 
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In the DWT decomposition, the highlighted frequencies actually do not exist as the FFT  
of the original signal confirms. On the contrary artificial peaks do not appear in  
the DTCWT decomposition as Fig.5 clearly shows proving the reduced frequency aliasing 
of the DTCWT. A peak highlighted in detail 3 is real though it should appear only in 
detail 2. 

2.5 Second generation wavelet transforms 

2.5.1 The Second Generation Wavelet Transform (SGWT) 

The classical wavelet techniques (CWT, DWT, WPT) are all dependent on the mother 

wavelet selection from a library of previously designed wavelet functions, an issue that is 

discussed in more detail in Section 3. Unfortunately, the standard wavelet functions are 

independent of a given signal. Towards this direction, the Second Generation Wavelet 

Transform (SGWT) was developed by (Sweldens, 1998), a new wavelet construction method 

using the lifting scheme. It is actually an alternative implementation of the classical DWT. 

The main feature of the SGWT is that it provides an entirely spatial domain interpretation of 

the transform, as opposed to the traditional frequency domain based constructions. 

Compared with the classical wavelet transform, the lifting scheme possesses several 

advantages, including the possibility of adaptive design, in-place calculations, irregular 

samples and integers-to-integers wavelet transforms. The lifting scheme provides high 

flexibility, which can be designed according to the properties of the given signal, and thus 

ensures that the resulting transform is always invertible. It makes good use of similarities 

between the high and low pass filters to speed up the calculation so that the implementation 

of the second generation wavelet transform is faster than the first generation wavelet 

transforms. Additionally, the multi-resolution analysis property is preserved. Consequently, 

the applications of the SGWT scheme in condition monitoring and fault diagnosis of 

mechanical equipments have been increasing the last few years (see Section 4). A basic 

decomposition of the SGWT consists of three main steps (Sweldens, 1998), split, predict, and 

update. In the split step, an approximate signal al at level l is split into even samples and 

odd samples (Zhou et al., 2010). 

 ܽ௟ାଵ = ܽ௟ሺʹ݅ሻ,      ݀௟ାଵ = ܽ௟ሺʹ݅ + ͳሻ  (25) 

In the prediction step, a prediction operator P is designed and applied on al+1 to predict dl+1. 

The resultant prediction error dl+1 is regarded as the detail coefficients of al. 

 ݀௟ାଵሺ݅ሻ = ݀௟ାଵሺ݅ሻ − ∑ ௥ܽ௟ାଵሺ݅݌ + ሻெ/ଶ௥ୀିெ/ଶାଵݎ                   (26) 

where pr the coefficients of P and M is the length of pr . 

In the update step, a designed update operator U is applied on dl+1. Adding the result to the 

even samples, the resultant al+1 is regarded as the approximate coefficients of al . 

 ܽ௟ାଵሺ݅ሻ = ܽ௟ାଵሺ݅ሻ + ∑ ௝݀௟ାଵሺ݅ݑ + ݆ − ͳሻே/ଶ௝ୀିே/ଶାଵ   (27) 

where u j are the coefficients of U and N is the length of u j . Iteration of the above three steps 

on the output a, generates the detail and approximation coefficients at different levels. 
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The reconstruction stage of SGWT is a reverse procedure of the decomposition stage, which 
includes inverse update step, inverse prediction step and merging step. 

 ܽ௟ାଵሺ݅ሻ = ܽ௟ାଵሺ݅ሻ − ∑ ௝݀௟ାଵሺ݅ݑ + ݆ − ͳሻே/ଶ௝ୀିே/ଶାଵ   (28) 

 ݀௟ାଵሺ݅ሻ = ݀௟ାଵሺ݅ሻ + ∑ ௥ܽ௟ାଵሺ݅݌ + ሻெ/ଶ௥ୀିெ/ଶାଵݎ   (29) 

 ܽ௟ሺʹ݅ሻ = ܽ௟ାଵ,      ܽ௟ሺʹ݅ + ͳሻ = ݀௟ାଵ   (30) 

 

 

Fig. 6. Decomposition and reconstruction of the signal with SGWT 

The operators P and U are built by means of interpolating subdivision method (ISM) [16]. 
Choosing different P and U is equivalent to choosing different biorthogonal wavelet filters. 
Fig. 6 depicts the structure of SGWT. The computational costs of the forward and inverse 
transform are exactly the same. 

2.5.2 Second Generation Wavelet Packet Transform (SGWPT) 

The time–frequency resolution of SGWT varies with the decomposition levels. It gives good 
time and poor frequency resolution at high frequency sub-band, and good frequency and 
poor time resolution at low frequency sub-band. In order to obtain a higher resolution in the 
high frequency sub-band, SGWPT has been constructed and hence the detail coefficients at 
each level are further decomposed to obtain their approximation and detail components. 
The decomposition and reconstruction stages of SGWPT are described below.  

In the decomposition stage, Xl,k is split into even samples Xl,ke and odd samples Xl,ko, 

 ௟ܺ,௞௘ = ௟ܺ,௞ሺʹ݅ሻ,    ௟ܺ,௞௢ = ௟ܺ,௞ሺʹ݅ + ͳሻ  (31) 

where Xl,k represents the coefficients of the kth node at level l. Then calculate each sub-band 
coefficients at level l +1. 

 ௟ܺାଵ,ଶ = ௟ܺ,ଵ௢ − ܲሺ ௟ܺ,ଵ௘ሻ (32) 

 ௟ܺାଵ,ଵ = ௟ܺ,ଵ௘ + ܷሺ ௟ܺାଵ,ଶሻ  (33)       ⋮ 
 ܺ௟ାଵ,ଶ೗శభ = ܺ௟,ଶ೗௢ − ܲሺܺ௟,ଶ೗௘ሻ (34) 
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 ܺ௟ାଵ,ଶ೗శభିଵ = ܺ௟,ଶ೗௘ + ܷሺܺ௟ାଵ,ଶ೗శభሻ  (35)    

In the reconstruction stage, the sub-band coefficients to be reconstructed are reserved, and 
then other sub-band coefficients are set to be zeroes. Finally, the reconstructed results are 
obtained by the following formula. 

 ܺ௟,ଶ೗௘ = ܺ௟ାଵ,ଶ೗శభିଵ − ܷሺܺ௟ାଵ,ଶ೗శభሻ  (36) 

 ܺ௟,ଶ೗௢ = ܺ௟ାଵ,ଶ೗శభ + ܲሺܺ௟,ଶ೗௘ሻ (37)  

 ܺ௟,ଶ೗ሺʹ݅ሻ = ܺ௟,ଶ೗௘ (38) 

 ܺ௟,ଶ೗ሺʹ݅ + ͳሻ = ܺ௟,ଶ೗௢   (39) ⋮ 
 ௟ܺ,ଵ௘ = ௟ܺାଵ,ଵ − ܷሺ ௟ܺାଵ,ଶሻ   (40) 

 ௟ܺ,ଵ௢ = ௟ܺାଵ,ଶ + ܲሺ ௟ܺ,ଵ௘ሻ (41) 

 ௟ܺ,ଵሺʹ݅ሻ = ௟ܺ,ଵ௘   (42) 

 ௟ܺ,ଵሺʹ݅ + ͳሻ = ௟ܺ,ଵ௢   (43) 

Overall, the decomposition and reconstruction stages of SGWPT are shown in Figs. 7  
and 8. 

 

 

 

 

Fig. 7. Decomposition step of SGWPT 
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Fig. 8. Reconstruction step of SGWPT 

3. Choosing the best wavelet basis 

Utilizing the classical WT (DWT, CWT or WPT) brings on the unresolved issue of mother 
wavelet selection. Different types of wavelets have different time–frequency structures 
and thus it is always an issue how to choose the best wavelet function for extracting fault 
features from a given signal. An “inappropriate” wavelet will reduce the accuracy of the 
fault detection.  There is a plethora of options between various wavelet families (with 
infinite number of members!) or specific wavelets. Haar, Daubechies (db), Symlets, 
Coiflets, Gaussian, Morlet, complex Morlet, Mexican hat, biorthogonal wavelets, reverse 
biorthogonal, Meyer, harmonic wavelets, discrete approximation of Meyer, complex 
Gaussian, Shannon, and frequency B-spline are among the most well established wavelets.  
In principle, the wavelet decomposition would achieve a better result if the wavelet basis 
is ‘‘similar’’ to the signal under analysis. The wavelet coefficients reflect the similarity 
between the signal local and the corresponding wavelet basis. The bigger the coefficient, 
the more similar the two parts are. Different wavelet basis would lead to quite different 
results of signal analysis. Currently there are still no generic theoretical guidelines for 
how to select the optimum wavelet basis, or how to select the corresponding shape 
parameter and scale level for a particular application. The selection is in many cases done 
by trial and error. In literature there are some interesting approaches that attempt to 
address this issue. 

(Kankar et al., 2011) presented a methodology for rolling element bearings fault diagnosis 
using continuous wavelet transform (CWT). Six different base wavelets were considered of 
which three were real valued and the other three were complex valued. Out of these six 
wavelets, the base wavelet was selected based on wavelet selection criteria to extract 
statistical features from wavelet coefficients of raw vibration signals. Two wavelet selection 
criteria, Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet 
Energy were used and compared to select the appropriate wavelet for feature extraction. 
The wavelet having Maximum Energy to Shannon Entropy ratio/Maximum Relative 
Wavelet Energy was considered for fault diagnosis of rolling element bearings. The relative 
Wavelet Energy is defined as:                                                                             
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௡݌  = ሺ݊ሻܧ ௧௢௧௔௟ൗܧ  (44) 

Where E(n) the energy at each resolution level,  

ሺ݊ሻܧ  = ∑ หܥ௡,௜หଶ௠௜ୀଵ    (45) 

m is the number of wavelet coefficients and Cn,i the ith wavelet coefficient at the nth scale. 

