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Topological Analysis of Tokyo  
Metropolitan Railway System 

Takeshi Ozeki 
Faculty of Science and Technology, Sophia University 

Japan 

1. Introduction 

1.1 Railway system reflects the real world 

Leading concept of the topological analysis of railway network systems is based on the fact 
that the topology of railway networks reflects the real world. It is believed because strong 
mutual interactions between railway systems and real worlds continue through longer 
periods of their growth: An eventual growth in a regional economy due to opening such a 
new shopping plaza may require extension of a railway system, verves, a scheduled 
extension of a railway may result in a growth in regional economy due to rapid increase in 
town population, for instance. In this way, the growth of railway system and regional 
activity affects their growth mutually. In context, the railway system topology reflects the 
real world: In other words, they “entangle” each other.  

This leading concept agrees with that of Brin and Page, co-founders of Google:  they 
reported, in their first paper on “Google”(Page and et al, 1990), that it was a great surprise 
the PageRank is obtained purely mechanically from the topology of Web page links. Their 
surprise is the discovery of the fact that the network is entangled with real world. The 
“Google” approximates a Web surfer as a random walker in Markov process and combines 
the dominant eigenvector of Markov process with a list of coincidence for a inquiry as the 
PageRank (Langville-Mayer, 2006) 

This leading concept grows up as a mathematical platform using multimodal non-linear 
Markov process approximation so that it is applied to analyse Tokyo Metropolitan Railway 
System.  

It is no doubt that there have been established platforms to analyse the dynamics of railway 

network systems based on growing supercomputer power. On contrary, our platform can be 

said as providing abstractive viewpoint based only on network topology so that it is 

expected to illustrate different new worlds for the railway system engineers.     

1.2 Family network approximation: Rosary network 

Network topologies have been discussed as scale free networks mainly in a field of complex 
systems from the end of the previous century. The scale free network science is expected to 
provide potential methods to analyse various network characteristics of complex systems. 
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However, there is no network model suitable for analysing railway systems. Then, the 
rosary network in series of family the network was proposed as suitable one for railway 
system networks as shown in Fig.1.1 (Ozeki, 2006). 

 

Fig. 1.1. Family network Series including Rosary Networks 

Historical flows of complex systems are very interesting competitions between abstraction 
and computation: Origin of complex systems was introduced by Prigogine based on 
coupled nonlinear differential equations and sophisticated chemical experiments 
(Prigogine, 1981). It was followed by distributed agent model supported by rapidly 
growing computational power. However, for analysis of huge network systems the 
distributed agent model was suffered by computational complexity explosion in 1990’. 
Then, abstractive approaches such as scale free networks become to share exploring 
complex network systems. Topological analysis of railway network is backed by these 
historical flows. 
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The Watts-Strogatz’s small world evolves from regular lattice networks to the Erdos-Renyi’s 

random networks(Erdos, 1960) by random rewiring links with a given probability (Watts, 

1998). The Watts-Strogatz’s small world having fixed number of nodes is discussed as a 

static network. On the other hand, the scale-free network of Barabasi-Albert (BA model) 

introduces the concept of growing networks with preferential attachment (Barabashi, 1999). 

One of characterizations of networks is given by the connectivity distribution of P (k), which 

is the probability that a node has k degrees (or, number of links). In the scale free networks 

based on BA model, the connectivity distribution follows the power law, in which P (k) is 

approximated to k  , having the exponent  =3. The real world complex networks are 

analysed to find various scale free networks having various exponents, which are covered in 

references (Newman, 2006).  For an example, it is well known that social infrastructure 

networks, such as power grids, as egalitarian networks, follow the power law with exponent 

4 (Barabasi, 2002). There were many trials reported to generate models with larger 

exponents for fitting these real-world networks (Newman, 2006): Dorogovtsev et al 

(Dorogovtsev, 2000) modified the preferential attachment probability and derived the exact 

asymptotic solution of the connectivity distribution showing the wide range of exponents 

2a   , where a is the attractiveness. However, there was no network generation model 

suitable for analysing railway systems. 

In context, “the evolutional family networks” generated by “a group entry growth 

mechanism” with the preferential attachment was proposed in ICCS2006 (Ozeki, 2006): 

growth mechanism employed is group entry having constituent family connected in full-

mesh, line and loop. This is suitable to simulate the railway system: as shown in Fig.1.1, a 

graph in the bottom looks like a railway system; We call it “Rosary network approximation” 

that will be discussed in the case of Tokyo metropolitan railway system in section 2. Various 

characteristics will be analysed based on the Multi-modal Markov transition approximation 

in section 3. 

1.3 Birds with a feather flock together 

We point out that nonlinear effects are inevitable in the passenger flow analysis. Since the 

Google is an infrastructure in daily life same as railway system, we refer the Google: the 

Google is characterized by a single dominant mode: In linear Markov transition, the 

asymptotic state is always the dominant mode. However, a Japanese adage: “people wish to 

get together to the place where people get together” or “Birds with a feather flock together” 

is important in real world to determine such PageRanking. The Google assumes such 

tendency is reflected in the page link network. Here, we point out it is not always sufficient, 

and demonstrate a Markov engine with the third-order nonlinear interaction reflecting such 

tendency to retrieve a real world, correctly.  

We demonstrated the new engine to retrieve the largest three stations in respect of number of 

passengers in Tokyo Metropolitan Railway Network, in section 4.    

