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1. Introduction  

1.1 Overview 

Basically, the quality of an image can be evaluated on its spatial and spatial-frequency 
resolutions, image interpolation and superresolution are perhaps the way to respectively 
produce high spatial and spatial-frequency resolutions of images especially for a single down-
sampled image. For convenience, the term “hyper-resolution” used here represents the 
approach to enhancing both the spatial and the spatial-frequency resolutions of an image.  

As known, the process of decimation or down-sampling is an effective way often used to 
reduce image sizes, thus, reducing the amount of information transmitted through the 
communication channels and the local storage requirements, while trying to preserve as 
much as possible the image quality. Conversely, the reverse procedure of this, referred to as 
interpolation or up-sampling, is useful in restoring the original high resolution image from 
its decimated version or for resizing or zooming a digital image. Decimation and 
interpolation are used for several purposes in many practical applications, such as 
progressive image transmission systems, multimedia applications, and so forth. A number 
of conventional interpolation techniques [Hou & Andrews, 1978; Jain, 1989; Keys, 1981] have 
been proposed to increase the spatial resolution of an image. Undoubtedly, these techniques 
degrade the quality of the magnified image.  

Furthermore, images may be corrupted by degradation such as blurring distortion, noise, and 
blocking artifacts. These sources of degradation may arise during image capture or processing 
and have a direct bearing on visual quality. Various methods of restoration have been 
described in the literature; this diversity reveals the importance of the problem and its great 
difficulty. The purpose of image deconvolution or restoration is to recover degraded images 
by removing noise, highlighting image contrast, and preserving edge features of image. 

Image superresolution was developed in 1950s to improve image quality and pilot research 
of this field is derived from the early work (Toraldo di Francia, 1952, 1955) where the term 
“superresolution” was used in the paper. Following that, clear definition, description and 
some of the obvious contribution to this field can be found in the work (Gerchberg, 1974; 
Hunt & Sementilli, 1992) in which their work, superresolution, was meant to seek to recover 
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object information from above the spatial-frequency limit of diffraction. Originally, 
superresolution referred to a technique of one-frame-to-one-frame and its interest was in the 
spatial-frequency domain, neither for multi-frames-to-one-frame nor for interpolation. Since 
then, signal/image restoration/superresolution has been concerned for the spatial-
frequency domain from one low-resolution frame to one high-resolution frame; basically, the 
distinct nature of those algorithms is iterative and nonlinear. A process of interpolation along 
with restoration/superresolution was used with one frame to enhance the spatial and spatial-
frequency resolution of the frame (Pan, 2006). Else, the processing of multi-frame-to-one-frame 
has been quite concerned (Gillette et al., 1995; Ng et al., 2003; Segal et al., 2003), where a single 
high-resolution frame was reconstructed from multiple low-resolution frames.  

1.2 Long-wavelength imaging system 

Image restoration is able to be applied to the long-wavelength imaging systems, millimeter-
wave (mm-wave) and near-infrared diffuse optical tomography (NIR DOT) imaging 
systems, shown as Fig. 1.1.. The advantage of long-wavelength imaging systems is to provide 
special information with no radioactive characteristics but the physical property of long 
wavelength with diffraction or scattering results in lower spatial-frequency resolution images, 
however, which can be improved using image restoration to enhance its applicability.  

mm-wave  imaging system

＊imaging system
＊fog or drizzle weather

Near infrared diffusive 
Optical tomography 

＊imaging system ＊breast diagnosis

(2D  image) post-processing
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Fig. 1.1. Long Wavelength Imaging Systems v.s. Image Restoration 

Images acquired from millimeter-wave imaging system for the fog or rain weather can be 
applied to navigation; its image resolution of 2D image can be improved with the 
technology of image restoration. NIR DOT imaging system provides computed tomography 
(CT) images of the human body or biological tissue/organ, used in medical diagnosis; 
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image processing techniques can improve the image quality of tomographic images between 
iterations of image reconstruction.  

The technique using image restoration gradually becomes popular for an mm-wave or an 
NIR DOT imaging system; the difference of both imaging systems is that the former is post-
processing and the latter is inter-processing. 

1.3 Varied algorithms of Image restoration 

There are two categories of restoration methods for improving image quality: (i) 
noniterative restoration such as the inverse filter, the Wiener filter (Wiener, 1942) and (ii) 
nonlinear iterative restoration/superresolution techniques such as Lorentzian restoration 
method (Lettington & Hong, 1995), maximum a posteriori (MAP) (Hunt & Sementilli, 1992), 
Richardson-Lucy (RL) deconvolution method (Richardson, 1972; Lucy, 1974), maximum 
entropy (Frieden, 1972), projection onto convex sets (Sezan & Tekalp, 1988), Gerchberg error 
energy reduction process (Gerchberg, 1974), and edge-preserving regularization (Teboul et 
al., 1998). In these methods, it is essential to use the adequate blurring function (a low-pass 
filter) to restore a degraded image. 

1.4 Remark 

In this section, we have described a number of terms such as spatial resolution, spatial-
frequency resolution, interpolation, restoration, superresolution, hyper-resolution, inter-
processing, and post-processing. In addition, advantages and drawbacks of long wavelength 
imaging systems were addressed and general description of restoration algorithms was made. 
It is worth emphasizing that long wavelength imaging systems have the same problem to be 
dealt with so image restoration can be used to improve such an imaging system. 

Following this introduction, this chapter is organized as follows. Section 2 describes 
mathematical model of image formation; image restoration algorithms and further 
consideration on image restoration are explained in Sec. 3 and Sec. 4, respectively. 
Subsequently, Sec. 5 demonstrates related applications of image restoration. Finally, 
conclusion is drawn in Sec. 6. 

2. Mathematical model of Image formation 

In this section, imaging systems, image formation model, and forward problem and inverse 
problem are described in the following. 

2.1 Imaging systems  

2.1.1 Common imaging system 

Usually, the imaging process of a common imaging system is formed as follows. Suppose 
we have a scene of interest that is going to pass through a common imaging system where it 
has been corrupted by a linear blurring function and some additive noise. The blurring 
function h accounts for the imperfectness of the imaging system including optical lens or the 
human factors in shooting the images. Some typical examples are a diffraction-limited or 
defocused lens and camera motion or shaking during the exposure. The noise arises from 
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the inherent characteristics of the recording media, e.g., electronic noise and quantization 
noise when the images are digitized (or discretized).  

In practice, the available blurred image not only follows exactly the above description but 
also is constrained with the film size, in most cases the images have to be truncated at the 
boundaries. Instead, what is available now becomes a windowed blurred image where a 
rectangular window is usually accounting for the film aperture shape and size. One inherent 
problem with this is that many ringing artifacts are introduced into the restored image when 
the linear or nonlinear filter is applied directly to the truncated blurred image. 