The total energy is given by: 

ሺ݊ሻܧ   = ∑ หܥ௡,௜หଶ௡  (46) 

whereas the Energy to Shannon Entropy ratio is given by: 

ሺ݊ሻߞ  =  ሺ݊ሻ/ܵ௘௡௧௥௢௣௬ሺ݊ሻ   (47)ܧ

where the entropy of signal wavelet coefficients is defined as: 

  ܵ௘௡௧௥௢௣௬ሺ݊ሻ = − ∑ ௜݌ ∙ ௜௠௜ୀଵ݌ଶ݃݋݈   (48) 

and pi is the energy distribution of the wavelet coefficients, 

௜݌  = หܥ௡,௜หଶ/ܧሺ݊ሻ  (49) 

with  ∑ ௜௠௜ୀଵ݌ = ͳ. 

To find the most suitable mother wavelet, (Rafiee and Tse, 2009), in probably the most 
thorough study of mother wavelet choice investigation, studied 324 candidate mother 
wavelet functions from various families including Haar, Daubechies (db), Symlet, Coiflet, 
Gaussian, Morlet, complex Morlet, Mexican hat, bio-orthogonal, reverse bio-orthogonal, 
Meyer, discrete approximation of Meyer, complex Gaussian, Shannon, and frequency B-
spline. The most similar mother wavelet for analyzing the gear vibration signal was selected 
based on the following procedure. Raw vibration signals were recorded and synchronized. 
The feature vector was composed of the variance of CWT coefficients for each of the 24 
scales calculated by each of the 50 segmented signals in each gearbox condition. The average 
of the feature vector in the 50 segmented signals was computed for each gearbox condition. 
Variances of the mentioned average of the four gearbox conditions were determined for 
each scale (24 elements). The five highest values of the calculated vector were selected as the 
feature because the larger the variance, the greater the ability to properly classify faults.  The 
summation of the five elements, called ‘‘SUMVAR’’ for simplicity, was compared with those 
obtained from the other 323 candidate mother wavelets (a total of 324 mother wavelets). The 
one that had the highest SUMVAR was selected as the most similar function to our vibration 
signals. In a similar work (Rafiee et al., 2010) following a similar procedure found that 
“Daubechies 44” (“db44”) has the most similar shape across both gear and bearing vibration 
signals. Results also suggested that although “db44” is the most similar mother wavelet 
function for the studied vibration signals, it is not the proper function for all wavelet-based 
processing. The research verified that Morlet wavelet has better similarity to both vibration 
signals in comparison to many other functions such as Daubechies (1–43), Coiflet, Symlet, 
complex Morlet, Gaussian, complex Gaussian, and Meyer for both experimental set-ups (i.e. 
gear testing and bearing testing). Among the studied mother wavelets, results also showed 
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that db44 is the most similar function across both gear and bearing vibration signals. The 
drawback of the db44 function is that the high-order db functions take more CPU time than 
most others. In another work (Rafiee et al., 2009) utilized genetic algorithms (GAs) to 
optimize the selection of mother wavelet function (among several members of the 
Daubechies family), the number of the decomposition levels of the wavelet packet transform 
(WPT) as well as the number of neurons in the ANNs hidden layers used for the fault 
classification, resulted in a high-speed, effective two-layer ANN with a small-sized 
structure. “db11”, level 4 and 14 neurons have been selected as the best values for 
Daubechies order, decomposition level, and the number of nodes in hidden layer, 
respectively. In (Gketsis et al., 2009) the optimum wavelet choice criterion is the 
maximization of the cross-correlation between the signal of interest and the wavelet. In an 
application of condition monitoring in electrical machines, they tested several wavelet 
functions, namely Haar, Daubechies 2, 4, 8, Symlet 2, 3, 4, 8 and Coiflet 3 and concluded to 
“db2”. (Saravanan and Ramachandran, 2009) found that among the 15 members of 
Daubechies wavelet, “db1” and “db5” gave the maximum classification efficiency of an 
expert system  (Decision Tree) at around 98.7%. 

Other researchers prefer more qualitative explanations. (Xu and Li, 2008) support that in 

the common family of wavelet bases i.e. Morlet, Haar, Shannon, Symmlets, Coiflets and 

Daubechies wavelets, etc., the most popular is the Daubechies wavelet, as it bears the 

shortest compactly supported scaling function in all of orthogonal wavelets when given 

exponent number of vanishing moment. Moreover, it gives the best overall performance 

in the respect of both mean squared error between reconstruction signal and original 

signal, and maximizing the SNR improvement. Therefore, the Daubechies wavelet is 

applied and others are for comparison in this case. (Jazebi et al., 2011) state that one 

specific mother wavelet is best suited for a particular application. For this purpose, 

mother wavelet type and decomposition level have been chosen based on experience and 

trial and error. The research includes detecting and analyzing low amplitude, short 

duration, fast decaying, and oscillating type of current signals. For this purpose, 

Daubechies’s mother wavelet seems to be an appropriate choice. In comparison with Haar 

wavelet, Daubechies are best suited for feature extraction due to their low-pass and high-

pass filters. On the other hand because of its inherent orthogonality, it satisfies Parseval 

theorem, not like biorthogonal wavelets such as Coiflet and Meyer wavelets . db4 mother 

wavelet over level d4 has been chosen because the maximum energy localization in details 

(1–4) was obtained using these parameters.  

(Daviu et al., 2007) supports that the Daubechies family is well suited for application of 
DWT in condition monitoring due to its interesting inherent properties. An important fact 
they observed when using the Daubechies family, was the overlap between the frequency 
bands (frequency aliasing) associated with the DWT decomposition of their signals. This is 
due to the non-ideal filtering process performed by the wavelet signals, a fact that makes 
that the signal components, included within a certain frequency band and placed in the 
proximity of its limits, overlap partially with the adjacent band. When using a high-order 
Daubechies wavelet for signal decomposition, this effect is less intense than when using a 
low-order one. In other words, high-order wavelets behave as more ideal filters. 
Maximization of statistical features such as kurtosis or crest factor can be utilized as a 
criterion for the choice of mother wavelet within a family or among various families. In an 
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unpublished study by the authors, an investigation of the optimum parameters for the most 
effective de-noising with DWT was conducted. The analysis of a representative AE signal 
from seeded defects in bearings shows how statistical parameters change respectively to the 
wavelet choice between the 10 first members of the Daubechies family in Fig. 9. Obviously 
the wavelet that maximizes kurtosis, crest factor and crest value is chosen as optimum, 
“db2” in this case. 

 
 

Fig. 9. Kurtosis, crest value and factor features of de-noised AE signal with various “db” 
wavelets in a DWT de-noising scheme 

4. Applications overview of wavelets in condition based maintenance 

4.1 Wavelet-based de-noising 

Wavelet based de-noising is a very interesting and important application of wavelets in the 
processing of signals from condition monitoring. It is very widely adopted in many studies 
as it is ideal to extract hidden diagnostic information and enhance the impulsive 
components of complex, non-stationary signals with strong background. Wavelet 
thresholding is based on the idea that the energy of the signal is concentrated in a few 
wavelet coefficients, while the energy of noise spreads throughout all the resulted wavelet 
coefficients. Similarity between the mother wavelet and the signal to be analyzed plays a 
very important role, making it possible for the signal to concentrate on fewer coefficients 
and thus its choice is critical in the efficiency of the de-noising task. The first foundations in 
wavelet-based de-noising were set by (Donoho, 1995). Let x(t) be the discrete signal acquired 
during condition monitoring. The signal series consists of impulses and noise. x(t) can 
alternatively be expressed as x(t)=p(t)+n(t), where p(t) indicates the impulses to be 
determined, whereas n(t) indicates equally distributed and independent Gaussian noise 
with mean zero and standard deviation r. In principle, the wavelet threshold de-noising 
procedure has the following steps: 
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1. Transform the signal x(t) to the time-scale plane by means of a wavelet transform. The 
wavelet coefficients on various scales are obtained. 

2. Assess the threshold t and, in accordance with the established rules, shrink the wavelet 
coefficients. 

3. Use the shrunken coefficients to carry out the inverse wavelet transform. The series 
recovered is the estimation of impulse p(t). 

The second step is probably the most critical and has quite an impact upon the effectiveness 
of the procedure. There are plenty of thresholding techniques and many different thresholds 
proposed in the literature. Hard thresholding sets any coefficient less than or equal to the 
threshold to zero. 

 ௝ܿ௞ = ൜Ͳ, 									 ௝ܿ௞ < ௝ܿ௞	ݐ ,						 ௝ܿ௞ ≥ ݐ     (50) 

Hard thresholding is the simplest approach but tends to miss useful parts of the signal. In 
soft thresholding, the threshold is subtracted from any coefficient that is greater than it. 

