
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

190,000 205M

TOP 1%154

7,200

2

An Approach for Representing Domain
Requirements and Domain Architecture

in Software Product Line

Shahliza Abd Halim, Dayang N. A. Jawawi,
Noraini Ibrahim and Safaai Deris

Software Engineering Department,
Universiti Teknologi Malaysia, Skudai,

Malaysia

1. Introduction

Software Product Line (SPL) core assets development is an effective approach in software
reuse in which core assets can be shared among the members of the product line with an
explicit treatment of variability. Among the artefacts of core asset are architecture,
reusable software components, domain models, requirements statements, documentation
and specifications, performance models, schedules, budgets, test plans, test cases, work
plans, and process descriptions.Variability in its own right is the central concept in SPL
which is not being catered by conventional method of reuse. Consequently, it is important
for variability to be identified and to be represented early at requirements phase. The
importance of identifying requirements variability earlier at requirements level is also
known as systematic reuse by researchers (Frakes and Isoda 1994; Muthig 2002).
Variability at requirements levels also initiates the existence of the variability at
architecture thus further highlight the inadequacy of considering variability solely at
architectural level. Therefore, considering on variability at architecture and its
implementation level is not enough where the understanding of variability at the
requirements level is also required (Yu, Akhihebbal et al. 1998; Moon 2005; Kircher,
Schwanninger et al. 2006).

Nonetheless, there are challenges on relating variability at both abstraction levels where

mapping of user requirements with the core assets for the adaptation process and derivation

of core assets based on user requirements is a complex task (Matinlassi 2004; Dhungana

2006). This task is made difficult due to the dependencies among variants in architecture in

order to fulfil a single customer's requirements (Bachmann and Bass 2001; Chastek 2001;

Thiel and Hein 2002). Furthermore, the variability information assembled within the

requirements phase should be able to support the following phase, the architecture design

(Brown, Gawley et al. 2006). Consequently, the relationships between both abstraction levels

are not always apparent especially between high level requirements artifacts and more

specific and formal artifacts of architecture such as Architecture Description Language

(ADL)(Medvidovic, Grünbacher et al. 2003). In addition, relating between requirements to

www.intechopen.com

Software Product Line – Advanced Topic

24

architecture also requires design decision to be explicitly represented (Bosch 2004; Avgeriou,

Kruchten et al. 2007). Avgeriou et al. further highlight the importance of design decision

accompanying the architecture development. Without the first class representation of

explicit knowledge and rationale as in design decision, it leads to knowledge vaporization

phenomena as described by Bosh. It is further suggested by him software architecture

should also consider composition of domain models, usage scenarios, feature and other

elements, which support architectural design decision.

In order to address the issues in relating between different abstraction levels, researchers

proposed different views represented by different models with defined mappings

between the models. The usage of multiple modeling and mappings are done by

(Savolainen, Vehkomäki et al. 2002; Medvidovic, Grünbacher et al. 2003; Lee and Kang

2004; Savolainen, Oliver et al. 2005; Dhungana 2006; Sochos, Riebisch et al. 2006; Zhang,

Mei et al. 2006; Zhu, Yuqin et al. 2007; Gomaa and Shin 2008; Bragança and Machado

2009; Lin, Ye et al. 2010). Among the approaches, Gomaa and Shin has the most

comprehensive models used in their mappings (Gomaa and Shin 2008). Nevertheless, they

only considers mapping at requirements to analysis model and do not involve mapping at

architectural levels. There are also approaches which only concentrate on the rule and also

the formal representation of the mapping without using any explicit models to represent

the different abstraction levels (Savolainen, Oliver et al. 2005; Zhu, Yuqin et al. 2007).

Furthermore, the mapping to architecture is generally referred as architectural assets and

no specific elements mentioned at the architectural level. Another approach is by feature-

driven mapping which is among the most accepted approaches so far by researchers (Lee

and Kang 2004; Dhungana 2006; Sochos, Riebisch et al. 2006; Zhang, Mei et al. 2006; Lin,

Ye et al. 2010). Nevertheless, these approaches seldom have an explicit representation of

design decisions in order to records decisions that architects made while designing the

domain architecture.