2.1.2 Medical imaging system 

Here, we use NIR DOT imaging system as an example. Basically, an NIR DOT imaging system 
is composed of a measuring instrument associated with image reconstruction scheme for the 
purpose of reconstructing the NIR optical-property tomographic images of phantoms/tissue 
of interest. The reconstructed images reveal the NIR optical properties of tissue computed by 
using measured radiances emitted from the circumference of the object. A schematic diagram 
of the NIR DOT measuring system in the frequency domain is shown in Fig. 2.1.  

 
Fig. 2.1. Schematic diagram of NIR DOT measuring system in the frequency domain. 

2.2 Image formation model 

The image formation is modelled as 

 g f h n    (2.1) 

where f is the original scene, h is the point-spread function (p.s.f.) of the imaging system,   

is the convolution operator, n is the noise, and g is the corrupted image. Subsequently, the 
corrupted image is windowed due to the film size/support area and sampled for 
digitization. 

Aliasing is arising, which causes different signals to become indistinguishable when 
sampled. It also refers to the distortion or artifact that results when the signal reconstructed 
from samples is different from the original continuous signal. 
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2.3 Forward problem & inverse problem 

In a common imaging system, the image is formed as the above description in which finding 
an estimated original signal/image (f) is an inverse problem for a given corrupted 
signal/image (g) while the reverse process is a forward problem. In tomographic imaging, the 
reconstruction of optical-property images is done iteratively using a Newton method, 
requiring inversion of a highly ill-posed and ill-conditioned matrix. The goal of DOT is to 
estimate the distribution of the optical properties in tissue from non-invasive boundary 
measurements. For the purpose of determining the optical properties (the absorption 
coefficient and the diffusion/scattering coefficient) from measurement data, which is an 
inverse problem in DOT, a forward model is needed to describe the physical relation between 
the boundary measurements of tissue and the optical properties that characterize the tissue.  

2.3.1 Forward problem in DOT 

In general, such a forward model of NIR DOT that gives the description of this physical 
relation is the diffusion equation, 

          , , ,a

i
S

c

              
r r r r r  (2.2) 

where  , r  is the photon density at position r  and   is the light modulation frequency. 
 ,S r  is the isotropic source term and c  is the speed of light in tissue. a  and   denote 

the optical absorption and diffusion coefficients, respectively. In addition, the finite element 
method (FEM) and a Robin (type-III) [Brendel & Nielsen, 2009; Holboke et al., 2000] 
boundary condition are applied on Eq. (2.2) to solve this forward problem, i.e., calculating 
the photon density for a given set of optical property within the tissue. 

2.3.2 Inverse problem in DOT 

Owing to the non-linearity with respect to the optical properties, an analytic solution to the 
inverse problem in DOT is absent. Instead, the numerical way of obtaining the inverse 
solution is to iteratively minimize the difference between the measured diffusion photon 
density data, MΦ , around the tissue and the calculated model data, CΦ , from solving the 
forward problem with the current estimated optical properties. This data-model misfit 
difference is typically defined as follows,  

 
22

1

MN
C M
i i

i




      (2.3) 

where MN  is the number of measurements.  

By means of the first order Taylor series to expandΦ , one can get Eq. (2.4),  

         ,
C C

M C
a

a

    
       

       

Φ ΦΦ Φ μ κ
μ κ

 (2.4) 
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since the goal is to reach MΦ  from the current CΦ , and, thus, MΦ  and CΦ  have been 
used in the left and right parts of Eq. (2.4), respectively. As well, the vector  aμ  and  κ  
denote the updates respectively for a  and   with dimension NN , the number of total 
nodes in the finite element mesh, and the dimension of the matrices C

a
   Φ μ  or 

C   Φ κ  is M NN N . From Eq. (2.4), the inverse problem in DOT can be formulated as 

   ,
C C

a M C

a

    
       

μΦ Φ Φ Φ
κμ κ

 (2.5) 

or simply denoted as   J χ Φ , where C C
a

      J Φ μ Φ κ  is the Jacobian matrix, the 
rate of change of model data with respect to optical parameters.  

However, solving this linearized inverse problem from Eq. (2.5) usually runs into difficulty 
with an ill-conditioned problem which typically happens as the number of model 
parameters increases, so as to solve the inverse problem by means of regularization to 
remedy such a drawback. 

2.4 Remark 

In this section, we have explained a common imaging system which includes the operation of 
convolution, support area, sampling, and noise as well as a medical imaging system of which 
the optical-property images are formed with the reconstruction algorithm from 1D signals. 

3. Image restoration algorithms  

This section will discuss non-iterative, iterative and statistical methods; in addition, 
regularization is also used frequently in image restoration algorithms. More descriptions are 
explained in the following. 

As known, the image degradation is basically modelled as 

 g f h n    (3.1) 

where f is the original scene, h is the point-spread function (p.s.f.) of the imaging system,   
is the convolution operator, n is the noise, and g is the corrupted image.  

Generally, the non-linear iterative restoration algorithms (Archer & Titterington, 1995; Hunt, 
1994; Meinel, 1986; Singh et al., 1986; Stewart & Durrani, 1986) to enhance image quality by 
restoring the high frequency spectrum of the corrupted images can be simply modelled as 
the following form: 

 1~n n nf f f    (3.2) 

 1( , , , )n nf f g h     (3.3) 

where the subscript n is the n-th iteration, Eqs. (3.2) and (3.3) represent that a new update 
(fn) is equal to a previous one (fn-1) plus an updating increment ( nf ). Furthermore, the 
update ( nf ) is related to the function (Ψ) of the previous update, the corrupted image, 
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p.s.f., and a user-defined weight (α). Ψ can have various forms derived from the different 
algorithms. As known, there are several approaches to enhancing image quality including 
non-iterative restoration algorithms such as a Gaussian filter and non-linear iterative 
algorithms such as Poisson maximum a posteriori superresolution algorithm.  

3.1 Non-iterative methods  

Non-iterative restoration algorithms are described in this sub-section such as the inverse 
and Wiener filters usually recovering the spatial-frequencies below the diffraction limit. 
Filters in the Fourier domain are respectively given by the following expressions: 

 Inverse Filter = 
1

H
 (3.4) 

However, Eq. (3.4) is not able to be directly implemented; usually, one uses a so called 
pseudo-inverse filter with a small constant ǆ as below. 

 Pseudo-inverse Filter = 
1

H 
 (3.5) 

Wiener filter is described as Eq. (3.6) in the following. 