 ௝ܿ௞ = ൫݊݃݅ݏ ௝ܿ௞൯ ∙ ሺห ௝ܿ௞ห −  ሻ   (51)ݐ

t is  universal threshold ݐ = ߪ ∙ ඥʹ ∙  σ is the standard deviation of the noise and N is , ܰ݃݋݈

the number of data samples in the measured signal. The true value of the noise standard 
deviation σ is, generally, unknown. It is often estimated by σ = MAD/0.6745, where MAD 
refers to the median absolute value of the finest scale wavelet coefficients. The combination 
of the soft thresholding policy and universal threshold is also referred to as “VisuShrink”. It 
ensures a noise-free reconstruction but often the threshold is set too high. (Donoho and 
Jonestone, 1994) introduced the “minimax” threshold an enhancement of the universal 
threshold. The “minimax” threshold level can be much lower than the universal threshold 
level when it comes to small-to-moderate sample sizes. “SureShrink” or “rigsure” approach 
relies on the minimization of Stein’s unbiased estimator of risk (Donoho and Jonestone, 
1995). When the wavelet representation is not very sparse, it yields better results. The 
universal threshold and “minimax” threshold are more effective when it comes to detecting 
sparse impulses. All the above methods assume that the noise properties are known, which 
is rarely the case in industrial applications. The maximum likelihood estimation de-noising 
method is suitable for non-Gaussian noise. A specific threshold rule, which is based on the 
maximum likelihood estimation method, incorporates a priori information on the impulse 
probability density function. The probability density function of the impulse to be identified 
must be known in advance though. The so-called ‘‘sparse code shrinkage’’ method, 
proposed by (Hyvarinen, 1999), can be utilized for wavelet coefficients shrinkage. 

The DTCWT can give a substantial performance enhancement to the conventional DWT-
based noise reduction methodologies due to its interesting properties of near shift-
invariance and reduced frequency aliasing. (Wang et al., 2010) proposed a scheme based on 
“NeighCoeff” scheme (Cai and Silverman, 2001). “NeighCoeff” uses lower threshold than 
“VisuShrink” and outperforms all other shrinkage methods. The de-noising using DTCWT 
and “NeighCoeff” shrinkage is implemented in the following stages: 

1. Transform the data x into the wavelet domain via DTCWT (or any other wavelet 
transform in general) 
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2. At each resolution level j, group the noisy wavelet coefficients into disjoint blocks bij of 
length L0=log(n)/2; then extend each block bij by an amount of max(1,L0/2) in each 
direction to form overlapping larger blocks Bij of length L=L0+2L1  

3. Within each block bij, each noisy wavelet coefficient is processed via “NeighCoeff” 
shrinkage rule 

4. Calculate the de-noised signal using inverse wavelet domain 

In Fig. 10 various de-noising algorithms were applied on an AE signal from a bearing with 
seeded defect. In a) the original signal is depicted. In b) the method of spectral kurtosis 
(Randall and Antoni, 2011) is utilized. Spectral kurtosis is not a wavelet-based technique 
and relies on the location of the frequency band where kurtosis is maximized and then the 
band-pass filtering of the signal in the resulted band. In figure c) the DTCWT wavelet 
transform is applied in combination with “NeighCoeff” thresholding whilst in d) a 
parametric procedure was used by the authors to determine the optimum parameters of 
DWT (wavelet type, number of levels, threshold type, soft or hard application of threshold)  
that maximize the kurtosis and crest factor of the signal. DTCWT- and DWT-based de-
noising proved the most efficient in terms of the resulting signal kurtosis. 

 

Fig. 10. Effect of various de-noising schemes on an AE signal from defective bearing a) 
original signal b) de-noised signal via spectral kurtosis technique c) de-noised signal via 
DTCWT d) de-noised signal via DWT 

4.2 Gearboxes 

Fault symptoms of running gearboxes must be detected as early as possible to avoid serious 
accidents. An efficient monitoring plan is needed for any industry because it can optimize 
the resources management and improve the plant economy, by reducing unnecessary costs 
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and increasing the level of safety. A great percentage of breakdowns in industrial processes 
as well as in rotorcraft transportation (helicopters etc) are caused by gearbox related failures. 
Fault symptoms usually begin from early stages, rather long before a destructive failure 
making the use of effective condition monitoring schemes very attractive. Many high-
quality investigations can be found in the recent literature.  

(YanPing et al., 2006) explored the statistical characteristics of the continuous wavelet 
transform scalogram of vibration signals from rotating machinery. Two features, wavelet 
grey moment (WGM) and first-order wavelet grey moment vector (WGMV), were proposed 
for condition monitoring of rotating machinery. Wavelet grey moments are defined as: 

 ݃௞ = ଵ௠×௡ ∑ ∑ c୧୨୩ඥሺi − ͳሻଶ + ሺj − ͳሻଶ୬୨ୀଵ୫௜ୀଵ  (52) 

Where cij is the element of matrix [C]mxn, ඥሺ݅ − ͳሻଶ + ሺj − ͳሻଶ is the Euclidean distance 
between element cij and c11, that is corresponding to the geometry length between the point 
(i,j) and reference point (1,1) in the scalogram. In (Fan and Zuo, 2006) a new fault detection 
method that combines Hilbert transform and wavelet packet transform was proposed. The 
wavelet packet node energy method is used as feature. WPT at the 4th decomposition level 
using “db10” wavelet was utilized. Their results showed that the proposed method is 
effective to extract modulating signal and help to detect the early gear fault. 

(Sanz et al., 2007) proposed a method which combines the capability of DWT to treat 
transient vibration signals with the ability of auto-associative neural networks (AANNs) for 
feature extraction. “db6” and 3 levels of decomposition were chosen for real application 
vibration data from a pump rotor gearset. The detail coefficient vectors of the DWT were 
taken as input parameters of the AANN. An advantage of the proposed method is that DWT 
is performed directly on the raw vibration signals not on time-synchronous averaged 
signals. (Rafiee et al., 2007) presented a new procedure which experimentally recognized 
gears and bearings faults of a typical gearbox system using a multi-layer perceptron ANN. 
The feature vector was populated by the standard deviation of wavelet packet coefficients 
after WPT on the recorded vibration signals. “db4” wavelet and 4 levels of decomposition 
were used. The gear conditions were considered to be normal gearbox, slight- and medium-
worn, broken-teeth gears faults and a general bearing fault. (He et al., 2007) proposed a 
novel non-linear feature extraction scheme from the time-domain features with wavelet 
packet preprocessing and frequency-domain features of the vibration signals using the 
kernel principal component analysis (KPCA) to characterize various gearbox conditions. 
Experimental analysis on a fatigue test of an automobile transmission gearbox have shown 
that the KPCA features outperformed PCA features in terms of clustering capability, and 
both the two KPCA-based subspace methods can be effectively applied to gearbox condition 
monitoring. The time-domain statistical features with wavelet packet preprocessing and 
frequency-domain statistical features proved more effective than the conventional time-
domain features without WPT preprocessing for extracting the KPCA features. (Li et al., 
2007) used the Haar wavelet CWT (HCWT) to diagnose three types of machine faults. To 
assess its effectiveness, the diagnosis information obtained by HCWT is compared with that 
by Morlet wavelet CWT (MCWT), which is more popular in machine diagnosis. Their 
results demonstrate that Haar wavelet is also a feasible wavelet in machine fault diagnosis 
and HCWT can provide abundant graphic features for diagnosis than MCWT. (Miao and 
Makis, 2007) have introduced a new feature extraction approach based on wavelet modulus 
maxima and proposed a Hidden Markov Model (HMM) based two-stage machine condition 
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classification system. The modulus maxima distribution was utilized as the input 
observation sequence of the system. An adaptive algorithm was proposed and validated by 
three sets of real gearbox vibration data to classify two conditions: normal and failure. In 
addition, in condition classification (stage 2), three HMM models were set up to classify 
three different machine conditions, namely, adjacent tooth failure, distributed tooth failure 
and normal condition. The validation results showed an excellent performance of the 
proposed classification system. 

(Saravanan et al., 2008) investigated the effectiveness of wavelet-based features for fault 
diagnosis in a bevel gearbox using support vector machines (SVM) and proximal support 
vector machines (PSVM). The statistical feature vectors from Morlet wavelet coefficients 
resulted after CWT at sixty-four scales, were classified using the J48 algorithm and the 
predominant features were fed as input for training and testing SVM and PSVM. The 
coefficients of Morlet wavelet were used for feature extraction from the time domain 
vibration signals. Various statistical features like kurtosis, standard deviation, maximum 
value, etc. calculated from the wavelet coefficients formed the feature sets. It was concluded 
that PSVM has an edge over SVM in the classification efficiency of various fault conditions. 

(Li et al., 2008) presented a new signal-adapted lifting scheme for rotating machinery fault 
diagnosis, which allows the construction of a wavelet directly from the statistics of a given 
signal. The prediction operator based on genetic algorithms was designed to maximize the 
kurtosis of detail signal produced by the lifting scheme, and the update operator was designed 
to minimize a reconstruction error. The signal-adapted lifting scheme was applied to analyze 
bearing and gearbox vibration signals. The conventional diagnosis techniques and non-
adaptive lifting scheme were also used to analyze the same signals for comparison. The results 
demonstrated that the signal-adapted lifting scheme was more effective in extracting inherent 
fault features from complex vibration signals. (Kar and Mohanty, 2008) conducted an 
experimental investigation of fault diagnosis in a multistage gearbox under transient loads. 
The signals studied were vibration measurements, recorded from an accelerometer fitted at the 
tail-end bearing of the gearbox as well as the current transients monitored at the induction 
motor. Three defective cases and three transient load conditions were investigated. DWT (with 
“db8”) and a corrected multi-resolution Fourier transform (MFT) were applied to process the 
vibration and current transients. A statistical feature extraction technique was proposed in 
search of a trend in detection of defects. A condition monitoring scheme is devised that can 
facilitate in monitoring vibration and current transients in the gearbox with simultaneous 
presence of transient loads and defects. (Jafarizadeh et al., 2008) suggested a new noise 
canceling method, based on time-averaging method for asynchronous input, and CWT with 
complex Morlet wavelet. The complex Morlet wavelet depends on non-fixed parameters. For 
the feature extraction from time-domain vibration signals, the optimum values of the Morlet 
wavelet parameters should be estimated. Wavelet entropy was used towards this 
optimization. Then CWT was applied and 3-D scalograms were utilized for damage detection. 
The proposed method was successfully implemented on a simulated signal and real test rig of 
a Yahama motorcycle gearbox.   