Therefore, even though the above-mentioned approaches for transitioning requirements

models to architecture levels have proposed techniques to overcome majority of the issues

mentioned earlier, nevertheless there are still room for improvement in the focus on of both

functional and non-functional requirements which are essential elements for architecture

development and also on the transition process itself which cannot be fully automated thus

highlighting the importance of design decision in bridging between requirements and

architectural level (Paech, Dutoit et al. 2002; Kaindl and Falb 2008; Turban, Kucera et al.

2009). However, we only elaborate on design decision at the conceptual framework only and

both requirements and architecture level representation will be the center of attention

instead in this chapter.

The layout of this chapter is as follows: Section 2 discusses the conceptual framework and

process governing the representation of domain requirements and domain architecture. In

Section 3, metamodels representing domain requirements level will be discussed.

Discussion on the metamodels representing domain architecture level is described in Section

4. Section 5 illustrates the usage of the representation in Autonomous Mobile Robot Product

Line case study. Section 6 discusses on the evaluation of the proposed notation. Lastly,

Section 7 concludes this chapter.

www.intechopen.com

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

25

2. Conceptual framework for bridging between domain requirements and
domain architecture

In order to address the issues of integrating functional, non-functional, architecture and
design decisions in relating between the two abstractions levels, we argue that SPL
architecture design method should incorporate multiple model approach in order to relate
the requirements elements to architectural elements. Multiple model approach can provide
different views of the system for different stakeholders. Furthermore, in order to have a
clear identification and representation for requirements to enable it to be of importance at
the latter development phase, we investigate the knowledge suitable to be incorporated in
domain requirements profile and also at domain requirements profile for the purpose of
assisting the domain architecture representation development. Therefore, the research
question to be answered in this book chapter is “What are the representations suitable for
representing core assets at domain requirements level?” and “What are the representations suitable
for representing core assets at domain architectural level?”

The conceptual framework for relating from requirements to architecture follows the

framework proposed by Garlan, Capilla and Babar (Garlan 2000; Capilla and Ali Babar 2008)

as shown in Figure 1. Garlan proposed an architecture representation by incorporating ADL

in object oriented modeling UML.Whereas, Capilla and Babar proposed on three different

elements should be incorporated in a decision mode the product constraints, variability and

binding.

Fig. 1. Conceptual Framework for relating between requirements model to architecture

In order to represent the requirements and architectural elements representation, we use the
extension provided in SysML profile (SysML 2006). SysML has extended UML 2.0 with
specialized support for requirements engineering and traceability elements between
requirements model and other models elements thus making it a perfect candidate in

www.intechopen.com

Software Product Line – Advanced Topic

26

support of the variability extension. Furthermore, traceability support in SysML can
contribute to the possibility of mapping between requirements and architectural level being
done in the language. Section 3 and Section 4 will elaborate more on the treatment and
mapping for each model.

Based on Figure 2, except for Requirements Context which is a matrix table to analyse
requirements commonality and variability, Use Case model, Parametric model and Feature

Model are multiple models for representing Domain Requirements. Parametric diagram is a
new diagram extension in SysML to represent constrain on the property or behavior of a
system (Friedenthal, Moore et al. 2008; Holt and Perry 2008). The diagram is used for
representing system equations that can constrain the properties of a block (Friedenthal,
Moore et al. 2008). Though the model is usually used to represent constraint in terms of
mathematical equations it has the potential to be extended to represent general rule or to
apply for requirements validation and verification. Figure 2 shows the association between
the domain requirements model and the domain architectural model where design decision
is the connection which link between the models. Decision model is where the functional
and non functional constraint is being specified. There are also two types of mapping based
on the figure, horizontal mapping refers to mapping between models at the same level of
abstraction, in this case at domain requirements level (between use case, feature and
parametric model). Vertical mapping refers to the mapping between different levels of
abstractions, between domain requirements model and domain architecture model. Decision
model will be the intermediate model between both abstraction levels.