1.4 TSUBO: Impulse response of network 

We discuss “key stations of railway network dynamics” by analogy with “Tsubo in 
Shiatsu”. 
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In Japan, “Shiatsu” is a popular therapy by pressing “shiatsu point” to enhance the body’s 
natural healing ability and prevent the progression of disease. Shiatsu points are called 
“Tsubo”, in Japanese. Their locations and effects are based on understanding of modern 
anatomy and physiology. The concept of “Tsubo” has been used as a strategy in re-
activation of an old city, such as Padova, Italy (Horiike, 2000). He calls it “the Point 
Stimulus”. The “Point Stimulus Response” corresponds to the impulse response of the 
network system, that is, the temporal state variation in the Markov transition to the delta-
function with negative sign of initial state. We can evaluate the node activity by its response 
to the point stimulus. 

We will discuss “Tsubo” of Tokyo metropolitan railway system in session 5.   

2. Scale free characteristics of railway network 

We show here a large railway system, such as Tokyo metropolitan railway system, that 
indicates characteristics of scale free networks: “station” corresponds to “node”, and “track” 
to “link”. This section is based on our paper presented in ICCS 2006. (Ozeki 2006)  

2.1 Growth mechanism of Rosary  

A growth step of a railway network is modelled as illustrated in Fig.2.1 (a): a rosary that 

consists of M stations connected in a shape like a rosary is added to an old railway network. 

There are two cases of its constituent: one is like a rosary having two jointing links as shown 

in Fig.2.1 (a) left, the other is like a snake having one jointing link as shown in Fig.2-1right. 

Fig.2.1 (b) is a rosary network generated this growth mechanism: assuming the fraction of 

snakes in constituent groups to be 10% and growth step 11 for convenience to grapes its 

perspective. This topology is drawn by a free-software: Cytoscape 

(http://www.cytoscape.org/download.html). The initial constituent is a group #0~#8 and 

the total number of stations is 65. The degree distribution is illustrated in Fig.2.1(c) (the 

“degree” denotes the number of links of a node). The degree distribution follows the power 

law with exponent of –4 as shown in Fig.2.1 (c). 

2.2 Multimodal analysis of Rosary network 

Before analysing Tokyo Metropolitan Railway System, it seems better to analyse this small 

rosary network.  We assume a passenger in the rosary railway network as “a random 

walker”, that is equivalent to multimodal Markov transition approximation (refer Appendix 

1). The dominant mode of the multimodal Markov transition corresponds to the stationary 

state of passenger distribution that is illustrated in Fig.2.2 (c). The eigenvector of dominant 

mode has a peak at station #2, and mountains in the dominant eigenvector are illustrated in 

Fig.4.3 (a): the original station group #0~#8 corresponds to the first mountain in the figure, 

and the followings are illustrated in blue rosaries. The eigenvalue of the rosary network is 

shown in Fig.2.2 (a): The #64 eigenvalue of 2.773 corresponds to the dominant mode. The 2nd 

mode has negative largest eigenvalue. The mode competition among these modes in 

nonlinear multimodal Markov transition is discussed in section 4. 

This rosary network has no real world so that it is difficult to show the substructure 

analysis. Next we discuss a actual rosary network.   
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(a) Constituents of Rosary network “tsubo”map 

 
 
 
 

  
(b) A small rosary network generated. (c) Power law 

 
 
 
 
 
 

Fig. 2.1. Rosary network model suitable for analyzing railway systems. 
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Fig. 2.2. Mode Structure of Rosary Network 

3. Analysis of Tokyo metropolitan railway system  

Tokyo metropolitan railway system is illustrated in Fig.3.1: (a) denotes the Map of 

contemporary Tokyo metropolitan railway system (Rail Map of Tokyo Area, 2004) and 

(b) denotes the map of Edo in 18th century. The central part of Tokyo metropolitan 

railway is truncated to have the number of total stations of 736. The total number of links 

is 1762. The number of links is counted topologically: for instance, we count the number 

of links between Tokyo and Kanda as 1, even though there are three double railways 

between them. Fig.3.2 (a) depicts degree distribution of a central part of Tokyo 

Metropolitan Railway System. The excellent fit in degree distribution suggests that the 

growth mechanism of Tokyo railway system is coincident with the growth mechanism of 

rosary network. The exponent measured to be 4, which is coincident with those of the 

small rosary network shown in Fig.2.1 (c) and the power grids of North America 

(Barabasi, 1999). It is surprising to find that the number of nodes in constituent rosary 

networks is M=3, which is reasonable in the central part of Tokyo with respect to its 

complexity. A real world railway network is well approximated by our rosary network 

model. 

3.1 Substructures of Tokyo  

The main issue is the extraction of an authentic centre (Tokyo, Shinbashi, Shinagawa) and a 

new metropolitan centre (Shinjuku, Ikebukuro, Shibuya). The later corresponds to the centre 

and the outskirts of Edo as shown Fig.3.1 (b).  
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(a) Map of Tokyo Metropolitan Railway System
(b) Map of Edo in Tokugawa Era of 18th 

Century 

(http://onjweb.com/netbakumaz/edomap/edomap.html) 

Fig. 3.1. Tokyo Metropolitan Railway Network System  

A distorted hexagonal in Fig.3.1 (a) is “Yamanote Circular Line” which includes several 
well-known stations such as Tokyo, Shinbashi, Shinagawa, Shibuya, Shinjuku and 

Ikebukuro etc. 