 Wiener Filter = 
2

n f

*

[ / ]

H

H  
 (3.6) 

where H is the modulation transfer function (MTF) of p.s.f.; the superscript asterisk (*) 
denotes the complex conjugate; [n/f], the ratio of noise-to-signal. n and f represent the 
power spectral densities for noise and the true images, respectively. Apparently, applying 
the Wiener filter to the restoration problem has to know the power spectral densities for the 
noise and the original image (or more precisely, their ratio). Unfortunately, this a priori 
knowledge is not available in most cases. Nevertheless, the noise-to-signal ratio (NSR), 
[n/f], is usually approximated by a small constant ǆ. In such a case, the Wiener filter 
becomes  

 
2

*H

H 
 (3.7) 

Wiener filtering achieves a compromise between the improvement obtained by boosting the 
amplitude of spatial-frequency coefficients up to the diffraction limit and the degradation 
that occurs because of the noise amplification of the inverse filtering. Noise propagation 
tends to be reduced by the convolution with p.s.f.; this has a smoothing effect in the result. 
This fact reveals that Wiener filtering is more immune to noise than inverse filtering.  

3.2 Iterative methods 

3.2.1 Recursive wiener filter  

This technique is briefly described here; further, a more detailed description of the im-
plementation of this algorithm can be found in the literature [Kundur & Hatzinakos, 1998]. 

www.intechopen.com



 
Image Restoration – Recent Advances and Applications 

 

236 

Briefly, such a recursive Wiener-like filtering operation in the Fourier domain can be 
expressed as Eqs. (3.8) and (3.9). 

 1

*

2 2

1 1

ˆ.ˆ
ˆ ˆ/

n

n

n n

G F
H

F H


 





 (3.8) 

 

1

*
1

2 2

1

ˆ.ˆ
ˆ ˆ/

n

n
n

n

G H
F

H F










 (3.9) 

The real constant α represents the energy of the additive noise and is determined by prior 
knowledge of the noise contamination level, if available. The algorithm is run for a specified 
number of iterations or until the estimates begin to converge. The method is popular for its 
low computational complexity. The major drawback of the method is its lack of reliability. 
The uniqueness and convergence properties are, as yet, uncertain.  

3.2.2 Lucy-Richardson method 

The Richardson–Lucy algorithm, also known as Lucy–Richardson deconvolution, is an 
iterative procedure for recovering a latent image that has been blurred by a known point 
spread function. 

The Richardson-Lucy (RL) algorithm has been widely used for the data from astronomical 
imaging. The RL algorithm (Richardson, 1972; Lucy, 1974) generates a restored image 
through an iterative method, which is derived using a Bayesian statistical approach to guess 
the original image (f ), to convolute it (fn-1) with the p.s.f. (h) and to compare the result with 
the real image (g). Usually the guessed image for the first iteration is the blurred image. It 
uses such an iterative approach: 

 *
1

1
n n

n

g
f h

f h




 
   

f  (3.10) 

3.3 Statistical methods 

3.3.1 Poisson MAP algorithm 

The Poisson MAP superresolution algorithm begins with Bayes’ law associated with Poisson 
models for the statistics of image and object to estimate the object by finding the maximum 
probability on the object (f) given the image (g). Mathematically, the Poisson MAP (Hunt & 
Sementilli, 1992) is given by  

 1 1
1

1n n n
n

g
f f h f C

f h
 



  
     

   
exp  (3.11) 

where  represents a convolution; *, a correlation; nf , the restored signal/image; g is the 
blurred signal/image; h, p.s.f.; 0f , the initial guess signal/image; subscript n, the iteration 
number. Here,  
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1

1
n

g
h

f h

  
    

   
C exp  (3.12) 

C can be regard as the correction term during the iterative restoration process. In terms of 
the operation of the Poisson MAP, it is an iterative algorithm where successive estimate of 
the restored image is obtained by multiplication of the current estimate by a quantity close 
to one. The quantity close to one is a function of the detected image divided by a 
convolution of the current estimate with p.s.f.. Indeed, one can replace the exponential in 
Eq. (3.12) by the first order approximation ex ~ 1+x because of low contrast in a blurred 
signal/image to achieve Eq. (3.13).  

 
1

~ 1 1
n

g
h

f h

  
    

   
C  (3.13) 

Thus, Eq. (3.11) can approach to Eq. (3.14).  

 1 1 1
1

~ 1n n n n n
n

g
f f h f f

f h
  



  
       

   
f  (3.14) 

Equation (3.14) shows that the Poisson MAP superresolution is consistent with Eq. (3.2). 
Experience reveals that when implemented for simple point objects, the Poisson MAP 
algorithm is able to expand the bandwidth much more than done for more complex objects 
and the Poisson MAP superresolution algorithm requires hundreds of iterations for a final 
solution.  

3.3.2 Improved P-MAP 

Following that, the Poisson MAP can be improved by itself by operating upon the edge map 
with a re-blurring technique; that is, the g and fn-1 of the Poisson MAP are replaced by the 
corresponding gradients of the g ⊗ h and fn-1 along with the integrated p.s.f. (h ⊗ h). 
Mathematically, it is shown that 

 1
1

( )'
( )' ( 1 ( )

( )' ( )n n
n

g h
f f h h

f h h




  
     

    
)'exp  (3.15) 

Thus, the final hyper-resolved image f can be obtained by integrating (fn)’. The whole 
process of this improved Poisson MAP includes re-blurring, differentiation, restoration, 
integration, and then correction for a DC offset. More details concerning this algorithm can 
be found in the author’s previous work [Pan, 2003]. 

3.4 Regularization 

Regularization presents a very general methodology for image restoration. The main 
technique of a regularization procedure is to transform this ill-posed problem into a well-
posed one. Roughly speaking, restoration problem with regularization comes down to the 
minimization problem [Chen et al., 2000; Landi, 2007].  
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In our real life, one cannot get the whole blurred and noisy images but only can get part of 
blurred and noisy images because of the limited support size. According to the part of blurred 
and noisy image, ones want to reconstruct an approximate true image by deconvolving the 
part of blurred and noisy image. Thus, noise (n) in general meaning should include both 
additive noise (nadd) and the effect of the limited support size (nlimited) at least. 

 
Fig. 3.1. A schematic diagram of forming a real image and proposing our algorithm. 

To develop the novel algorithm with regularization, we plot a schematic diagram, Fig. 3.1, 
to show the mechanism of the concept proposed here and thus define the following 
functions, Equation (3.16).  