(Loutas et al., 2009) reported on the condition monitoring of a lab-scale, single stage, 
gearbox with cracked gears using different non-destructive inspection methodologies and 
the processing of the acquired waveforms with advanced signal processing techniques is the 
aim of the present work. Acoustic emission (AE) and vibration measurements were utilized 
for this purpose. Emphasis was given on the signal processing of the acquired vibration and 
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acoustic emission signals in order to extract conventional as well as novel parameters-
features of potential diagnostic value from the monitored waveforms. Wavelet-based 
parameters-features were proposed utilizing the DWT and “db10” wavelet. The evolution of 
selected parameters/features versus test time is provided, evaluated and the parameters 
with the most interesting diagnostic behavior were highlighted. The differences in the 
parameters evolution of each NDT technique are discussed and the superiority of AE over 
vibration recordings for the early diagnosis of natural wear in gear systems was concluded. 
In (Saravanan and Ramachandran, 2009) the coefficients of Morlet wavelet were used for 
feature extraction. CWT and sixty four scales were chosen to extract the Morlet wavelet 
coefficients of the vibration signals. A group of statistical features like kurtosis, standard 
deviation, maximum value, etc., widely used in fault diagnostics, were extracted from the 
wavelet coefficients of the time domain signals. For the selection of best features, the 
decision tree using J48 algorithm was used. The selected features were fed as input to SVM 
for classification. (Xian and Zeng, 2009) developed a new intelligent method for the fault 
diagnosis of the rotating machinery based on wavelet packet analysis (WPA) and hybrid 
support vector machines (hybrid SVM). The faulty vibration signals obtained from a 
gearbox were decomposed by WPA via Dmeyer wavelet. Shannon entropy was calculated 
from the coefficients at each subspace of the WPA decomposition and formed the feature 
vectors that trained/tested the hybrid SVM for estimating the fault type. (Belsak and 
Flasker, 2009) studied the influence of a fatigue gear crack in a single-stage gear unit on the 
recorded vibrations. They applied the sparse code shrinkage method to de-noise vibration 
signals from a faulty gearbox. They discriminated between healthy and cracked gear using 
scalograms of the resulted CWT coefficients. Gabor wavelet was adopted in their work.  
(Wu and Chan, 2009) utilized the sound emission from a multi-stage gearbox towards gear 
fault diagnostics. Continuous wavelet transform with Morlet mother wavelet combined 
with a feature selection of energy spectrum was proposed for analyzing fault signals and 
feature extraction. Two artificial neural network (ANN) approaches i.e. the probability 
neural network and conventional back-propagation network were compared in the 
recognition of six faulty states and one healthy. (Saravanan and Ramachandran, 2009) 
recorded vibration signals from a spur bevel gearbox in different lubrication, loading and 
gear state conditions. They used various members of the Daubechies family (db1-db15) for 
statistical feature extraction. J48 Decision Tree was used for two reasons, feature selection 
and classification of the faulty signals. (Rafiee and Tse, 2009) processed vibration signals 
from a gearbox with three different fault conditions (slight-worn, medium-worn, and 
broken-tooth) of a spur gear. CWT was used with packet decomposition through the scales. 
After synchronizing the raw vibration signals, the CWT and autocorrelation function were 
applied to the synchronized signals and generated continuous wavelet coefficients of 
synchronized vibration signals. They found that a simple sinusoidal summation function 
can approximate the waveforms generated by autocorrelation of CWC-SVS for normal 
gearboxes as well as other defective gears with satisfactory performance. The function 
achieved proper approximation even though the waveforms were different from one 
condition to another as they possess different frequency contents of vibration signals. 
(Rafiee et al., 2009) presented an optimized gear fault identification system using genetic 
algorithms (GAs) to investigate the type of gear failures of a complex gearbox system using 
artificial neural networks (ANNs). Slightly-worn, medium-worn, and broken-tooth of a spur 
gear of the gearbox system were selected as the faults types. GAs were exploited to optimize 
the selection of mother wavelet function (among several members of the Daubechies 
family), the number of the decomposition levels of the wavelet packet transform (WPT) as 
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well as the number of neurons in the ANNs hidden layers, resulted in a high-speed, 
effective two-layer ANN with a small-sized structure. “db11”, level 4 and 14 neurons have 
been selected as the best values for Daubechies order, decomposition level, and the number 
of nodes in hidden layer, respectively. (Singh and Al Kazzaz, et al., 2009) studied the effect 
of dry bearing fault on multi-sensor measurements (three line to line voltages, three 
currents, two vibration signals, four temperatures and one speed signal) in induction 
machines. Different families of WT have been introduced and implemented with vibration 
signals covering the dry bearing fault in induction machine. The results of testing various 
popular types of the WT showed different degree of success in relating the decomposed 
band with machine condition. It was concluded that the fluctuation in the RMS value of the 
first and second decomposition level was larger in the case of Mexican hat wavelet and it 
was thus proposed to investigate the random vibration of all machines in case of dry 
bearing fault. It was concluded that WT can be used effectively to specify one machine fault 
at a time, while it cannot treat multiple faults simultaneously. Instead, the combined use of 
wavelet and Fourier transform proved an effective tool for extracting important information 
about the machine condition. An intelligent diagnostic methodology for fault gear 
identification and classification based on vibration signals using DWT and adaptive 
neuro-fuzzy inference system (ANFIS) is presented in (Wu et al., 2009). After the vibration 
signal acquisition, 4-level decomposition via the DWT followed resulting in four high 
frequency details (D1–D4) and one low frequency approximation (A4). Three Daubechies 
wavelets (db4, db8 and db20) were utilized for the decomposition. The energy 
distribution of the five subbands was calculated and trained two different ANNs for the 
successful fault identification. No major differences were observed on the ANNs 
recognition rates in regard to the different mother wavelets utilized in the DWT. (Wu and 
Hsu, 2009) described a development of the fault gear identification system using the 
vibration signal with discrete wavelet transform and fuzzy–logic inference for a gear-set 
experimental platform. The extraction method of feature vector is based on DWT 
decomposition followed by level energy calculation. The recognition rate of the 
classification task using three different Daubechies wavelets (“db4, db8 and db20”) 
coefficients under various working conditions did not show significant discrepancies. The 
fault recognition rates were in general over 96%.  

A diagnostic methodology of artificial defects in a single stage gearbox operating under 
various load levels and different defect states was proposed by (Loutas et al., 2010) based on 
vibration recordings as well as advanced signal analysis techniques. Two different wavelet-
based signal processing methodologies, using the DWT as well as the CWT, were utilized 
for the analysis of the recorded vibration signals and useful diagnostic information were 
extracted out of them.  

DWT was applied with “db10” and 10-level decomposition whilst CWT was applied with 
Morlet wavelet (bandwidth parameter and wavelet center frequency were set at 1 and 1.5 
respectively. Averaging across all scales was utilized instead of time synchronous averaging 
giving very characteristic scalograms for each artificial defect case. A novel method 
incorporating customized (i.e., signal-based) multiwavelet lifting schemes with sliding 
window de-noising was proposed in (Yuan et al., 2010). On the basis of Hermite spline 
interpolation, various vector prediction and update operators with the desirable properties 
of biorthogonality, symmetry, short support and vanishing moments are constructed. The 
minimum entropy principle is recommended to determine the optimal vector prediction 
and update operators in the lifting scheme, by means of measuring the sparsity. Due to the 

www.intechopen.com



 
Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology 294 

periodic characteristics of gearbox vibration signals, sliding window de-noising favorable to 
retain valuable information as much as possible is employed to extract and identify the fault 
features in gearbox signals. Experimental validations including the simulation experiments, 
gear fault diagnosis and normal gear detection prove the effectiveness of the multi-wavelet 
lifting schemes as compared to various conventional wavelets. In (Saravanan and 
Ramachandran, 2010) the vibration signals monitored at a bevel gear box in various 
conditions and fault conditions were processed with DWT. Wavelet features were extracted 
for all the wavelet coefficients and for all the signals using the Daubechies wavelets “db1” to 
“db15”. ID3 Decision Tree is used for feature selection and artificial neural network were 
employed for classification of various faults of the gear box. The features selection of various 
discrete wavelets was carried out and the wavelet having the highest average efficiency of 
fault classification was chosen as the most appropriate. In (Rafiee et al., 2010) vibration 
signals recorded from two experimental set-ups were processed for gears and bearing 
conditions. Four statistical features were selected: standard deviation, variance, kurtosis, 
and fourth central moment of continuous wavelet coefficients of synchronized vibration 
signals (CWC-SVS). An automatic feature extraction algorithm is introduced for gear and 
bearing defects. It also shows that the fourth central moment of CWC-SVS is a proper 
feature for both bearing and gear failure diagnosis. Standard deviation and variance of 
CWC-SVS demonstrated more appropriate outcome for bearings than gears. Kurtosis of 
CWC-SVS illustrated the acceptable performance for gears only. (Wang et al., 2010) 
proposed a technique to provide accurate diagnosis of gearboxes under fluctuating load 
conditions. The residual vibration signal, i.e. the difference of time synchronously averaged 
signal from the average tooth-meshing vibration, is analyzed as source data due to its lower 
sensitiveness to the alternating load condition. Complex Morlet continuous wavelet 
transform was used for the vibration signal processing. A fault growth parameter (FGP) was 
introduced, based on the continuous wavelet transform amplitudes over all transform 
scales. FPG actually measures the relative CWT amplitude change. This parameter proved 
insensitive to varying load and can correctly indicate early gear fault. Other features such as 
kurtosis, mean, variance, form factor and crest factor, both of residual signal and mean 
amplitude of continuous wavelet transform waveform, were also checked and proved to be 
influenced by the changing load. The effectiveness of the proposed fault indicator was 
demonstrated using a full lifetime vibration data history obtained under sinusoidal varying 
load. 