Fig.3.2 summarizes the mode structures of the network. In a list of eigenvalues illustrated in 

the right, we focus on the following two modes; the dominant mode #733 with eigenvalue 
+4.738 has larger probability at Shinagawa (station number #8), Shinbashi (#11) and Tokyo 

(#13) as shown in middle left panel of Fig.3.2. The constituent stations of the dominant 
mode are illustrated in Fig.3.1 (a) on the Yamanote circular Line.  

The second mode #735, having negative largest eigenvalue of -4.271, has larger probability 
at Shinjuku (#0), Shibuya (#3) and Ikebukuro (#25) as illustrated in middle right panel of 

Fig.3.2. The constituent stations of mode #735 are also illustrated by italic character on the 
Yamanote circular line, in Fig.3.1 (a). 

3.2 Orthogonal features of substructures  

It is interesting that the dominant mode #733 extracts the central structure of business and 
government of Metropolitan Tokyo. This area also corresponds to the main structure in Edo 

metropolitan area. (Tokyo was called Edo in 18th century.)  
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Left: Degree distribution, Middle left: dominant mode; Shinagawa (8), Shinbashi (11), Tokyo (13); 
Middle right: second mode: Shinjuku (0), Shibuya (3),Ikebukuro(25) Right: List of eigenvalues 

Fig. 3.2. Multimodal Analysis of Tokyo Metropolitan Railway System 

The bridge of Nihonbashi is the original point of national roads including the Tokaido 

(presently root 1) in Edo era as shown in Fig.3.1 (b). The main business was blooming along 

the Tokaido, and the political organization was concentrated between the Edo castle and the 

root 1. It can be said that the central structure of contemporary Tokyo succeeds the main 

structure of the Edo metropolitan of which population was exceed one million in 18th 

century. 

On the other hand, the second mode #735 is successor of the Edo outskirt villages located in 

the lower part of Fig.3.1 (b). The eigenmode effectively extracts orthogonal substructures in 

variety of viewpoints: The dominant mode retrieves the dominant political and business 

area of present Tokyo metropolitan. The second mode retrieves its most growing area that 

was the outskirt of Edo.   

It is suggestive that the probability amplitude of the second mode, illustrated in the 

middle right panel of Fig.3.2, is positive at Shinjuku (station number #0) and negative at 

Shibuya (#3) and Ikebukuro (#25). Historically, Shinjuku, as the fourth hosting station of 

Edo, leads the others in this outskirt area. It is interesting because this mode profile has 

strong relations with mode competition in nonlinear Markov transition, as will be 

discussed in section4.  

The further interpretation of probability amplitude remains in being unexplored. The data 

mining technology may be useful to reveal it. 

3.3 An interesting eigenmode extracts the Kohoku new town project 

The study of the Kohoku Newtown project is an old graduation thesis of our laboratory, 
when a different definition of transition matrix was used in Markov transition (Ozeki, 2009). 
Fig.3.3 (a) denotes the eigenvector of the 200th eigenmode of Tokyo Metropolitan Railway 
system. It consists of three station groups, named Azamino / Nagtsuda group (Denentoshi 
line), Shin-yokohama group (Yokohama line) and Kikuna / Ohkurayama group (Toyokyu line). 
Those are excited coherently and simultaneously in the same phase, as shown in Fig.3.3 (a) 
A speculation suggests that a zone, encircled by three lines, might be successfully developed 
as a triangle business park. It is our great surprise to find that “the Kouhoku Newtown 
project” was promoted from 1965 to 1996, exactly in this zone. Fig.3.3 (b) denotes the 
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railway network map of the project, which shows Az for Azamino and Sy for Shinyokohama. 
Nagatusuda marked by Na was not recognized as key stations of the Newtown, but presently 
ȸYokohama city plansȹ includes it as the Yokohama Silicon valley: It is well known that 

Nagatsuda includes the campus of Tokyo Institute of Technology. This network analysing 
engine points out the importance of Nagatsuda to provide TIT as Stanford University of 
Silicon valley. 

Unfortunately, the network graph, used hitherto, does not include the Blueline subway that 

is one of the main constructions in the Kouhoku Newtown project. In next, we will discuss 

the evaluation of Blueline project.   

  

(a) The eigenvector #200 coherently excited (b) Kohoku Newtown Project:Kohoku Newtown encircled 

by the #200 eigen–mode:Sy=Shin-Yokohama, Ok=Ohkura yam, Az=Azamino 

(http://www.yk.rim.or.jp/~harujun/ntown/ntftr.html.) 

Fig. 3.3. Eigenvector of Kohoku Newtown. 

3.4 Evaluation of a new subway project 

Here we would like to introduce an interesting application of our network analysis 

platform: it is a blind evaluation method of network modification project. As introduced in 

the previous subsection, we try to evaluate the project of “Blueline”. The method is the 

variation of node entropy before and after Blueline inauguration, as illustrated in Fig.3.4 (a). 

The station group with increasing in their node entropy includes Totsuka (#94), 

Sakuragicho(#84) and Kannai (#85). On the contrary, the station group with decreasing node 

entropy includes Hodogaya(#104) and Kita-Kamakura(#106). 

We can show a supporting data for this evaluation in Fig.3.4 (b). The number of annual 

passengers of Hodogaya station shows abrupt drop in 1999 when the Blueline service was 

started. This blind-evaluation method presently only provides the variation of passenger 

flow of modified network, but it seems a powerful tool for network system design in 

future. 
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4. Nonlinear phenomena in passenger flow in Tokyo metropolitan railway 
system 

Here we would like to point out that nonlinear phenomena are important in passenger flow 
analysis. First of all, it should be noted that there are two types of nonlinear phenomena in 
the third order nonlinear interaction (Agrawal, 1989): one is SFM (Self Phase Modulation) 
that is equivalent to “Like Button” in Facebook, that is, transition probability to a node 
having the same opinion increases. (Please refer Appendix to find details including 
notations.)    