 
2 2

1 1nQ g f h n     and 
2

2 1
ˆ

nQ g f h    (3.16) 

Normally, Q1 is usually used with a true h which is, however, not known and optimal, 
whereas Q2 is expected to be used with an ĥ , which is supposed to be optimal in practice. 
Here, Q2 is proposed for the purpose of reducing the error energy coming from noise and 
ringing artifacts while only Q1 is considered. Thus, a new objective function combines Q1 
with Q2, and its regularization term is 

2
nf ; it is approaching to null when iteration is 

increasing. Finally, we define an objective function as Eq. (3.17)  

 
2

1 2     nQ Q Q f     (3.17) 

where ǌ is the regularization parameter and then minimize Eq. (3.17) with respect to fn-1; i. e. ,  

 
1

min{ }   0
nf

Q


  (3.18) 

thus,  

 
1

2
1 2min{ } 0

n
n

f
Q Q f



     (3.19) 

Then, we can find Eq. (3.20) 

 * *
1 1

ˆ ˆ2( ) ( ) 2 ( ) 2 ( ) 0n n nh g f h h g f h f            (3.20) 

⊕h f g 

nadd 

nlimited 

ĥ

www.intechopen.com



 
Image Restoration for Long-Wavelength Imaging Systems 

 

239 

Following that, an approximate equation is obtained as Eq. (3.21) 

 hp~n nf h f   (3.21) 

where 1 1
ˆ

n n nf g f h or g f h        , α ~ 1/ǌ and hhp = ĥ - h ( ˆ ˆ *h h and *h h  because 
of the symmetry of p.s.f.) have been introduced. Furthermore, hhp can be designed as a high-
pass filter such as hlp1 – hlp2 in general or ǅ- hlp in the extreme case where hlp1,2 are low-pass 
filters.  

Subsequently, we substitute 

 1n n nf f f     (3.22) 

into the left part of Eq. (3.21) and use the projection of the right pat in Eq. (3.21) on Δf n for 
the purpose of true value invariance. Consequently, the new relation function, Eq. (3.23), can 
be achieved for our novel method and expressed as 

 1
ˆ

n n nf f f    (3.23) 

where 

 
( )ˆ n hp n

n
n

f h f
f

f

 

 


 (3.24) 

 1n nf g f h      (3.25) 

Note that h  in Eq. (3.25), normally, is equal to h but it is chosen as a user-guess p.s.f. when 
h is unknown. Here, hhp is chosen as ǅ – h , where a delta function and a Gaussian function 
adopted for hlp1 and hlp2 in numerical simulation, respectively. Equations (3.23)–(3.25) show 
that the restored signal/image can be obtained from the increment iteratively updated using 
the projection of the high frequency spectra of the increment. As discussed, hhp is defined as 
the difference of a delta function and a Gaussian function; in addition, an edge operator like 
a Laplacian operator defined as Eq. (3.26) is adopted for hhp in the following experimental 
verification.  

 operator = 

1
0 0

4
1 1

1
4 4

1
0 0

4

  
 
   
 
 
  

 (3.26) 

3.5 Remark 

In this section, we have established a framework of image restoration/superresolution 
including (pseudo) inverse filter, Wiener filter, recursive Wiener filter, Lucy-Richardson 
method, Poisson MAP algorithm, and improved P-MAP algorithm. Of restoring image 
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quality and reducing ringing artifacts, the error-energy-reduction-based regularization 
algorithm has been proposed here for long-wavelength imaging systems as well. 

4. Further consideration on image restoration 

In this section, the topics of improvement of spatial resolution, rapid convergence, and 
inverse pitfall for image restoration are described. 

4.1 Improvement of spatial resolution 

Usually, hyper-resolution of a noisy image is considered as an interpolation followed with 
restoration/superresolution; generally, the procedure for processing noisy images is shown 
in Fig. 4.1(a), that is, noise removal, interpolation, and then superresolution, whereas the 
proposed scheme is dealing with interpolation and noise removal simultaneously, as shown 
in Fig. 4.1(b). 

 
Fig. 4.1. The block diagram of hyper-resolution for a noisy image. (a) Conventional 
approach and (b) proposed approach. 

 
Fig. 4.2. Demonstration of hyper-resolution for a single down-sampled gray-level image. (a) 
Down-sampled image, (b) hyper-resolved image incorporated with bilinear interpolation, 
(c) hyper-resolved image incorporated with cubic spline interpolation, and (d) hyper-
resolved image incorporated with probability-filtering-based interpolation. 
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Image 
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In this section, we address an approach to simultaneous image interpolation and smoothing 
by exploiting the probability filter [Pan & Lettington, 1998] coupled with a pyramidal 
decomposition, thereby extending the conventional applications of the probability filter 
originally designed for noise removal. Then, the improved Poisson maximum a posteriori 
(MAP) superresolution [Pan & Lettington, 1999; Pan, 2002] is performed to reconstruct the 
high spatial-frequency spectrum of the interpolated image. Thus, the hybrid scheme shown 
in Fig. 4.1(b) is proposed for enhancing the spatial and the spatial-frequency resolutions of a 
down-sampled image. For more detailed description and examples, readers can refer to the 
previous work [Pan, 2006]. To illustrate the performance of this proposed scheme, 
comparisons are shown among the superresolution coupled with different interpolators as 
the following examples, Fig. 4.2 and Fig. 4.3. 

 
Fig. 4.3. Demonstration of hyper-resolution for a single down-sampled noisy gray-level 
image. (a) Down-sampled image, (b) hyperresolved image incorporated with bilinear 
interpolation, (c) hyper-resolved image incorporated with cubic spline interpolation, and (d) 
hyper-resolved image incorporated with probability-filtering-based interpolation. 

4.2 Rapid convergence  

As known, restoration/superresolution or the reconstruction of optical-property images 
with an iteration procedure is usually computed off-line and computationally expensive. 
Most of studies, however, focused mainly on improving the spatial and spatial-frequency 
resolutions. If a real-time resolution processing is required, dedicated reconstruction 
hardwares or specialized computers are mandatory. Moreover, fast reconstruction 
algorithms should also be considered to reduce the computation load. It is worth 
emphasizing that our proposed method can reduce computation time with the 
regularization term which is designed on the viewpoint of the update characteristics in the 
iteration procedure but not utilizing any spatial/spectral a priori knowledge or constraints; 
some results can be found in the author’s work [M.-Cheng & M.-Chun Pan, 2010]. Here, we 
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show how to speed up the computation to find an inverse solution for reconstructing 
optical-property images by using regularization with an iteration domain technique; 
similarly, this proposed method is capable of being applied to image 
restoration/superresolution for other imaging systems. 

4.2.1 Algorithm of rapid convergence  

Image reconstruction tasks contain forward modeling and inverse problem. The forward 
computation consists in obtaining the intensity out of a subject under investigation for a 
given source, and the initial-guess (or iterated result) on scattering and absorption 
coefficients. The inverse computation is to compute the scattering and absorption 
coefficients for a known light source and measured intensities in an iterative manner.  