To overcome the shift-variance deficiency of classical DWT, a novel fault diagnosis method 
based on the redundant second generation wavelet packet transform was proposed in (Zhou 
et al., 2010). Initially, the redundant second generation wavelet packet transform (RSGWPT) 
was constructed on the basis of second generation wavelet transform and redundant lifting 
scheme. Then, the vibration signals were decomposed by RSGWPT and the faulty features 
were extracted from the resultant wavelet packet coefficients. In the end, the extracted fault 
features were given as input to classifiers for identification/classification. The proposed 
method was applied for the fault diagnosis of gearbox and gasoline engine valve trains. Test 
results indicate that a better classification performance can be obtained by using the 
proposed fault diagnosis method in comparison with using conventional second generation 
wavelet packet transform method. (Wang et al., 2010) employed the dual-tree complex 
wavelet transform (DTCWT) for the de-noising of vibration signals from gearbox and 
bearings monitoring. They compared the de-noising via DTCWT with other wavelet-based 
techniques (DWT and second generation wavelet transform (SGWT)) as well as with fast 
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kurtogram. The results were evaluated through the kurtosis calculated for each signal after 
the de-noising. NeighCoeff shrinkage scheme was applied in all wavelet-based cases. De-
noised results of signals collected from a gearbox with tooth crack showed that the DTCWT-
based de-noising approach yielded more promising result than the SGWT- and DWT-based 
methods, and it can effectively remove the noise and retain valuable information as much as 
possible. In the case of multiple features detection, diagnosis results of rolling element 
bearings with combined faults and actual industrial equipment confirmed that the proposed 
DTCWT-based method is powerful and consistently outperformed the widely used SGWT 
and fast kurtogram. 

(Loutas et al. 2011a) conducted multi-hour tests in healthy gears in a single-stage gearbox. 

Three on-line monitoring techniques were implemented in the tests. Vibration and acoustic 

emission recordings in combination with data coming from oil debris monitoring (ODM) of 

the lubricating oil were utilized in order to assess the condition of the gears. A plethora of 

parameters/features were extracted from the acquired waveforms via conventional (in time 

and frequency domain) and non-conventional (wavelet-based) signal processing techniques. 

DWT was utilized to process vibration and AE signals with “db10” mother wavelet and 10 

levels of decomposition. The wavelet levels energy and entropy were used as features. Data 

fusion was accomplished in the level of integration of the most representative among the 

extracted features from all three measurement technologies in a single data matrix. Principal 

component analysis (PCA) was utilized to reduce the dimensionality of the data matrix 

whereas independent component analysis (ICA) was further applied to identify the 

independent components among the data and correlate them to different damage modes of 

the gearbox. (Miao and Makis, 2011) presented an on-line fault classification system with an 

adaptive model re-estimation algorithm. The machinery condition is identified by selecting 

the HMM which maximizes the probability of a given observation sequence. The proper 

selection of the observation sequence is a key step in the development of an HMM-based 

classification system. In this paper, the classification system is validated using observation 

sequences based on the wavelet modulus maxima distribution obtained from real vibration 

signals, which has been proved to be effective in fault detection in previous research. (Li et 

al., 2011) utilized the Hermitian wavelet to diagnose the gear localized crack fault. The 

complex Hermitian wavelet is constructed based on the first and the second derivatives of 

the Gaussian function to detect signal singularities. The Fourier spectrum of Hermitian 

wavelet is real; therefore, Hermitian wavelet does not affect the phase of a signal in the 

complex domain. This gives a desirable ability to extract the singularity characteristic of a 

signal precisely. The proposed method is based on Hermitian wavelet amplitude and phase 

map of the time-domain vibration signals. Hermitian wavelet amplitude and phase maps 

are used to evaluate healthy and cracked gears.  

4.3 Bearings 

The fault diagnosis of rolling element bearings is very important for improving mechanical 
system reliability and performance in rotating machinery as bearing failures are among the 
most frequent causes of breakdowns in rotating machinery. When localized fault occurs in a 
bearing, periodic or non-periodic impulses appear in the time domain of the vibration 
signal, and the corresponding bearing characteristic frequencies (BCFs) and their harmonics 
emerge in the frequency domain. However, in the early stage of bearing failures, the BCFs 
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usually carry very little energy and are often suppressed/hidden by noise and higher-level 
macro-structural vibrations. Consequently an effective signal processing method is of 
utmost importance in the de-noising of vibration or acoustic emission signals acquired or 
the extraction of damage sensitive features during the condition monitoring of bearings. 
Wavelet-based techniques meet this challenge in a variety of applications presented in the 
following.  

(Purushotham et al., 2005) have applied the DWT towards the detection of localized bearing 
defects. The vibration signals were decomposed up to 4 levels using “db2” mother wavelet. 
The complex cepstral coefficients for wavelet transformed time windows at Mel-frequency 
scales constituted the features that trained Hidden Markov Models for the fault detection 
and classification. 

In (Yan and Gao, 2005) the Discrete Harmonic Wavelet Packet Transform (DHWPT) was 
used to decompose the vibration signals measured from a bearing test bed into a number of 
frequency sub-bands. Given the harmonic wavelet packet coefficients of a vibration signal 
x(t), the energy feature in each sub-band was calculated as: 

,ݏሺݕ݃ݎ݁݊ܧ  ݅ሻ = ∑ |ℎݐ݌ݓሺݏ, ݅, ݇ሻ|ଶே௞ୀଵ   (53) 

The key features were then used as inputs to neural network classifiers for assessing the 
system’s health status. Comparing to the conventional approach where statistical 
parameters from raw vibration signals are used, the presented approach enables higher 
signal-to-noise ratios and consequently, more effective and intelligent use of the available 
sensor information, leading to more accurate system health evaluation. 

(Qiu et al., 2006) assessed the performance of wavelet decomposition-based de-noising 

versus wavelet filter-based de-noising methods on signals from mechanical defects. The 

comparison revealed that wavelet filter is more suitable and reliable to detect a weak 

signature of mechanical impulse-like defect signals, whereas the wavelet decomposition de-

noising method can achieve satisfactory results on smooth signal detection. In order to select 

optimal parameters for the wavelet filter, a two-step optimization process was proposed. 

Minimal Shannon entropy was used to optimize the Morlet wavelet shape factor. A 

periodicity detection method based on singular value decomposition (SVD) was then used 

to choose the appropriate scale for the wavelet transform. The experimental results verify 

the effectiveness of the proposed method.  

(Abbasion et al., 2007) studied the condition of an electric motor with two rolling bearings 
(one next to the output shaft and the other next to the fan) with one normal state and three 
faulty states each. De-noising via the CWT (Meyer wavelet) was conducted and support 
vector machines (SVMs) were used for the fault classification task. Results have showed 
100% accuracy in fault detection. (Ocak et al., 2007) developed a new scheme based on 
wavelet packet decomposition and hidden Markov modeling (HMM) for the condition 
monitoring of bearing faults. In this scheme, vibration signals were decomposed into 
wavelet packets and the node energies of the 3-level decomposition tree were used as 
features. Based on the features extracted from normal bearing vibration signals, an HMM 
was trained to model the normal bearing operating condition. The probabilities of this 
HMM were then used to track the condition of the bearing. In (Zarei and Poshtan, 2007) 
WPT was used to process stator current signals in order to detect defective bearings at 
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induction motors. The discrete Meyer wavelet was used to decompose the recorded signals 
in three levels. The defect frequency region was determined, and the coefficient energies in 
the related nodes were calculated. In comparison with the healthy condition, the energy was 
found to increase in the nodes related to defect frequency regions, therefore it was used as a 
diagnostic parameter. (Hu et al., 2007) introduced a methodology for fault diagnosis based 
on improved wavelet package transform (IWPT), a distance evaluation technique and the 
support vector machines (SVMs) ensemble. Their method consists of three stages. Firstly, 
with investigating the feature of impact fault in vibration signals, a biorthogonal wavelet 
with impact property is constructed via lifting scheme, and the IWPT is carried out for 
feature extraction from the raw vibration signals. Then, the faulty features can be detected 
by envelope spectrum analysis of wavelet package coefficients of the most salient frequency 
band. Secondly, with the distance evaluation technique, the optimal features are selected 
from the statistical characteristics of raw signals and wavelet package coefficients, and the 
energy characteristics of decomposition frequency band. Finally, the optimal features are 
input into the SVMs in order to identify the different abnormal cases. The proposed method 
was applied to the fault diagnosis of rolling element bearings, and testing results showed 
that the SVMs ensemble can reliably separate different fault conditions and identify the 
severity of incipient faults. 