This nonlinear Markov transition process is expressed mathematically by the following; 

 1 ,( ) ( ) (1 ( ) ( ) )i n i j j n i n j n
j

q A q q q    (1) 

In this expression, the nonlinear term ( ) ( )i n j nq q might be recognized as “like button”: in 

case of the state ( )i nq of node #i having the same sign with ( )i nq , the transition probability 

from node j to i increases when the nonlinear coefficient  is positive. In other words, “like 

button” is a tool to express our personal opinion that controls routing of information in 
Facebook. It might be reasonable that nonlinear phenomenon in rush hours is recognized as 
SPM because most of passengers in rush hours have more sharp intention to reach their 
destinations.   

The other is called XPM (Cross Phase Modulation) that is equivalent to “curious 
bystanders”, that is, the transition probability to a node having many “curious bystanders” 
increases. It is shown mathematically as following: 

 
 
 

 
 
 

 

Fig. 3.4. Eigenvector Variation due to the Blueline.:(a) Node Entropy Change due to 
Blueline. (d) Evolution of Hodogaya Traffic Customers. Operation of Blueline was 1999. 
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   1 , , ,
,

( ) ( ) (1 ( ) ( ) )i n i j j n i k i m k n m n
j k m

q A q A A q q     (2) 

In this expression, the nonlinear term , ,
,

( ) ( )i k i m k n m n
k m

A A q q  might be recognized as effect of 

“curious bystander” because the transition probability from node j to i increases when 

( ) ( )k n m nq q is positive. In other words, XPM expresses “Birds with a feather flock together”. 

To make our intention of introduction of SPM and XPM clear, we show their import 
differences in network dynamics: 

Final target is discussion of mode competition between the authentic centre and the new 
growing metropolitan centre. And the third-order non-linear interaction is inevitable to 
show that the largest three stations are those in the new growing metropolitan region in 
Metropolitan Tokyo. 

4.1 Emergence of instability  

It seems better to introduce “Emergence” in the small rosary network discussed in session 2, 
before we discuss more complicated Metropolitan Tokyo railway system. Fig.4.1 illustrates the 
temporal variation of mode probability (the squared mode amplitude) of the nonlinear Markov 
transition based on Eq.4.1 applied to the small rosary network shown in Fig.2.2. The initial 

condition is a random distribution of node probability amplitude. SPM with medium 0.1   

leads to the dominant mode as the stationary state of the rosary network. It should be noted that 
the right panel illustrates the temporal variation of the mode amplitudes: The 2nd and 3rd order 
modes have negative eigenvalues so that the mode amplitudes change their sign at each 
Markov transition. The dominant mode having positive eigenvalue does not oscillate. 

 

Left diagram indicates mode probability (squared mode amplitudes) and the right diagram denotes the 
temporal variation of mode amplitudes. 

Fig. 4.1. Temporal variation of modes in SPM nonlinear Markov transition from random 
mode amplitude distribution as initial condition. 
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The light panel denotes the temporal variation of mode amplitudes. The middle panel denotes the 
temporal variation of mode probabilities. The right panel denotes two phase of probability 
amplitude.(the red race inverted in sign for clearness.) 

Fig. 4.2. XPM Markov transition of the Rosary network:   

On the other hand, Fig.4.2 illustrates the temporal variation of mode amplitudes in the case of 
XPM nonlinear Markov transition based on Eq.4.2. In this case the rosary network shows 
ȸemergenceȹ of a kind of instability: The temporal variation of mode amplitude oscillates as 

shown in left panel of Fig.4.2. At stationary state, two phases are shown in the right panel of 
Fig.4.2. Atȸin-phaseȹdenoted by red, the passengers gather on node #2 and #4 . In ȸout-of-
phaseȹdenoted by blue, the passengers shift to node #1,#3,#9,#22 and #39 coloured by 
yellow in the map of Fig.4.3 left. Those nodes can be reached from node #2 or #4 within one 
step. The oscillation is recognized to be sustainable transition between two groups of nodes. 

This kind of oscillation has not been reported in real world, yet. One of convenient 
interpretation is that average of two states is assumed to be observable; that is, we assume 
the average state corresponds to observable phenomenon in the real world. Fig.4.4 (b) 
illustrates the average state corresponds to the instability in the XPM Markov transition. 
Markov transition approximation of a large-scale network has a limitation due to delay time 
to obtain information of nodes connected to a node, at each transition, so that it might be 
reasonable to take average of oscillating states, just mentioned above. 

 

Fig. 4.3. (a) Sustainable oscillation between two groups of nodes (b) Average probability 
distribution  
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However, it should be noted that there are many intuitive samples of oscillations in the real 
world. This oscillation has strong relation with the network controllability and stability . 
These issues are discussed in Appendix C. 

Since available data of the passenger flow analysis in Tokyo railway system are dairy data 
average over a year, it is reasonable to use the average of probability distribution of Markov 
transition approximation. 

4.2 The largest three stations of Tokyo metropolitan railway 

One of the targets is to extract outstanding patterns from huge network system: In linear 
systems, the dominant mode corresponds to such an outstanding pattern. This 
understanding coincides with that of the basic Google in which one assumes that passengers 
in Tokyo railway system can be approximated as random walkers in the linear Markov 
process. Its stationary state is the dominant mode. 