Fig. 2. Model for associating domain requirements to domain architecture with decision
model

www.intechopen.com

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

27

The lack of fundamental process models and guidelines for the transition between the two
abstraction levels, further hinders the systematic task in developing the architecture. In
order to have a clear process for relating between requirements to architecture in SPL, we
look into available PLA design methods itself on their support for an explicit functional and
non functional requirements and its transition for architecture design. Existing method for
Product Line architecture design based on comparison by Matinlassi (Matinlassi 2004) has
evaluated COPA, FAST, FORM, KobrA and Quality Driven Architecture Design and
Analysis (QADA). From the evaluation, QADA method has consideration on quality
attributes requirements. We have also reviewed books on SPL such as by (Gomaa 2005)
concentrating on Product Line UML based Software Engineering (PLUS) method and by
Bosch proposing Functionality based Architecture Design (FAD) method (Bosch 2000).

From the reviews there are only two architecture design methods that focus on functional and
non-functional requirements, QADA and FAD. However, we concentrate on FAD as a process
in our research as it provides clear description of its Product line Architecture process. Though
FAD has a concentration in functional and non-functional requirements, yet it still does not
show explicitly what are the techniques or methods involve for the process at the requirements
level. Based on Figure 3, we will add suitable methods for each part of the processes in FAD
(i.e. requirements specification, software architecture, design decision, derivation and
mapping and lastly the evaluation or assessment done to the architecture).

Fig. 3. Process for associating domain requirements to domain architecture adapted with
enhancement from (Bosch 2000)

www.intechopen.com

Software Product Line – Advanced Topic

28

3. Metamodel for representing core assets at requirements level

Due to the unstructured nature of requirements, there are several approaches which combined
different strategies in order to represent artifacts in requirements analysis for SPL. A
systematic review has reported the high usage of textual and features artifacts in domain
analysis followed by use cases and goal based methods and others (Mahvish and Tony 2009).
Albeit the popular usage of feature model by various researches in SPL, it does not properly
represent variability information (Bühne, Lauenroth et al. 2004; Moon 2005). Among the
variability information that could not be supported by feature model are such as proper
decision on choosing features as either common or optional, identification of variation points
and also variation point type (Moon 2005) and required behavioral information in its
representation (Brown, Gawley et al. 2006). Goal based strategy also has been reportedly
having its own problem of implementation such as the abstractness of its concept has leads to
the problem in finding the right goal (Aurum and Wohlin 2005). Thus, in our research, we
concentrate on determining objectively the common and variable feature based on the analysis
on existing similar applications. To achieve the objectivity, commonality and variability matrix
is used in order to identify which are the common and optional requirements (Mikyeong,
Keunhyuk et al. 2005; Halim, Jawawi et al. 2009). In order to complement the use of feature
model, use case model is chosen as it enables the representation of text based system behavior
(Armour, Miller et al. 2001).

a. Functional mapping

For functional mapping, the feature model is used for representing functional requirements
while use case represents the behavioral specification of the requirements. Use case model
have two extensions to its metamodel where use case documentations have been added
with extra parameters for describing quality attributes. The extensions are shaded in grey as
shown in Figure 4. Another extension is on use case types to identify priority and reuse
property of the use case. For example if the priority is high the use case is a common and
will be reused by all the application in the product line.

FODA is commonly used as feature model by researcher, however in this research, feature

metamodel MRAM/TRAM is used as it has already proposed an extension of SysML profile

(Mannion and Kaindl 2008). The metamodel contains discriminants which are features that

differentiate one system from another. Discriminant and its associated pattern comprise of

single adaptor, multiple adaptor and option. The stereotypes <<MA>> represent multiple

adaptors, where at least one of the requirements can be chosen, while <<SA>> represent

Single Adaptor variability where only one requirement can be chosen from the variants.