(Lei et al., 2009) suggested a method relying on wavelet packets transform (WPT) and 
empirical mode decomposition (EMD) to preprocess vibration signals and extract fault 

characteristic information from them. Each of the raw vibration signals is decomposed with 
“db10” WPT at level 3. From a plethora of features extracted at each sub-band, the most 

relevant ones were selected via distance evaluation techniques and forwarded into a radial 
basis function (RBF) network to automatically identify different faults (inner race, outer 

race, roller) in rolling element bearings. A novel health index called frequency spectrum 
growth index (FSGI) to detect health condition of gear, based on wavelet decomposition was 

presented in (Wang et al., 2009). “db9” mother wavelet was chosen for signal decomposition 

and the maximum wavelet decomposition level is 4. In order to evaluate the performance of 
the proposed FSGI index various wavelets at various decomposition levels were tested. The 

results obtained prove that FSGI is insensitive to the selection of wavelet type and 
decomposition level. Three sets of vibration data collected from a mechanical diagnostics 

test bed were collected and analyzed in order to validate the method. An anti-aliasing lifting 
scheme is applied by (Bao et al.,2009) to analyze vibration signals measured from faulty ball 

bearings and testing results confirm that the proposed method is effective for extracting 
weak fault feature from a complex background. The simple lifting scheme (or 2nd generation 

wavelet transform) was altered by discarding the split and merge operations and modifying 
accordingly the prediction and update operators improving significantly the frequency 

aliasing issue. Testing results showed that the anti-aliasing lifting scheme performs better 
than the lifting scheme and the redundant lifting scheme in terms of increasing the accuracy 

of classification algorithms (ANNs or SVMs) of faulty bearing signals. (Yuan et al., 2009) 
introduced a new method based on adaptive multi-wavelets via two-scale similarity 

transforms (TSTs). TSTs are simple methods to construct new biorthogonal multi-wavelets 
with properties of symmetry, short support and vanishing moments. Based on kurtosis 

maximization principle, adaptive multi-wavelets were designed to match the transient faults 
in rotating machinery. Genetic algorithms (GAs) were applied to select the optimal multi-

wavelets and the method was used to successfully diagnose bearing outer-race faults. (Zhu 
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et al., 2009) introduced a new method that combines the CWT -through the Morlet wavelet- 
and the Kolmogorov–Smirnov test to detect transients contained in the vibrations signals 

from gearbox as well as faulty bearings. CWT initially decomposed the time domain 
vibration signals into two dimensional time-scale plane. By removing the Gaussian noise 

coefficients at all scales in the time-scale plane and then applying the inverse CWT to the 
noise reduced wavelet coefficients, the signal transients in the time domain were evaluated 

enhancing thus the difficult task of effective and reliable fault identification. A new robust 
method relying on the improved wavelet packet decomposition (IWPD) and support vector 

data description (SVDD) is proposed in (Pan et al., 2009). Node energies of IWPD were used 
to compose feature vectors. Based on feature vectors extracted from normal signals, a SVDD 

model fitting a tight hypersphere around them is trained, the general distance of test data to 
this hypersphere being used as the health index. IWPD is based on the second generation 

wavelet transform (SGWT) realized by lifting scheme. SVDD is an excellent method of one-
class classification, with the advantages of robustness and high computation. A 

methodology developed on the combination of these two methods for bearing performance 
degradation proved effective and reliable when applied to vibration signals from a bearing 

accelerated life test. (Feng et al., 2009) introduced the normalized wavelet packets 
quantifiers as a new feature set for the detection and diagnosis of localized bearing defect 

and contamination fault. The “Wavelet packets relative energy” measures the normalized 
energy of the wavelet packets node; the “Total wavelet packets entropy” measures how the 

normalized energies of the wavelet packets nodes are distributed in the frequency domain; 
the “Wavelet packets node entropy” describes the uncertainty of the normalized coefficients 

of the wavelet packets node. Unlike the conventional feature extraction methods, which use 
the amplitude of wavelet coefficients, these new features were derived from probability 

distributions and are more robust for diagnostic applications. Acoustic Emission signals 
from faulty bearings of rotating machines were recorded and the new features were 

calculated via WPT and Daubechies mother wavelets (“db1-db10”). Their study showed that 
both localized defects and advanced contamination faults can be successfully detected and 

diagnosed if the appropriate feature was chosen. The Bayesian classifier was also used to 
quantitatively analyze and evaluate the performance of the proposed features. They also 

showed that by reducing the Daubechies wavelet order or the length of the signal segment 
will generally increase the classification rate probability. (Hao and Chu, 2009) presented a 

novel morphological undecimated wavelet (MUDW) decomposition scheme for fault 
diagnostics of rolling element bearings. The MUDW scheme was developed based on the 

morphological wavelet (MW) theory and was applied for both the extraction of impulse 

components and de-noising. The efficiency of the MUDW was assessed using simulated 
data as well as monitored vibration signals from a bearing test rig. (Hong and Liang, 2009) 

presented a new version of the Lempel–Ziv complexity as a bearing fault (single point) 
severity measure based on the continuous wavelet transform (CWT). The CWT (realized 

with the Morlet wavelet) was used to identify the best scale where the fault resides and 
eliminate the interferences of noise and irrelevant signal components as much as possible. 

Next, the Lempel–Ziv complexity values were calculated for both the envelope and high-
frequency carrier signal obtained from wavelet coefficients at the best scale level. As the 

noise and other un-related signal components have been removed, the Lempel–Ziv 
complexity value will be mostly contributed by the bearing system and hence can be reliably 

used as a bearing fault measure. The applications to the bearing inner- and outer-race fault 
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signals have demonstrated that the proposed methodology can effectively measure the 
severity of both inner- and outer-race faults.  

(Xian, 2010) presented a combined discrete wavelet transform (DWT) and support vector 
machine (SVM) technique for mechanical failure classification of spherical roller bearing 
application in high performance hydraulic injection molding machine. The proposed 
technique consists of preprocessing the mechanical failure vibration signal samples using 
discrete wavelet transform with ‘db2’ mother wavelet at the fourth level of decomposition of 
vibration signal for failure classification. The energy of the approximation and the details 
was calculated and populated the feature vectors that trained the support vector machine 
that was built for the classification of mechanical failure types of the spherical roller 
bearings. In (Yan and Gao, 2010) the generalized harmonic wavelet transform (HWT) was 
used to enhance the signal-to-noise ratio for effective machine defect identification in rolling 
bearings that contained different types of structural defects. In harmonic wavelet transform 
a series of sub-frequency band wavelet coefficients are constructed by choosing different 
harmonic wavelet parameter pairs. The energy and entropy associated with each sub-
frequency band are then calculated. The filtered signal is obtained by choosing the wavelet 
coefficients whose corresponding sub-frequency band has the highest energy-to- entropy 
ratio. Experimental studies using rolling bearings that contain different types of structural 
defects have confirmed that the developed new technique enables high signal-to-noise ratio 
for effective machine defect identification. (Su et al., 2010) developed a new autocorrelation 
enhancement algorithm including two aspects of autocorrelation and extended Shannon 
function. This method does not need to select a threshold and can be implemented in an 
automatic way and is realized in various stages. First, to eliminate the frequency associated 
with interferential vibrations, the vibration signal is filtered with a band-pass filter 
determined by a Morlet wavelet whose parameters are optimized by genetic algorithm. 
Then, the envelope of the autocorrelation function of the filtered signal is calculated. Finally 
the enhanced autocorrelation envelope power spectrum is obtained. The method is 
employed to the simulated signal and the real bearing vibration signals under various 
conditions, such as normal, inner-race fault and outer-race fault. There are only several 
single spectrum lines left in the enhanced autocorrelation envelope power spectrum. The 
single spectrum line with largest amplitude is corresponding to the bearing fault frequency 
for a defective bearing while it is corresponding to the shaft rotational frequency for a 
normal bearing. (Huang et al., 2010) utilized the lifting-based second generation wavelet 
packet transform to process vibration signals from a rolling element bearing test. The 
wavelet packet energy was calculated by the coefficients at the nth node of the wavelet 
packet. This corresponds to the energy of the coefficients in a certain frequency band. 
Normalization is applied to minimize possible bias due to different ranges of the wavelet 
packet energies. The fuzzy c-means method has been used to assess the bearing 
performance and classify the faulty and the healthy recordings. In (Pan et al., 2010) a new 
method based on lifting wavelet packet decomposition and fuzzy c-means for bearing 
performance degradation assessment is proposed. Vibration signals during run-in tests up 
to bearing failure were processed with lifting wavelet packet. Feature vectors composed of 
node energies were constructed and fed in a fuzzy c-means expert system for classification 
of healthy, degraded and failed bearings. (He et al., 2010) proposed a hybrid method which 
combines Morlet wavelet filter and sparse code shrinkage (SCS) to extract the impulsive 
features buried in the vibration signal. Initially, the parameters of a Morlet wavelet filter 
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(center frequency and bandwidth) are optimized by differential evolution (DE) in order to 
eliminate the interferential vibrations and obtain the fault characteristic signal. Then, to 
further enhance the impulsive features and suppress residual noise, SCS which is a soft-
thresholding method based on maximum likelihood estimation (MLE) is applied to the 
filtered signal. The results of simulated experiments and real bearing vibration signals verify 
the effectiveness of the proposed method in extracting impulsive features from noisy signals 
in condition monitoring.  