The real world data, however, tell us that the largest three stations, in respect of passenger 
number, are Shinjuku, Ikebukuro and Shibuya: Shinjuku had 3.2 millions per a day as its 
number of passengers, Ikebukuro 2.6 millions, and Shibuya 2.3 millions, in 2006. This pattern 
does not coincide with the dominant mode.  

We should overcome this discrepancy  

First we introduce SPM Markov transition of Eq.4.1 to analyse the passenger distribution 
pattern. The initial condition of probability amplitude is a uniformly random distribution 
normalized by Euclidean norm. Fig.4.5 (a) depicts temporal variation of mode probability to 
reach dominant mode. The passenger distribution obtained is shown in Fig.4-5 (b), that 
corresponds to the authentic (political and business) centre of Tokyo: Shinbashi, Shinagawa 
and Tokyo are the dominant stations.   

 

  

a) Temporal variation of mode amplitude 
(b) The stationary state corresponds to the 
dominant mode.  

Fig. 4.5. SPM Markov Transition of Tokyo Metropolitan Railway System. 
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Secondary, we introduce XPM Markov transition of Eq.4.2 to analyse the passenger 
distribution pattern. Fig.4.6 (a) depicts temporal variation of mode probability obtained for 
XPM. Mode #735 (N-1) having negative eigenvalue of –4.271 oscillates continuously and 
Mode #732 (N-4) having positive eigenvalue of +4.423 reaches to stationary state of –0.612. 
This instability corresponds to sustainable commuting of random walkers between the two 
phases as shown in the middle panel of Fig.4.6. 

 

Left: Temporal variation of mode amplitude, Middle: Two phase of oscillation. Right: Average 
Probability Distribution.   

Fig. 4.6. XPM Markov transition of Tokyo Metropolitan Railway System  

According to the discussion on the rosary network in subsection 4.1, the average observable 

state corresponds to three largest stations of Tokyo Metropolitan Railway system, as shown 

in the right panel of Fig.4.6. This pattern of passenger distribution might be recognized as a 

central zone of entertainments or young people’s activity, comparing to the authentic centre 

of Tokyo discussed in SPM Markov transition. 

These analyses suggest the importance of nonlinear interaction in passenger distribution of 

railway network systems. This non-linearity of passenger flow reflects a human nature such 

as “Birds with a feather flog together”. 

4.3 Network dynamics and Markov process   

The most basic assumption of the nonlinear Markov transition is the synchronous transition 

among all of the nodes in the network. The probability amplitude of higher-order mode 

varies in sign at nodes so that the superposition in transition causes complicated 

interferences among various routes of transition. 

These multiple path interference may cause oscillation and dominates dynamics of network 

system. The multiple path interference may have relation with chromatic number in local 

structure. 

The possibility of sustainable oscillations, including relation of chromatic number, was 

reported in the ICCS (International Conference of Complex System) in Boston, July 2011. 

However, no experimental evidence is reported yet. (Ozeki, 2011) 
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5. “Tsubo” of network system 

“Tsubo therapy” inspired us to study “Impulse response” in network dynamics: The 

impulse response in electrical circuit theory provides “frequency response function”, 

through the Fourier Transform, that makes it possible to analyse various dynamics of the 

circuit system. We named “an impulse applied at a node” as “point stimulus”, after 

professor H. Horiike, architect: winner of Grand Prix of the Dedalo-Minosse International 

Award’02, Italy. (Horiike, 2000); The point stimulus is expressed as the initial condition 

( , )i p of the Markov transition, where (..) is the kronecker delta, and p  denotes the node 

where the impulse is applied. So far, this study is at dawn and a lot of unexplored remains. 

This section is based on our paper presented at KDIR2010 (International conference on 

Knowledge Discovery and Information Retrieval 2010).   

5.1 Point stimulus response of Tokyo metropolitan railway system  

Here we would like to show examples of point stimulus responses in Tokyo 

Metropolitan Railway System as illustrared in Fig.5.1: the upper row denotes those of 

“Shinjuku”, “Harajuku” and ”Shibuya”. These point stimulus responses are dumping 

oscillations having fairly large amplitude of #735 mode. As discussed in subsection 4.2, 

since Shinjuku and Shibuya are the two of largest stations in Tokyo Metropolitan Railway 

System, and their degrees are sufficiently large, it is reasonable that they have larger 

point stimulus responses. On the contrary, “Harajuku” shows fairly large point stimulus 

response, but is a small station from viewpoint of its degree. The degree of Harajuku is 

only two compared to 11 of Shinjuku. In real world, “Harajuku” is a small station, but a 

famous down of youths and fashions. It can be said that the larger point stimulus 

response of “Harajiku” suggests that the point stimulus response is a reasonable tool to 

evaluate station activity. 

The lower row denotes point stimulus responses of “Shinagawa”,”Yurakucho” and “Tokyo”. 

As discussed in subsection 4.2, those stations belong to the group of “authentic centre of 

Metropolitan Tokyo”. The dumping oscillations occur in eigenmode #734 that is the mode 

having negative second largest eigenvalue of -3.947. “Shinagawa” and “Tokyo” are fairly 

large station but the point stimulus responses are not so large that may reflect declining of 

those areas in 2006. Recently it can be said there are many successful projects to refresh these 

areas, such as Shinagawa intercity project. On the contrary, Yurakucho shows a relatively 

larger point stimulus response compared to small degree of 4.  It can be said that the point 

stimulus response well reflects the town activity of Yurakucho.  