Furthermore, MRAM/TRAM paired parameters and discriminant for modeling qualitative

and quantitative variability. According to (Magnus, Jurgen et al. 2009), discriminant provide

a decision model for composing product specification from product line requirements

documentation. Figure 4 shows the mapping between use case model and feature model.

b. Non functional mapping

For representing non functional requirements, architecture scenario is used (Clements,
Bachmann et al. 2003; Liming, Babar et al. 2004; Oquendo, Warboys et al. 2004; Bachmann,
Bass et al. 2005). With the use of architecture scenario, the non functional requirements can
be represented with more attribute instead of using just a general description or only using

www.intechopen.com

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

29

one word such as Performance, Modifiability or Security. The architecture scenario comprise
of six elements which we will further refer as non functional parameters: stimulus; source of
stimulus; environment; artifact, response; response measure and expected response .(Bass,
Clements et al. 2003). Previously, architecture scenario has been proposed as design
decisions and non functional requirements by (Zhu and Gorton 2007). However, our
practice of using architecture scenario is in parametric diagram where it explicitly shows the
non functional parameters of the architectural scenario. To enable non functional parameters
to be defined in parametric diagram, it has to be defined prior to its usage. The metamodel
of the parametric diagram is based on Holt and Perry (Holt and Perry 2008).

c. Horizontal mapping

The functional mapping between use case and feature metamodel is referred as in Figure 4
and also (non-functional mapping) between use case and parametric metamodel in Figure 5 as
horizontal mapping. Hence, horizontal mapping is between models at the same level of
abstraction, in this case at domain requirements level. In use case metamodel, we refer
Extension Point metaclass as a variation point in use case model and also Discriminant
metaclass as a variation point in Feature model. Thus, based on Figure 4, we have defined the
mapping between variation points at use case model with variation point at feature model.

For the mapping between use case and parametric metamodel in Figure 5, the mapping is
more superficial due to the nature of non – functional requirements which not usually exist
in each use case. Furthermore, non-functional requirements also known to have an impact to
one whole application and again there is no specific use case that can show this type of
information. Thus, we will dwell further into this matter as our future research.

4. Metamodel for representing core assets at architectural level

UML has been used as an architecture modeling language and also a de facto modeling
language used in the industry, even so there are arguments concerning its modeling
notations inadequacy for representing architecture (Medvidovic, Rosenblum et al. 2002;
Medvidovic, Dashofy et al. 2007). Another paradigm, which has a consistent, complete and
correct architecture description for representing architecture is by using Architecture
Description Language (ADL) (Taylor, Medvidovic et al. 2009).

Integrating both languages, ADL and UML can be considered as having a synergistic
relationship where the combination enables a precise and explicit architecture description
and at the same time having a wider usage among UML users in commercial tool. xADL is
chosen due to its specialized schema targeted for product line architecture description
(Dashofy, Hoek et al. 2005) while SysML is chosen due to its first class consideration for
requirements modeling and also its traceability elements between requirements model and
other models elements.

a. Mapping of SysML to xADL

The metamodel of the xADL and SysML integration have been proposed in (Halim, Jawawi
et al. 2009). We have divided the profile into three sections, the metaclass section which
consists of UML classes reused in SysML known as UML4SysML. The architectural
construct section which shows the extension of stereotype classes and the variability
construct section which shows the extension of stereotype to represent variability.

www.intechopen.com

Software Product Line – Advanced Topic

30

Fig. 4. Horizontal Mapping between use case and feature model

www.intechopen.com

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

31

Fig. 5. Horizontal Mapping between use case and parametric model

www.intechopen.com

Software Product Line – Advanced Topic

32

Fig. 6. Vertical Mapping between Domain Requirements to Domain Architecture

www.intechopen.com

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

33

b. Vertical Mapping

Referring back to Figure 2, there should be a vertical mapping between domain
requirements model (feature and parametric model) with the domain architecture model.
However, the mapping involved decision model as an intermediate layers between the two
abstraction levels. Due to the insufficient research result for decision model, the vertical
mapping is done without considering decision model. Though the decision model does not
exist, the vertical mapping shown in Figure 6 can be a future reference for capturing
traceability information for the decision model.