Since we utilize cw light illumination or DC data, the physical process of NIR light 
illuminating through a highly-scattering medium can be approximated by the steady-state 
diffusion equation 

 ( ) ( ) ( ) ( ) ( )      r r r r raD S , (4.1) 

where ( )S r  and ( ) r  denote the source and the intensity, respectively, as well as ( )a r , c 
and ( )rD  are the absorption coefficient and the diffusion coefficient, respectively. For 
solving Eq. (4.1), the boundary condition, ˆ    D n Flux  , and finite element method 
are employed. Thus, the following discrete equations can be obtained [Paulsen and Jiang, 
1995] 

 A C  , (4.2) 

where A and C are matrices dependent on the optical properties and the source-detection 
locations, respectively. The forward solution, , can be explicitly evaluated by Eq. (4.2). 

Partially differentiating Eq. (4.2) with 
D

  and 


 , respectively, yields 

 ' 1 ' 1 'A A A C      . (4.3) 

With an approximation to applying the Newton-Raphson method and ignoring higher order 
terms, we obtain 

 J     (4.4) 

where the Jacobian matrix J denotes the matrix consisting of b

kD


  and b

l

 ,  is the vector 

composed of Dk and l, and  is the vector with differences between calculated 
intensities (Φcal.) and measured intensities (Φmeas.). Also, Dk for k = 1, 2, …, K and Ǎl for l = 1, 
2, …, L are the reconstruction parameters for the optical-property profile. The optical-
property image reconstruction is actually a process of successively updating the distribution 
of optical coefficients so as to minimize the difference between measured intensities and 
computed ones from the forward process. More details can be found in [Paulsen and Jiang, 
1995] where the Levenberg-Marquardt procedure was adopted to update the diffusion and 
absorption coefficients iteratively. 
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It is known that to solve Eq. (4.4) is an ill-posed problem. Tikhonov regularization is a 
method stabilizing the inverse problem through incorporating a priori assumptions to 
constraint the desired solution. It is able to convert an ill-posed problem into a well-posed 
one, and further to improve an ill-conditioned problem. The regularization term (penalty 
term) introduced in the process regularizes the problem and makes the update stable. It also 
strengthens the robustness of algorithm to noisy data with the adequate design of the 
regularization term. Generally, Tikhonov regularization is to optimize this ill-conditioned 
problem as 

 
2

min J





    subject to ( ) E    (4.5) 

where () is a constraint on the estimate , and E is a quantity confining the constraint 
to be an energy bound. Applying Lagrange optimization technique, we seek a solution to 
the constrained objective function 

 
2

J          (4.6) 

with the condition 

    2
min min J

 
 

 
       , (4.7) 

where λ is referred to as the regularization parameter. A solution to Eq. (4.7) is given by 

 2 ( ) 0TJ J  



    


, (4.8) 

and equivalently 

 ( )
2

T TJ J J





   


 (4.9) 

where Eq. (4.9) is a constrained estimate of , but becomes an unconstrained one when λ 
equals to zero. It is noted that the minus sign in Eq. (4.6), the objective function, corresponds 
to the regularization term proposed here as the term is constrained to an energy bound.  

4.2.2 Constraints on the spatial domain 

A constraint on the spatial domain can generally be expressed as  

 
2

( ) L      (4.10) 

where L can be the identity matrix (I) or the discrete Laplacian matrix [Pogue et al., 1999; 
Davis et al., 2007].  

If L is the identity matrix (I), a solution to Eq. (4.9) is given by  

 1( - )T TJ J I J     . (4.11) 
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On the other hand, if L is the discrete Laplacian matrix, substituting Eq. (4.10) into Eq. (4.9), 
the corresponding solution is  

 1( - )T T TJ J L L J     . (4.12) 

Equation (4.11) is usually a primary inverse solution to optical-property image 
reconstruction, which is also Levenberg’s contribution to the inverse problem; and Eq. (4.12) 
is a constrained inverse solution implemented to improve the quality of the reconstructed 
NIR DOT images, which is identical to Marquardt’s work. 

4.2.3 Constraints on the iteration domain 

In NIR DOT, it is also crucial to accelerate the computation. But, up to now, speeding up the 
computation in the iteration domain has not been explored yet. Here we consider this issue 
through the use of a Lorentzian distributed function taking a natural logarithm computation 
as a constraint, i.e. 

 
2 2

1

/
( )

( )

K L

p p

n
 


 




  

 
  , (4.13) 

where p is the calculated nodes in the subject under investigation and Ǆ is a user defined 

positive parameter. As can be seen, 1( ) ln( )
p

   ,  , meets the requirement of Eq. 

(4.5). Performing the differentiation indicated in Eq. (4.9), we can obtain the solution in an 
iterative formality 

 

1

2 2
1

( ) +
( )

n

T T
n

n

I
J J J

I


 





 
   
   

. (4.14) 

For further inspection in Eqs. (4.13) and (4.14), as known, Ǎa and D are generally searched in 
a range of [10-3:10-1] mm-1and mm, respectively; and thus Δχ is much smaller than a unit. It 
can be proven that even the use of the natural logarithm in the constraint Ψ(Δχ) still makes 
it a positive and finite value. The other reason to use ln is because the regularization term in 
Eq. (4.14) still remains in a form of the Lorentzian distributed function derived from the 
constraint associated with the Lorentzian distributed function in Eq. (4.13). 

The Lorentzian distributed function, as depicted in Fig. 4.4, is employed here owing to its 
following two characteristics:  

a. Lorentzian distributed function has a sharp peak with a long tail, describing the 
histogram distribution of Δχ, many of Δχ (~0) at its peak and a small rest of Δχ 
distributing along its long tail, and  

b. its histogram distribution can be further tuned with the parameter (Ǆ) as iteration 
increasing. Related to the consideration in convergence, the updated quantity, Δχ, 
decreases, ranging from the peak to the tail, as the iteration increases whereas it has a 
smooth distribution in the beginning stage of iteration.  
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In addition, as the shape of the histogram would be affected, it is smooth with a big value of 
Ǆ and sharp with a small value of Ǆ. Thus, Lorentzian distributed function can characterize 
the nature of Δχ in the iterative process as the distribution from a smooth to a sharp 
distribution to be used as a constraint for the purpose of speeding up computation. 

Lorentzian Distributed Function



H
is

to
g
ra

m

 

 

small 

big 

 

Fig. 4.4. Charts of the Lorentzian distributed functions ( 22
)(

/





) at various Ǆ. As can be 

seen, it has a smooth distribution for a big Ǆ and a sharp distribution as Ǆ is small. 