Fig.5.2 denotes the cases that point stimulus responses reflect the miscellaneous station 

activities. The cases of “Akihabara” with degree of 7, “Megro” with degree of 4 and “Otsuka” 

with degree of 2 are illustrated.: The point stimulus response well reflects the declining 

activity of “Akihabara” in spite of various projects for actiovation.  “Meguro” and “Otsuka” 

seem to have larger point stimulus responses than their actual activities. It requires further 

studies whether these discrepancies suggest the chance of investments for town activation 

or not. We demonstrate the point stimulus response as one of interesting tool of checking 

the activity of node. It is expected that the point stimulus response is a clue to find the real 

affects of networking on a node.           
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Fig. 5.1. Reasonable correlations of “point stimulus responses” with station activities.   
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Fig. 5.2. Miscellaneous “point stimulus response”   

6. Conclusion 

We demonstrate a new network analysis based only on network topology of Tokyo 

Metropolitan Railway System. It is in highly abstractive and seems like a metaphor without 

any rigorous physical approval. However, many of analysis seem to illustrate the truth of 

railway system from abstractive viewpoint.     

Rene Descartes wished all of the world could be described mathematically, then, as his first 

step, the analytical geometry was innovated. Prigogine, the originator complex systems, 

declared a “new alliance” between natural sciences and human sciences to solve global 

issues of human beings.  

Here, we report a tiny effort of topological analysis of railway systems in this context. It is 
our wish to explore the horizon of our new mathematical platform as a tool for supporting 
intuitive power of railway system designers.  

The multimodal analysis based non-linear Markov transition approximation is still in its 
dawn. There are the vast amounts of works unexplored for the future.      

7. Appendix1 – Mathematical platform 

This section is based on our paper presented in ICCS (International Conference on Complex 
Systems) 2011. 

7.1 A new rule introduced in mathematical platform 

After the complex systems was originated by Ilya Prigogine from various foundations 
including irreversibility and self-organization in nonlinear dynamics (Prigogine, 1996), 
Barabasi introduced scale free networks for describing interaction between structures or 
constituents of complex network systems (Barabasi2002). On the other hand, Brin and Page 
simulated a web surfer by Markov transition through network linking web pages (Brin, 
1998). Then they found with their surprise, in spite of personal inherence of the Page Rank, 
that the web-network graph can rank the page importance mechanically by its dominant 
eigenvector (Brin, 1998, Langville 2006). We were inspired from theses historical flows to 
construct a multi-modal platform of Markov transition with nonlinear interaction for 
analysing complex networks.  
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A new rule of Euclidian norm, introduced in normalization in Markov transition 

approximation, provides us a new multi-modal description of complex systems: The 

Markov transition approximation of Page-Ranking in Google uses only the dominant mode, 

because their elements of the eigenvector are positive semi-definitive, and so, can be 

recognized as the probability finding a web surfer on a web page. 

However, the elements of the eigenvectors of higher order modes are not positive semi-

definitive, so that a new rule is necessary for defining the probability to find the web 

surfer on the page in higher order mode. It is well known that, in the power method for 

analysing eigenmode of such an adjacency matrix, the state vector at each transition is 

normalized by its Euclidian norm to prevent divergence. Since the sum of squared 

elements of the state vector is normalized to unity, the squared elements of the state 

vector can be recognized as the probability finding the web surfer on each node, just 

analogous to the quantum physics. In this way, we can describe the multi-modal 

behaviours of complex network systems employing the nonlinear Markov transition 

approximation (Ozeki, 2009). 

7.2 Topology dependent characteristics of various networks 

For analysing topology dependent characteristics, it is necessary to generate scale free 

networks having different topological characteristics, as references. Here we employ the 

Granvetter’s family network series [Ozeki2006:]. Using family network series, various 

topology dependent characteristics of scale free networks can be reviewed, in terms of 

chromatic number, degree correlation, clustering coefficient, and network entropy. 

Among these reviews, we report a sustainable oscillation caused by the unique 

eigenmode structure of BA-network. This topology dependent instability, which arises 

from mode competition in a special mode structure, named “skew degenerate modes”, is 

observed in the most popular BA networks (Barabasi, 2002). The skew mode is discussed 

more in A.3. 

7.3 A mathematical platform of network multimodal analysis  

Now we summarize a mathematical platform for network analysis in multi-modal scheme. 

The platform is based on the Markov transition to approximate the variation of network 

state: A symmetric adjacency matrix, providing an orthogonal eigenvector set, is suitable for 

multi-modal analysis of a network system. However, divergence in the Markov transition 

using the adjacency matrix as the transition matrix is a serious problem. Here, we apply a 

mathematical procedure, being used in “the power method” (Langville, 2006), for 

preventing the divergence: In Markov process approximation, the variation of network state 

given by 

 1
ˆ ˆ

n nq A q    (A1) 

is described explicitly in the power method by   

 1
ˆ ˆ ˆ/|| ||n n nq A q A q      (A2), 
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where ˆ
nq is the state vector at the nth transition step. The state vector is nomalized with 

respect to the Euclidean norm ˆ|| ||nA q  after each transition step. This mathmatical idea 

used in the power method assures the stablity and also assures the linear properties of the 

Markov transition.  

Furthermore, this idea lead us to read the state vector ( )i nq as a probability amplitude. The 

probability is defined by 2( ) |( ) |i n i np q for finding a random walker at the node “i “, because 

the sum of probability ( )i np  over all nodes is normalized to unity as shown in Eq.A2. 