The vertical mapping between the Feature metamodel to the component and connector

metamodel is basically between the Discriminant metaclass to the Variant metaclass in

Component and Connector metamodel. The mapping between the parametric diagram and

the component and connector architecture is based on the constraint in the Block metaclass

which can be matched to the ConstraintBlock metaclass in the Parametric metamodel.

Fig. 7. AMR Product Line (AMRPL)

www.intechopen.com

Software Product Line – Advanced Topic

34

5. Case study of autonomous mobile robot software product line

In order to validate the applicability of the extended modelling in SysML, the extended

model was applied to product line of Autonomous Mobile Robots (AMR). The product line

consists of five different but similar applications of AMR. Four of the AMR are AMR for

research, AMR for teaching, i-wheelchair and intelligent scooter based on the research

collaboration done at Embedded Real Time and Software Engineering Research Lab

(ERetSEL), Universiti Teknologi Malaysia. The fifth AMR is the parking assistant based on

the work of Polzer, Kowalewski and Botterweck (Polzer, Kowalewski et al. 2009). The

AMRPL is as shown in Figure 7.

In order to identify the commonality and variability of the AMRPL requirements, approach

by Abd Halim, Jawawi and Safaai (Halim, Jawawi et al. 2009) is used. However, in order to

simplify this paper, the common and variable function is represented in use case diagram as

shown in Figure 8.

Fig. 8. AMRPL Use Case

Figure 9 shows all the three models based on their corresponding metamodel in Figure 6.
Feature model represents the functional requirements in the form of SysML requirements
model. Feature model in Figure 9 shows only partial requirements for AMRPL. The
stereotypes <<MA>> represent multiple adaptors, where at least one of the requirements
can be chosen, while <<SA>> represent Single Adaptor variability where only one
requirement can be chosen from the variants. The ellipse shape for variants in Motor

www.intechopen.com

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

35

Fig. 9. Vertical mapping betweeen Feature Model, Parametric Model and Component
Connector Model of AMRPL

www.intechopen.com

Software Product Line – Advanced Topic

36

Controller such as PID, PI and PD has been elaborated in the same name as in component
and connector model. Non functional requirements are shown in parametric model in
Figure 9. The parametric model is divided into definition and usage constraint. Parametric
model in Figure 9 basically have defined four constraints. The parametric model represents
the architecture scenario and how the scenario helps in identifying suitable patterns
(Liming, Babar et al. 2004; Oquendo, Warboys et al. 2004). The pattern identified can then be
used for later refinement of the initial architecture in the component and connector model.

6. Discussion

Based on the applicability of the proposed approach in modeling the domain requirements
and domain architecture for AMRPL, we evaluate our proposed models and annotation in
previous sections with suitable evaluation criteria. As far as our concern, there are two
existing evaluation frameworks for evaluating variability modeling (Djebbi and Salinesi
2006; Sinnema and Deelstra 2007). The former proposed eleven criteria for comparing
requirements variability modeling notations resulted from a brainstorming session with
stakeholders. The evaluation framework is then compared to four feature-based notations
FOPLE, FeatuRSEB, GP and FORE. The latter, concentrates on classifying variability
modeling techniques based on two key characteristics. The key characteristics are
representation for the variability itself and the tool accompanying the variability modeling
(Sinnema and Deelstra 2007). Due to our variability modeling approach is based on profile
extension, therefore the evaluation suitable for our approach is based on the extensions and
the notations proposed in modeling the variability. Thus, we based our evaluation on the
first evaluation framework proposed by Djebbi and Salinesi. The second evaluation
framework by Sinnema and Deelstra is unsuitable for evaluating our approach as it rely
heavily on the use of tool for the evaluation.