(Chiementin et al., 2010) studied the effect of wavelet de-noising and other techniques on 
acoustic emission signals from faulty bearings. They applied DWT and attempted to 
optimize the various parameters selection involved in a wavelet-based de-noising scheme. 
They assessed the different de-noising techniques and concluded that the wavelet approach 
enhanced the signal kurtosis and crest factor more than the other techniques. 

4.4 Motors 

Electrical, hydraulic motors as well as internal combustion engines are the dominant 
applications in the related literature. (Chen et al., 2006) worked on fault diagnosis of water 
hydraulic motors. A modelling of the monitored vibration signals based on the adaptive 
wavelet transform (AWT) was proposed. The model-based method by AWT was applied for 
de-noising and feature extraction. Scalograms acquired through the CWT revealed the 
characteristic signal’s energy in time-scale domain and were used as feature values for fault 
diagnosis of water hydraulic motor. (Wu and Chen, 2006) presented a fault signal diagnosis 
technique for internal combustion engines based on CWT.  The Morlet wavelet was used 
because in many mechanical dynamic signals, impulses are always the symptoms of faults 
and the Morlet wavelet is very similar to an impulse component. Different faults have 
shown different scalograms. A characteristic analysis and experimental comparison of the 
vibration signal and acoustic emission signal with the proposed algorithm were also 
presented in their work. 

(Daviu et al., 2007) employed wavelet analysis on the stator startup currents in order to 
detect the presence of dynamic eccentricities in an induction motor. For this purpose, the 
DWT is applied on the stator startup monitored current signals. The approximation and 
details were obtained after the DWT decomposition via “db44” wavelet and 8 levels of 
analysis. The relative increment in the level energy of the wavelet coefficients was used as a 
quantitative indicator of the degree of severity of the fault. In (Chen et al., 2007) a novel 
method to process the vibration signals was presented for the fault diagnosis of water 
hydraulic motors. De-noising was initially conducted by thresholding in the wavelet 
domain and inversely transforming the de-noised wavelet coefficients. Feature extraction 
based on the second-generation wavelet of the vibration signals followed next.  The 
statistical probability distributions of the mean, variance and the second-order statistical 
moment of the scaling coefficients at first, second and third scale were calculated and used 
to classify the different piston conditions. (Chendong et al., 2007) proposed a new sliding 
window feature extraction method based on the lifting scheme for extracting transient 
impacts from signals. A sliding window -designed according to the revolution cycle of 
rotating machinery- is applied to process the detail signals. By extracting modulus maxima 
from these windows, fault features and their locations in the original signals were revealed. 
An incipient impact fault caused by axis misalignment, mass imbalance and a bush broken 
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fault have been successfully detected by using the proposed approach. In (Peng et al., 2007) 
the wavelet transform modulus maximal (WTMM) method was used to calculate the 
Lipschitz exponents of the vibration signals with different faults. The Lipschitz exponent 
can give a quantitative description of the signal’s singularity. The proposed singularity 
based parameters proved a set of excellent diagnostic features, which could separate the 
four kinds of faults very well. The results showed that, with the fault severity increasing, the 
vibration signals’ singularities and singularity ranges increased as well, and therefore one 
could evaluate the fault severity through measuring the vibration signals’ singularities and 
singularity ranges. 

(Wu and Liu, 2008) instead of WPT utilized a DWT technique combined with a feature 
selection of energy spectrum and fault classification using ANNs for analyzing fault signals 
of internal combustion engines. The features of the sound emission signals at different 
resolution levels were extracted by multi-resolution analysis and Parseval’s theorem. (Niu et 
al., 2008) applied multi-level wavelet decomposition on transient stator current signals for 
fault diagnosis of induction motors. After the signal preprocessing using smoothing–
subtracting and wavelet transform techniques, features were extracted from each level of 
detail component of decomposed signals using DWT and “db10” mother wavelet. 21 
features in total are acquired from each sensor consisting of the time domain (10 features), 
frequency domain (three features) and regression estimation (eight features). Totally, two 
70· 3·21 features sets are calculated from seven types of signals collected by three current 
probes at each wavelet decomposition level. The calculated two features sets consisted of the 
training and test sets respectively and consist of the input in four different classifiers for 
pattern recognition with quite satisfactory results. (Chen et al., 2008) proposed a 
methodology based on Wavelet Packet Analysis (WPA) and Kolmogorov-Smirnov (KS) test 
to analyze monitored vibration signals from the water hydraulic motor to assess the fault 
degradation of the pistons in water hydraulic motor. The fault detection procedure applied 
is summarized in the following. First, the time-domain vibration signals were decomposed 
through the WPT in two levels. The soft-thresholding technique was used in the wavelet 
and approximation coefficients to get the de-noised coefficients. The reconstructed de-
noised vibration signal with improved signal-to-noise ratio (SNR) was obtained by 
reconstructing the de-noised coefficients in the multi-decomposition of the vibration signal. 
Then the kurtosis of the de-noised signal was calculated and finally the KS test was used to 
classify the kurtosis statistical probability distribution (SPD) under seven different piston 
conditions. Thus the piston condition in water hydraulic motor was successfully assessed. 
(Widodo and Yang, 2008) introduced an intelligent system for faults detection and 
classification of induction motor using wavelet support vector machines (W-SVMs). W-
SVMs were built by utilizing the kernel function using wavelets. Transient current signals 
were monitored in various damage conditions of the induction motor. The acquired signals 
were preprocessed through DWT (“db5”, 5 levels) and various statistical features were 
extracted. Principal component analysis (PCA) and kernel PCA were utilized to reduce the 
dimension of features and to extract the useful features for classification process. Finally the 
classification process for diagnosing the faults was carried out using W-SVMs and 
conventional SVMs based on one against-all multi-class classification. 

(Wu and Liu, 2009)  proposed a fault diagnosis system for internal combustion engines 
using wavelet packet transform (WPT) and artificial neural network (ANN) techniques on 
monitored sound emission signals. In the preprocessing phase, WPT coefficients are used, 

www.intechopen.com



 
Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology 302 

their entropy is calculated and treated as the input to the ANN in order to distinguish the 
various fault conditions. ‘‘db4”, ‘‘db8” and ‘‘db20” from the Daubechies family were used as 
mother wavelets with no clear advantage of one of them in the ANN performances. 

(Lin et al., 2010) utilized vibration measurements to distinguish effectively between aligned 
and misaligned motors. The proposed method calculates the difference between the MSE of 
the original vibration signal and that of the signal after the signal is de-noised by wavelet 
transform. This study presents a novel use of the multiscale entropy technique by 
comparing the difference of sample entropy of a signal before and after the signal is de-
noised using wavelet transform. De-noising was performed using the Daubechies wavelet 
transform, which was implemented with Matlab wavelet function with the following 
parameter settings: threshold type is ‘‘rigrsure”; number of decomposition levels is 4; 
mother wavelet is ‘‘db4”. (Cusido et al.,2010) have monitored motor current for fault 
diagnosis in induction machines. The power detail density (PDD) function resulting from a 
wavelet transformation has proven to be one of the best methods for motor fault estimation 
under variable load. Power detail density was calculated as the squares of the coefficients of 
one detail. (Wang and Jiang, 2010)  utilized an adaptive wavelet de-noising scheme by 
combining advantages of both hard and soft thresholding, to de-noise vibration signals from 
the aircraft engine rotor experimental test rig by block to light rub-impact rotational plate. 
After the de-noising procedure, the correlation dimension of the vibration signal is 
computed, and is used as the characteristic feature for identifying the fault deterioration 
grade.  

(Ece and Basaran, 2011) applied wavelet packet decomposition (WPD) in supply-side 

current signals for the condition monitoring of induction motors with adjustable speed and 

load levels. In this work, acquired data, sampled at 20 kHz, is analyzed using 11 level WPD. 

This way, the coefficients of three nodes at the 11th level corresponding to 43.92–48.8 Hz, 

48.8–53.68 Hz, and 53.68–58.56 Hz that cover the region of both side-bands as well as the 50 

Hz fundamental, are obtained. Using the coefficients of each resulted node, 5 statistical 

features (i.e. mean, variance, standard deviation, skewness, and kurtosis) are calculated 

resulting 15 element feature vectors. (Konar and Chattopadhyay, 2011) employed a hybrid 

CWT–Support Vector Machine approach (CWT-SVM) to analyze the frame vibrations of 

healthy and faulty induction motors during start-up. Various mother wavelets were utilized 

in the implementation of CWT. ‘Morlet’ and ‘db10’ wavelets were found to be the best 

choice and used throughout the study. Three statistical features (i.e. root mean square 

(RMS), crest and kurtosis values) were calculated from the CWT coefficients for each 

loading condition and consisted of the input in the SVM to classify between healthy and 

faulty states. In (Anami et al., 2011), a methodology to determine the health condition of 

motorcycles, based on discrete wavelet transform (DWT) of sound measurements is 

proposed. The 1-D central contour moments and invariant contour moments, of 

approximation coefficients of DWT form the feature vectors corresponding to various health 

states. The sound samples are subjected to wavelet decomposition using Daubechies ‘db4’ 

wavelets. The decomposition into approximation and detailed coefficients is carried out for 

the first 14 levels. The feature vector comprises of four 1D central contour moments (l2;l3; l4 

and l5) and their four invariants (F1; F2; F3 and F4) computed on approximation coefficients 

of a wavelet sub-band. A dynamic time warping (DTW) classifier along with Euclidean 

distance measure is successfully used for the classification of the feature vectors. 
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4.5 Tool wear 