The eigen-equation is ( ) ( )m m
mi iA       where m is the eigenvalue of mode “ m ”, and 

( )m
i is its eigenvector. The eigenvectors can be coincident with the asymptotic solution of 

Eq.A2 in the power method.  

7.4 Markov transition with weak non-linearity  

It is essential for the network analysis platform to be capable to analyse nonlinear 

phenomena. We introduce a non-linear Markov transition as follows: the nonlinear 

interaction in Markov transition means that transition from node “j” to node” i” is affected by 

the probability amplitude ( )k nq at node” k” linked to the node i , that is  

 1 , , ,
,

( ) ( ) ( ) ( )i n i j j n j i k i j n k n
j j k

q A q A A q q         (A3) 

 

where is a measure of nonlinear interaction. Eq.A.3 includes implicitly the normalization 

process as shown in EqA.2. This expression agrees with the definition of the Markov 

process, that is, the transition is determined only by the states at the present step n.  The 3rd 

order nonlinear Markov transition is introduced in section 4.  

8. Appendix 2 – Variety of topological parameters in family networks 

The family network series, visualized in Table A1, provides variety of topological 

parameters of networks, such as degree correlations, clustering coefficients, and network 

entropies. These parameters are plotted in Fig.A.1 to understand details. The red line in 

the figure denotes a typical variation of the degree Pearson correlations depending on 

the constituent family size M of family network series. A” typical variation” means that 

the degree correlations shown in Fig.A.1 is the mean value of those calculated for 10 

samples of networks, having about 100 total nodes, for each. The BA network is known 

as a disassortative network, that is, nodes with low degrees are more likely to be 

connected to the nodes with high degrees, and vice versa. The family networks with 

larger size M of constituent family become to be assortative, that is, nodes with a given 

degree are more likely to have links with nodes of similar degree. These  

Pearson coefficients of degree correlation (Soramaki, 2007) are illustrated in Fig.A.1 as a 

red line.  
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 p gy p y

 

 
Family Network 

Topology 

 

(ref. ICCS2006,id405) 

BA Network (M=1) Pair Network (M=2)

 

 

Trio Network(M=3) 

 

Quartet Net (M=4) 

 

 

 

Temporal Response 

(Non-linear Markov) 

  
Chromatic Number        2        2 or 3           More than 3         Morethan4 

Entropy        1.0       1.9        2.0       2.0 

Degree Correlation       -0.30        -0.10        0.11       0.15 

Clustering Coefficient          0 0 0.24 0.37 

Asymptotic Exponent 3 4 5 6 

   
 

Table A.1. Topology Dependent Network Dynamics 

A clustering coefficient of a node is defined by the ratio of the actual number of links among 
neighbours of the node over the number of potential links among them. The clustering 
coefficient of the network is the mean clustering coefficient over all of nodes. The blue line 
in Fig.A.1 denotes the clustering coefficients of family networks. The family network with 
larger M has higher clustering coefficient. 

Three kinds of entropy can be defined in multimodal description: 

The first one is the node entropy iNE  that is defined by the sum of Shannon entropies over 

all of modes, that is,  

 ( ) ( )lnm m
i i i

m

NE p p  .  (A4) 

The second is the mode entropy mME that is defined by the sum of Shannon entropies over 

all of nodes, that is,  

 ( ) ( )lnm m
m i i

i

ME p p  . (A5) 

The third is the network entropy that is defined by the sum of node (or mode) entropies 
over all of nodes (or modes), that is, 

 i m
i m

NetE NE ME   . (A6) 

The network entropy is plotted by black line with diamonds in Fig.A.1, corresponding the 
family network shown in Table A1.    
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The variety of topological parameters of the family network provides a possibility of better 
approximation for a given network topology: We can approximate a network topology 
generated by the family network growth mechanism, with selecting the size M of 
constituent family randomly at the entry to meet its statistics, such as size of household 
(Ozeki, 2009).   

 

Red line denotes the degree correlation using Pearson’s formula and Blue dotted line denotes the 
clustering coefficient. Black line with diamonds denotes the network entropy with the right-hand scale. 

Fig. A.1.1. Topological parameter variation of family network series  

9. Appendix 3 – Skew degeneracy 

In Table A1, family network series are illustrated with the smallest number of colours: the 

chromatic number of a graph, in the third row in Table A1, is the smallest number of colours 

such that no two adjacent nodes share the same colour 

(http://mathworld.wolfram.com/chromaticNumber.html). This chromatic number is 

strongly related to the symmetry of the graph. 

The BA network has the same chromatic number as the coupled harmonic oscillators, which 

consist of a long chain of masses and springs. Dyson analysed the coupled oscillators in 1953 

to find mode pairs having the same eigenvalue in absolute value but different in sign 

(Dyson, 1953).  

Degeneracy generally refers to objects having the same eigenvalue but different in eigenvectors, 

whereas the skew degeneracy, we named, refers to objects having different eigenvalues with 

respect to the sign of the eigenvalue but having the same probability distribution, that is the 

square of the eigenvectors normalized with respect to the Euclidean norm. 

For an example, Fig.A.3.1 (1) shows the eigenvalue of the adjacency matrix of the BA 

network M=1 illustrated in Table A1, that includes two pairs of skew degeneracy modes. 