4.3 Inverse pitfall 

The ill-posed nature of inverse problems means that any restoration or reconstruction 
algorithm will have limitations on what images it can accurately reconstruct and that the 
images degrade with noise in the data. When developing a restoration or reconstruction 
algorithm it is usual to test it initially on simulated data. Moreover, the restoration or 
reconstruction algorithm typically incorporates a forward solver. A natural first test is to use 
the same forward model to generate simulated data with no simulated noise and to then 
find that the simulated data can be recovered fairly well. If one is fortunate enough to have a 
good data collection system and phantom, and someone skilled enough to make some 
accurate measurements with the system, one could then progress to attempting to 
reconstruct images from experimental data. However, more often the next stage is to test 
further with simulated data and it at this stage that one must take care not to cheat and 
commit a so-called inverse pitfall or inverse crime. Simply to say, inverse pitfall or inverse 
crime arises from the reason of ‘limited for infinite’, e.g., limited support area for infinite 
scenery, finite elements for continuous zone, or given noise for unknown noise. The best 
practice is to use a forward model independent of an inverse model. For example, in the 
case of a finite element forward model one would use a much finer mesh while a coarse 
mesh is used in the inverse model. 
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4.4 Remark 

In this section, we have proposed some extra points about image restoration. Interpolator 
with noise removal, design of regularization term for reducing computational burden, and 
inverse pitfall/crime have been illustrated and discussed. 

5. Related application 

In this section, application to a mm-wave imaging system or near infrared diffuse optical 
tomography using image restoration is demonstrated for post-processing or inter-
processing. To verify the proposed method in the previous section (Sec. 3.4), a computer-
generated signal/image and an image of real scene were tested. 

5.1 Post-processing: Application to a millimeter-wave imaging system [Pan, 2010] 

A 1-D noiseless signal and a 2-D noisy image were used, originally blurred with a p.s.f. of 
Gaussian function plus additive white Gaussian noise. White Gaussian noise is defined with 
a zero mean and variance, σ2, specified by a blurred signal-to-noise ratio (BSNR). Recall that 

 

  2,
,

2
, 1

1010log

M N
i j

i j

f h f h

BSNR
MN



 
   

 
   
 
 
 
 


 (in dB) (5.1) 

where M, N are the dimension of the processed image and i, j are the indexes of a pixel and 
X  means the average value of X. In many practical situations, the blur is often unknown 
and little information is available about the true image; therefore, several 

h
   of the 

Gaussian blur around the true σh were tested in the following examples; fo and α are chosen  

to g and g , respectively. In this work, the stopping criterion is 
0

nf

f





0.01% (for 1-D  

signal) or 1% (for 2-D image). The mean square error (MSE) of the restored signal/image 
relative to the original signal/image is provided here for the evaluation of image quality, 
thus supporting the visual assessment.  

The proposed algorithm was applied to a 1-D signal as well as both simulated and real 
atmospherically degraded images, one of a simulated blur and one of a real blur. The 
purpose of the simulation was to enable a comparative evaluation of the results given the 
original signal/image and to explain the algorithm characteristics. In the real-blur example 
shown here, a 256 × 400 pixel millimeter-wave image was tested and the image was 
captured at 94 GHz by the Defence Evaluation and Research Agency, Malvern, UK.  

For a comparison purpose, non-iterative Gaussian filtering was used in the case of 1-D 
signal and the common Richardson–Lucy (RL) deconvolution method was implemented 
using a built-in MATLAB function deconvlucy in the cases of both 1-D signal and 2-D 
images. This RL method employs an iterative procedure to estimates the original 
signal/image, and therefore requires an initial guess of it as well.  
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5.1.1 Results for synthetically blurred signal and image 

Figure 5.1(a) and (c) present an original signal containing 256 pixels and a blurred version of 
this signal, obtained by convolving it with a Gaussian function with h  equal to 1.5, Fig. 
5.1(b), which approximates an atmospheric blur. Figure 5.1(d)-(f) show a comparison 
between the results obtained from the implementation of Gaussian filtering, the RL 
deconvolution method and our proposed algorithm, the MSEs of which are 188.29, 210.23, 
and 184.50, respectively. The resulting Wiener-filtered restored signal (with ǆ = 0.001) is 
shown in Fig. 5.1(d). It is clear that this restored signal is considerably better than the 
blurred signal shown in Fig. 5.1(c) whereas the restored signal using the RL method reveals 
lots of ringing artifacts. Figure 5.1(f) shows that the result using the proposed algorithm 
with hhp equal to ǅ – h (

h
   =1.5) presents higher contrast and less ringing artifact than other 

two methods.  
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Fig. 5.1. Comparison among the deconvolution for 1-D signal. (a) Original signal, (b) p.s.f. ( 
σh = 1.5), (c) blurred signal, and restored signals by using (d) Gaussian filter, (e) the RL 
algorithm and σh = 1.5, and (f) our proposed algorithm with ǅ – h and 

h
   =1.5.  

Following the above discussion, Fig. 5.2 shows the iterations used by the RL method and the 
proposed algorithm satisfying with the stopping criterion. In the case of 1-D signal, our 
algorithm usually converges within fewer iterations than the RL method, the former using 
34 iterations and the latter using 187 iterations.  

100 200
0  %

50%

100%
(a)
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Fig. 5.2. Convergence rate vs. iteration no. of Fig. 5.1 for (a) the RL algorithm, and (b) our 
proposed algorithm. 
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Figure 5.3 shows that the nature of our proposed method possesses the ability to 
reconstructing frequency spectrum beyond the diffraction limit, where a 1-D noiseless signal 
was used. Figure 5.3(a)-(c) shows the original signal, p.s.f. and its modulation transfer 
function (MTF); the degraded (σh = 1.5) and the restored signals are shown in Fig. 5.3(d)–(f) 
with 

h
   equal to 1.2, 1.5, and 1.8, respectively; and the MTFs of the original and the restored 

signals are depicted in Fig. 5.3(g)–(i). The restored signals in Fig. 5.3(e) and (f) display the 
performance of high resolution and the two peaks are separated in Fig. 5.3(d) even with a 
small 

h
  . Compared with that of the original signal, high-frequency information of the 

restored signals was definitely generated beyond the diffraction limit as shown between the 
two dashed lines in Fig. 5.3(g)–(i), explaining that the proposed method possesses the high-
resolution ability.  
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Fig. 5.3. Demonstration of the high resolution of the proposed algorithm. (a) Original signal, 
(b) Gaussian form (solid line) and MTF (dotted line) of the blurring function (σh = 1.5), (c) 
blurred signal, (d)–(f) restored signals with ǅ – h and 

h
   =1.2, 1.5, and 1.8, respectively, and 

(g)–(i) MTFs of the blurred (solid line) and the restored (dotted line) signals. Note that the 
region between two dashed lines is the high frequency beyond the diffraction limit.  