Tool condition monitoring is a very interesting industrial application. (Velayudham et al., 
2005) used wavelet packet transform to study the condition of the drill during drilling of 
glass/phenolic composite under acoustic emission (AE) monitoring. The energy of the 
wavelet packet is considered as criterion for the selection of feature packets. Thus, the AE 
signals were decomposed into four levels, that is, splitting into 16 wavelet packets. Each 
wavelet packet corresponds to a frequency band ranging from 0–156.25 to 2343.75–2500 
kHz. Out of the 16 packets resulted, it is necessary to select the packets (feature packets) that 
contain useful information. Based on the energy in each packet those with the maximum 
energy were selected. The monitoring index extracted from wavelet coefficients of highest 
energy packets could reliably detect the condition of the tool. (Shao et al., 2011) utilized a 
modified blind sources separation (BSS) technique to separate source signals in milling 
process. A single-channel BSS method based on wavelet transform and independent 
component analysis (ICA) was developed, and source signals related to a milling cutter and 
spindle were separated from a single-channel power signal. The experiments with different 
tool conditions illustrate that the separation strategy is robust and promising for cutting 
process monitoring. In (Liao et al., 2007) a wavelet-based methodology for grinding wheel 
condition monitoring based on acoustic emission (AE) signals was presented. Features were 
then extracted from each raw AE signal segment using the DWT via “db1” and 12 levels of 
analysis. An adaptive genetic clustering algorithm was finally applied to the extracted 
features in order to distinguish between different states of grinding wheel condition. (Li et 
al., 2005) utilized the DWT to recognize the tool wear states in automatic machining 
processes. The wavelet coefficients d(j, k) of cutting force signals were calculated after the 
application of DWT. d(5,k) coefficients proved sensitive and able to identify the different tool 
wear states and different cutting conditions. (Velayudham et al., 2005) used the WPT in 
order to characterize the acoustic emission signals released from glass/phenolic polymeric 
composite during drilling. In their work, the energy of the wavelet packets was taken as 
criterion for the selection of feature packets, with those having the higher energy to contain 
the characteristic features of the signal.  The results showed that the selected monitoring 
indices from the wavelet packet coefficients were capable of detecting the drill condition 
effectively. 

4.6 Other applications 

(Borghetti et al., 2006) proposed a methodology based on the continuous-wavelet 
transform (CWT) for the analysis of voltage transients due to line faults, and discussed its 
application to fault location in power distribution systems. The analysis showed that 
correlation exists between typical frequencies of the CWT-transformed signals and 
specific paths in the network covered by the traveling waves originated by the fault. 
(Belotti et al., 2006) presented a diagnostic tool, based on the DWT, for the detection of 
wheel-flat defect of a test train at different speeds. DWT was applied on the rail 
acceleration signals via “db4” wavelet and 10-level decomposition. The results, achieved 
after an exhaustive experimental campaign, allowed the validation of the effectiveness of 
the diagnostic tool. 

(Xu and Li, 2007) utilized oil spectrometric data from air-compressors. In the first stage de-
noising of the original signals through WPT (db4”, 3 levels) and “rigsure” threshoding 
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strategy was conducted. Then decomposition of the de-noised signal through DWT (with 
“db1”) followed. The variance of approximation coefficients and detail coefficients at level 1 
were calculated. In the last stage the improved three-line method was adopted to ascertain 
decisive criteria for wear condition. The ability of the proposed method for classifying and 
recognizing wear patterns was verified. (Monsef and Lotfifard, 2007) presented a novel 
approach for differential protection of power transformers. DWT (“db9, 7 levels) and 
adaptive network-based fuzzy inference system (ANFIS) were utilized to discriminate 
internal faults from inrush currents. The proposed method has been designed based on the 
differences between amplitudes of wavelet transform coefficients in a specific frequency 
band generated by faults and inrush currents. The ability of the new method was 
demonstrated by simulating various cases on a typical power system. The algorithm is also 
tested off-line using data collected from a prototype laboratory three-phase power 
transformer. The test results confirm the effectiveness and reliability of the proposed 
algorithm. (Dong and He, 2007) proposed a methodology for the condition monitoring of 
hydraulic pumps. The collected vibration signals were processed using wavelet packet with 
“db10” wavelet and five decomposition levels. The wavelet coefficients obtained by the 
wavelet packet decomposition were used as the inputs to the hidden Markov and semi-
Markov models for the classification of the various fault signals. The performance of the two 
methods was assessed resulting in higher classification rates in the case of hidden semi-
Markov models. 

(Carneiro et al., 2008) presented an approach for incipient fault detection of motor-operated 
valves (MOVs) using DWT with “db4” wavelet and six decomposition levels chosen. The 
motor power signature was acquired through three-phase current and voltage 
measurements at the motor control center. The results demonstrated the effectiveness of 
DWT-based methodology on incipient fault detection of motor-operated valves. In the two 
cases considered, the technique was able to detect incipient faults. 

(Gketsis et al., 2009) applied the Wavelet Transform (WT) analysis along with Artificial 

Neural Networks (ANN) for the diagnosis of electrical machines winding faults. After an 

optimum wavelet selection procedure they utilized “db2” for the decomposition via DWT of 

the admittance, current and voltage curves. Level 7 (D7) detail is utilized for feature 

extraction. The Fourier Transform is employed to derive measures of amplitude and 

displacement (shift) of D7 details. Motor-operated valves are used in almost all nuclear 

power plant fluid systems. The purpose of motor-operated valves (MOVs) is to control the 

fluid flow in a system by opening, closing, or partially obstructing the passage through 

itself. The readiness of nuclear power plants depends strongly on the operational readiness 

of valves, especially MOVs. They are applied extensively in control and safety-related 

systems. 

(Tang et al., 2010)  employed continuous wavelet transformation (CWT) to filter useless 
noise in raw vibration signals from gearboxes in wind turbines, and auto terms window 
(ATW) function was used to suppress the cross terms in Wigner Ville Distribution. In the 
CWT de-noising process, the Morlet wavelet (similar to the mechanical impulse signal) is 
chosen to perform CWT on the raw vibration signals. The appropriate scale parameter for 
CWT is optimized by the cross validation method (CVM). (Niu and Yang, 2010) proposed an 
intelligent condition monitoring and prognostics system in condition-based maintenance 
architecture based on data-fusion strategy. They collected vibration signals from a whole 
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test on a methane compressor and trend features were extracted. Then features were 
normalized and sent into neural network for feature-level fusion. Next, data de-noising was 
achieved by smoothing with moving average and then wavelet decomposition was applied 
(‘db5’, 5 levels of decomposition) to reduce the fluctuation and pick out the trend 
information. In (Eristi et al.,2010) a novel scheme composed of feature extraction and feature 
selection procedures for obtaining robust and adequate features of power system 
disturbances was presented. Firstly, features were obtained by different extraction 
techniques to the wavelet coefficients of all decomposition levels of the disturbance signal 
utilizing DWT and ‘db4’ wavelet. Then, by using sequential forward selection (SFS) 
technique, robust and adequate features were selected in the feature set resulted from the 
first stage. The detail coefficients and approximation coefficients were not directly used as 
the classifier inputs. Reduction of the feature vector dimension was first conducted. In this 
study, mean, standard deviation, skewness, kurtosis, RMS, form factor, crest-factor, energy, 
Shannon-entropy, log-energy entropy and interquartile range of the ten level coefficients 
were used as features. Finally the classification of the power system disturbances using 
support vector machines (SVMs) was achieved.  

(Jiang et al, 2011) introduced a new de-noising method based on adaptive Morlet wavelet 

and singular value decomposition (SVD) for feature extraction of vibration signals from 

wind turbine gearbox. Modified Shannon wavelet entropy was utilized to optimize central 

frequency and bandwidth parameter of the Morlet wavelet so as to achieve optimal match 

with the impulsive components. The proposed method was applied to extract the outer-race 

fault in a rolling bearing and the fault diagnosis of a planetary gearbox in a wind turbine. 

The results show that the proposed method based on adaptive Morlet wavelet and SVD 

performed much better than the Donoho’s “soft-thresholding de-noising”, the de-noising 

method based on CWT and SVD, and the de-noising method based on Morlet wavelet. 

Thus, it provides an effective tool for fault diagnosis to extract the fault features submerged 

in the background noise. 

5. Conclusions 

Tremendous progress has been made the last 15 years in the evolution of WT theory as well 
as their applications in engineering and especially condition monitoring. WT literally gave a 
boost to the signal processing of engineering signals opening a wide full-of-options field. 
WT is now more mature than ever constituting one of the most powerful weapons in the 
signal analyst’s arsenal. In this review, classical as well as second generation wavelet 
transforms were presented. The issue of mother wavelet choice and a variety of applications 
in wavelet-based condition monitoring were discussed. Some concepts on the beyond the 
state-of-the-art in WT were finally discussed. Despite the rapid evolution of WT there are 
still unresolved theoretical issues such as the optimum mother wavelet choice, the number 
of decomposition levels in DWT, WPT, SGWT and the number of analyzing scales in CWT. 
A solution by the mathematicians is expected there in the future. In the engineering field 
and especially in the condition monitoring, WT is expected to support (directly or indirectly) 
the developments in the fast evolving field of forecasting and prognostics. Wavelet-based 
utilization of schemes such as Hidden Markov Models, Particle Filters, Remaining Useful 
Life PDF, Trend extrapolation etc. are expected to dominate in the literature of condition 
monitoring the following years. 
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