Fig.A.3.1 (2) illustrates the eigenvectors corresponding to a skew degenerate mode pair: Blue 

line denotes the dominant mode #8 having eigenvalue of +2.853, and Red line with circles 

denotes the mode amplitude of mode #9 having eigenvalue of –2.853. Fig.A.3.1. (3) denotes 

their probability distributions of mode #8 and #9 that coincides with each other.  
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(1) (2) (3) 

(1)Eigenvalue (2) Mode amplitudes: Blue line denotes the dominant mode (#8) having eigenvalue of 
2.853 Red line with circles denotes the mode amplitude of mode #9 having eigenvalue of –2.853 
(3)Probability Distribution :Both of skew modes coincide. 

Fig. A.3.1. Skew Degenerate Mode Pair of BA network (M=1) 

The family network with M=2 has a possibility having mode pairs of skew degeneracy. 
However, the other family networks with larger M than 3 do not show the skew degeneracy.  

9.1 Temporal response of skew degenerate modes in nonlinear Markov transition 

The nonlinear Markov transition of Eq.A.3 can be converted to the description of the 
nonlinear interaction of mode amplitudes for getting clearer image, as the following: 

 1
, ,

( ) ( ) ( ) ( )m m m
m n m m n m m i i i m n m n

i m m

a a a a       
   

 
           (A7), 

where the modes are defined by the linear adjacency matrix. It should be noted that the 
equivalency of Eq.A.3 and Eq.A.4 is limited only for the case of very weak non-linearity 
considered.  

The transient response of the network having the skew degeneracy shows the sustainable 
oscillation in the nonlinear Markov transition as shown in the second row of Table A.1. The 
initial conditions are the modes with the negative largest eigenvalue. The skew mode pair 
survives in mode competition so that the random walker continues to commutate between 
two states that are the superposed states of the skew degenerate modes with in-phase and 
out-of-phase, respectively. The two states correspond to the group of the black and the red 
nodes in the BA –network, so that the random walker commutes between the node groups 
of red and black. 

Fig.A.3.2 illustrates these situations clearly; the probability amplitude distribution is given 

by ( )( ) ( ) m
i n m n i

m

q a   , that corresponds to the superposition of two competing modes #8 

and #9 illustrated in Fig.A.3.2 (2): The mode amplitude 9( )na in red of Fig.A.3.2 (1) continues 

to oscillate between 1 / 2 and 1 / 2  whereas 8( )na in blue grows up to 1 / 2  so that 

the superposition of two competing modes corresponds to red line of in-phase and blue line 
of out-of-phase as shown in Fig.A.3.2 (2).  
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The node patterns illustrated by red and blue lines coincide with the chromatic groups 
shown in the first row of Table A.1.   

On the other hand, the family networks with 3M   show quicker transition to the stationary 

state corresponding to the dominant mode, as shown in the second row of Table A.1.  

It is shown the following; the topology dependent instability dominates the temporal 
response in controlling the network system so that the network topology determines the 
dependability of the system, in a sense. 

10. Appendix 4 – Family network series as reference 

10.1 Network growth mechanism of family network  

The session 2 of reference(Ozeki, 2006) should be read as follows: The asymptotic 

connectivity distributions of the full-mesh family networks are derived by the method 

reported by Dorogovtsev et al. At initial time t=1, the number of constituent family is one so 

that the number of nodes is M. We assume the node attractiveness is given by A+M-1 where 

the number of links is M-1, so that the total attractiveness is M(A+M-1). At time t=t, the total 

attractiveness of the network is M(A+M-1)t+M(t-1), where the last term M(t-1) is the 

contribution of the weak ties. By replacing these in equations ( , , 1)p k s t  , then the 

connectivity distribution p(k) is given by 

 1 (2 2 1) ( )
( )

2 ( ) ( 2 1)

M A k A
p k

M A k M A

    


     
 (A10) 

We obtain the asymptotic exponent 1M A    . 

10.2 Network stabilization by topological improvement  

The network dynamics such as stability of the network system depends on the topology of 

the network system. Family network series gives us typical dynamics variations, as shown 

in TableA.1, as a reference. These understanding seem helpful to design network such as 

railway system. 

So far there is no experimental evidence showing these transient behaviours of networks 

yet, but we can imagine several examples intuitively as follow:  

a BA network with 100 nodes is illustrated in Fig.A.4.1 (1). The node # 0, and #1 and #2 are 

larger hubs. We might assume it as an ancestry of a family struggle, or an organization map 

just after consolidation of three small consanguineous companies. This topology consists of 

26 pairs of skew degenerate modes and shows sustainable oscillation from an initial 

condition of random probability amplitude distribution as shown in Fig.A.4.1 (2). This 

might correspond to longer periods of struggles or troubles in this network system. 

An intuitive method to prevent these troubles is to span a new link between two hubs, node 

#1 and #2 as shown in Fig.A.4.1 (3). This method is confirmed to be effective to convert the 

sustainable oscillation to quicker transition to stable state, by the non-linear Markov 

transition simulation, as shown in Fig.A.4.1 (4). 
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(1) (2) 

(1) mode amplitude 9( )na in red and 8( )na in blue, (2) the state amplitude of superposition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.3.3. In-Phase and Out-of-Phase Superposition of Skew Degenerate Mode Pair 
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(1) BA network with 100 nodes, (2) Sustainable oscillation of skew degenerate mode pair, (3) 
Topological improvement by connecting #1 and #2, (4) The topological improvement can convert the 
sustainable oscillation to quicker transition to stable state. 

 
 
 
 
 
 

Fig. A.4.1. Topological Improvement of Network System Stability 
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