Figure 5.4 represents an image (256 × 256) of clown which is a built-in image in MatLab. 
Figure 5.4 displays a comparison between the results obtained from the implementation of 
the RL deconvolution method and our proposed algorithm. Figure 5.4(a) shows the original 
image, convolving it with a 2-D Gaussian function with h  equal to 2.5 to obtain a blurred 
image shown in Fig. 5.4(b). Figure 5.4(c)-(e) show the images restored with the RL 
deconvolution method and our proposed algorithm with ǅ- h  and the Laplacian filter where 

,h h
  =2.5 was used; the MSEs of these three results are 181.17, 49.45, and 52.61, respectively. 
These three restored images demonstrate high quality but Fig. 5.4(c) still shows ringing 
artifact especially in the boundary of the image. In Fig. 5.4(d), simultaneously, the image 
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quality can also be improved by reducing most of the ringing artifact and preserving more 
edge information. Also, it can be seen that our method with a Laplacian filter still works 
well, shown in Fig. 5.4(e).  

(a) (b) 

 
(c) (d) (e) 

 

Fig. 5.4. Comparison among the deconvolution for 2-D image. (a) Original image, (b) blurred 
image (σh = 2.5), and restored images by using (c) the RL algorithm and σh = 2.5, and our 
proposed algorithm with (d) ǅ – h and 

h
   =2.5 and (f) 2-D Laplacian filter and 

h
   =2.5, 

respectively.  

Corresponding to Fig. 5.4(c)-(e), Fig. 5.5 shows the iterations used by the RL method and the 
proposed algorithm where fewer iterations was used in the RL method than our algorithm, the 
former using 46 iterations and the latter two using about 200 iterations. It should be noted that 
the proposed algorithm is considerably more computationally expensive than the RL method. 
However, in our experiments we did not find any significant improvement but even more 
ringing artifacts when the RL method was employed for a further iteration number.  
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Fig. 5.5. Convergence rate vs. iteration no. of Fig. 5.4 for (a) the RL algorithm, and our 

proposed algorithm with (b) ǅ – h and (c) 2-D Laplacian filter, respectively.  
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For further inspection into our proposed algorithm, we investigated the effect of this 
algorithm using the high pass filter, ǅ- h  , with varied 

h
  . Figure 5.6 demonstrates this case 

where the original and the noisy (σh = 2.5 and BSNR=30 dB) images are displayed in Fig. 
5.6(a), (b), and the restored images are shown in Fig. 5.6(c)–(e) obtained with the use of 

h
   

equal to 2, 2.5, and 3, respectively. The MSEs of these results are 163.77, 76.82, and 97.97, 
respectively. Of all the restored images, Fig. 5.6(c) shows a worse image quality than the 
others, in which noise was intensively produced and hard to be removed although the 
contrast of the restored image was enhanced. Figure 5.6(d) and (e) show the promising 
results where high contrast was generated and noise was suppressed. As a result, it is 
recommended that a small 

h
~ , together with adequate iterations, should be avoided to use 

in the restoration process of the proposed algorithm.  

(a) (b) 

 
(c) (d) (e) 

 

Fig. 5.6. Demonstration of the deconvolution for a 2-D image using the proposed algorithm. 
(a) Original image, (b) noisy image (σh = 2.5 and BSNR=30 dB), and restored images by 
using our proposed algorithm incorporating ǅ – h with (c) 

h
  = 2, (d) 

h
  = 2.5 and (f) 

h
  = 3, 

respectively. 

5.1.2 Results for a real degraded image 

It is always expected that a novel algorithm can be implemented on a real image; Fig. 5.7(a) 
presents a real degraded image captured by an mm-wave imaging system. Figure 5.7(b) was 
restored using the RL method and Fig. 5.7(c), (d) were obtained by using our proposed 
method where Fig. 5.7(b)-(d) were obtained with 

,h h
   equal to 3. It is obvious that the restored 

images, Fig. 5.7(c) reveals sharp edges, high contrast and much more details like a number 2, 
two cars, and three lamps of the floodlight, etc., but Fig. 5.7(b) has shown ringing artifact 
spreading through the whole image. Furthermore, it is worth mentioning that Fig. 5.7(d) also 
shows a good image quality which was achieved with the use of a 3 × 3 Laplacian operator.  

Corresponding to Fig. 5.7(c)-(e), Fig. 5.8 shows the iterations used by the RL method and the 
proposed algorithm satisfying with the stopping criterion. In the case of 2-D image, the RL 
method used less iteration than our algorithm, the former using 35 iterations and the latter 
two using about 150 iterations.  
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(a) (b)

(c) (d)

 

Fig. 5.7. Comparison among image deconvolution for a 94 GHz millimeter-wave image. (a) 
Real degraded image, and restored images by using (b) the RL algorithm and σh =3, and our 
proposed algorithm with (c) ǅ – h and 

h
   =3 and (d) 2-D Laplacian filter and 

h
   =3, 

respectively.  
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Fig. 5.8. Convergence rate vs. iteration no. of Fig. 5.7 for (a) the RL algorithm, and our 

proposed algorithm with (b) ǅ – h and (c) 2-D Laplacian filter, respectively.  
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5.2 Inter-processing: Application to near infrared diffuse optical tomography 

5.2.1 Rapid convergence algorithm applied to NIR DOT 

Corresponding to Eq. (4.14), some parameters are chosen as  

 0.75max{ }TJ J  , 
0

2( ) I  , 22.5 n
n or e   , (5.2) 

where the subscript n is the n-th iteration, “max” means the maximum value, and the 
superscript T denotes a transposition operation. One way to improve the convergence rate is 
using n   as the Type-1 soft prior and using 22.5 n

n e  , an exponentially decreasing 
form, as the Type-2 soft prior, where Type-1 is a parameter related to the system function 
(Jacobian matrix) and Type-2 is a user-defined parameter. Both values of n have been 
respectively employed to seek an inverse solution for comparison.  
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Fig. 5.9. Reconstruction data through various priors with intensity signals corrupted by 
Gaussian white noise (SNR=20 dB). Left column: constrained inverse solution with soft prior 
1; middle column: constrained inverse solution with soft prior 2; right column: constrained 
inverse solution with hard prior. 

Figure 5.9 illustrates the comparisons between constrained solutions using soft priors (Type 
1 and 2) and a hard prior, where the left, middle and right columns are the constrained 
inverse solutions with soft prior 1, soft prior 2, and hard prior [M.-Cheng & M.-Chun Pan, 
2010], respectively. Figure 5.9 (a-f) shows the 2D reconstructions of phantoms with two and 
three inclusions, where slight discrepancy can be observed. Figure 5.9 (g-l) depicts their 
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corresponding 1D circular transection profiles to reveal noticeable differences. Basically, 
there is a better separation resolution but a lower intensity owing to a highly suppressed 
signal by a hard prior rather than a soft prior. Additionally, Fig. 5.9 (m-o) exhibits good 
convergences obtained by using both soft and hard priors.  

5.2.2 Image restoration applied to NIR DOT 

The phantoms employed for justifying our proposed technique (Sec. 3.4) incorporate two or 
three inclusions with various sizes, locations and separations, illustrated in Fig. 5.10, where 
R denotes radius in the unit of mm. Of the phantom, the background absorption (Ǎa) and 
reduced scattering (Ǎ’s ) values are about 0.0025 mm-1 and 0.25 mm-1, respectively, while the 
maximum absorption and reduced scattering for the inclusion are 0.025 mm-1 and 2.5 mm-1, 
thereby assuming the contrast ratio of the inclusion to background 10:1, because high 
contrast results in much more overlapping effects than low contrast although a contrast of 
2~10 were used throughout other published works.  

(a) (b) 

Fig. 5.10. Schematic diagram for the dimensions of two different test cases in simulation. (a) 
and (b) are Case 1, 2, respectively, where R is radius in the unit of mm. 

As depicted in Fig. 5.10, Case 1, 2, respectively, have two inclusions separated with a similar 
distance but different sizes. As the separation resolution of inclusions is examined, several 
(two or three) embedded inclusions are necessary, and different inclusion sizes are 
considered as well. For the convenience in discussion latter, we denote M0-4 as the 
reconstructions with the schemes using non-filtering, ǅ-g2 (σ2=1.5), g1-g2(σ1=0.75, σ2=1.5), 
wavelet (a dilated factor a=0.5), and Laplacian high-pass filter (HPF) in their 2D form, 
respectively. Currently, absorption-coefficient images are presented for our continuous 
wave image reconstruction algorithm.  

In FEM-based image reconstruction, the homogeneous background (Ǎa = 0.0025mm-1, Ǎ’s = 
0.25mm-1) was adopted as an initial guess. Thirty-iteration assignment was employed for 

each case as the normalized increasing rate, i.e. mean value of 
2

1n n

n

 


, reaches smaller 

than 10-2.  
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5.2.3 Examples illustration 

5.2.3.1 Case 1 

This case was designed as a phantom with three smaller inclusions. Several improved 
images were obtained by using appropriate filtering, as shown in Fig. 5.11(b-e) of 1D 
circular profiles passing through the centers of inclusions. Likewise, M2 resulted in worse 
resolved image than others with HP filtering. Negative artifacts occurred in each 
reconstructed image, as depicted in Fig. 5.11(g-j). It is well noted that M4 overestimated the 
inclusion amplitudes, which yields a higher inclusion-to-background contrast. 
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Fig. 5.11. Case 1- 2D reconstructed absorption images (a) without HPF (M0) and (b)-(e) with 
M1, M2, M3, M4 filtering, respectively; (f)-(j) are 1D circular profiles corresponding to (a)-
(e), where solid lines are the designed, and dotted lines represent the reconstructed.  

5.2.3.2 Case 2 

In this highly challenging case, a phantom with two closest-separation inclusions was 
designed. As shown in Fig. 5.12(a-e), all reconstructed images underestimated inclusions, 
and offered relatively bad resolution for two separate inclusions. It is rather competitive for 
these employed filters. Based upon a quantitative comparison, as depicted in Fig. 5.12(i) and 
(j), M3 and M4 schemes demonstrate better resolution discrimination to separate bigger and 
closer inclusions in comparison of Case 1. 

From the results of Case 1 and 2 for a phantom with inclusions of both small size and close 
separation, it can be concluded that the wavelet-like HP filtering (M3) demonstrates the best 
spatial-frequency resolution capability to the inclusions. 

It evidently shows that the enhancement of reconstruction through the incorporation of our 
proposed HPF approach can effectively improve computed images. As illustrated above, the 
wavelet-like HP filtering schemes (M3, M4) further yields better results than the LPF-
combined HP filtering schemes (M1, M2). In the aspects of sensitivity and stability of 
evaluation, M3 yielded results closest to the true absorption property than other schemes. 
However, M4 visually characterizes the inclusion-to-background contrast best. 
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Fig. 5.12. Case 2- 2D reconstructed absorption images (a) without HPF (M0) and (b)-(e) with 
M1, M2, M3, M4 filtering, respectively; (f)-(j) are 1D circular profiles corresponding to (a)-
(e), where solid lines are the designed, and dotted lines represent the reconstructed.  

5.2.4 Performance investigation 

In terms of the optical properties within the inclusion and background, it is worth noted that 
the image reconstruction is not only pursuing qualitative correctness but also obtaining 
favorably quantitative information about the optical properties of either the inclusions or 
background. Parameters of interest such as size, contrast and location variations associated 
image quantification measures are most frequently investigated and discussed. Readers can 
refer to the research work [Pan et al., 2008]. 

5.3 Remark 

In this section, we have demonstrated the performance of our proposed image restoration 
algorithms exactly applied in the imaging process for ‘inter-processing’ and to corrupted 
images for ‘post-processing.’  

6. Conclusions  

6.1 Concluding remark  

In this chapter, we have explained the background and the mathematical model of image 
formation and image restoration for long-wavelength imaging systems; as well, image 
restoration algorithms, further consideration on image restoration, and their related 
application have been described and demonstrated. In the meanwhile, a promising method 
to restore images has been proposed. As discussed in this chapter, the proposed algorithm 
was applied to both simulated and real atmospherically degraded images. Restoration 
results show significantly improved images. Especially, the restored millimeter-wave image 
highlights the superior performance of the proposed method in reality. The main novelty 
here is that error energy resulting from noise and ringing artifact is highly suppressed with 
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the algorithm proposed in this chapter. Also, we have used such a resolution-enhancing 
technique with HP filtering incorporated with the FEM-based inverse computation to obtain 
highly resolved tomographic images of optical-property.  

In addition, we have developed and realized the schemes for expediting NIR DOT image 
reconstruction through the inverse solution regularized with the constraint of a Lorentzian 
distributed function. Substantial improvements in reconstruction have been achieved 
without incurring additional hardware cost. With the introduction of constraints having a 
form of the Lorentzian distributed function, rapid convergence can be achieved owing to the 
fact that decreasing Δχ results in the increase of ǌ as the iteration process proceeds, and vice 
versa. It behaves like a criterion in the sense of a rapid convergence that the optimal 
iteration number is founded as seeking an inverse solution regularized with the Lorentzian 
distributed function.  

6.2 Future work 

It is anticipated that of regularizing mean square error (residual term) with error energy 
reduction and rapid convergence (a priori terms) an algorithm is explored to restore images 
effectively and efficiently. In addition, it is no doubt that image restoration for inter-
discipline application is the focus in the future research. 
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