From the eleven criteria in the evaluation framework, we have classified the criteria into three
classifications concerning our proposed notation. The three classifications are evaluation
criteria fit for the notation, evaluation criteria for future extension of the notation and
evaluation criteria which not covered by the notation. Evaluation criteria that fall into the first
classification are readability of the notation, simplicity and expressiveness of the notation,
explicit variability types of the notation, specification for variation point property, unified
modeling of the notation and standardize notation. Second classifications, the future extension
for the notation consist of criteria such as dependencies representation between the variable
part of the product line, scalability of the notation and also the tool which support the
proposed notation. The third classification is for the criteria which are not considered in our
approach. Among the criteria are the evolution support of the product line and the
adaptability of the notation towards other companies. Hence, we evaluate our notation based
on the first classification only and the second and third classification will not be elaborated as
it is either not being implemented yet or not related to our proposed notation.

Notations readability can be achieved by clear and minimal representation. The case study
showed in previous section confirms visualization of variability at requirements and
architectural level by using stereotypes. These elements thus demonstrate the clear
representation of the notation. However, this notation has redundancy on information
representing functional and non-functional requirements such as the information from use
case to parametric diagram. This redundancy affect the minimality of the notation. For

www.intechopen.com

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

37

simplicity and expressiveness criteria, the construct proposed in the metamodel can be
considered as sufficient to represent variability at requirements and architectural level.
Though there are multiple models involve in representing domain requirements and
domain architecture, however the number of entities in the metamodel are higher than the
number of its relations thus highlight the simplicity of the notation. Expressiveness criteria
have possibility to be achieved as the notation is based on extension from UML constructs
therefore it can be understood by the user without much explanation. However, new model
such as parametric diagram will have a significant effort for comprehension.

Evaluation criteria fit for the notation

Readability of the notation Metamodel mapping and UML based
notations help in defining the graphical
means to visualize domain requirements and
domain architecture. However, there is
possible duplication on information
representing functional and non-functional
requirements.

Simplicity and expressiveness of the notation Simplicity can be achieved with the minimal
construct in the metamodel to show
variability. SysML profile which is an
extension of UML reflects the expressiveness
criteria.

Explicit variability types of the notation Variability types at requirements and
architectural levels are considered.

Specification for variation point properties The proposed notation has a clear
representation for variability through the use
of stereotypes in the notation.

Case tool support SysML profile extension is conformed to
standard UML hence can also be supported
by existing UML tool.

Unified modeling of the notation Notations at requirements level have
traceable relationships to notations at
architectural level.

Table 1. Evaluation criteria fit for the notation

The notation can fulfill the third evaluation criterion, by having an explicit variability type
at requirements level such as in use case relationships of uses and extend, in feature
diagram relationships as in single adaptor, multiple adaptor, and options and in component
and connector relationships such as the use of variants and options. The fourth criterion is
on the specification of the variation points. Though it’s not being shown in the case study,
we have proposed the specification of the variation points at the requirements level which
can be referred in (Halim, Jawawi et al. 2009). Nevertheless, specification of variation points
at architectural level is yet to be defined. The following evaluation criteria is on case tool
support. With the use of SysML profile which extends from UML itself, the notation can be
used in any tools which support UML. Nonetheless, a fully automated tool is still being
designed in order to automatically manage the variability of the models. The last evaluation

www.intechopen.com

Software Product Line – Advanced Topic

38

criterion, unification in the proposed approach is achieved with the ability to transfer
variability in models at both abstraction levels. At requirements level, variability
information is transformed between use case, feature model and parametric diagram. The
variabilities in both use case and feature model are then transferred to the component and
connector model through decision model. Therefore, from the proposed mapping from each
of the metamodels representing the use case, feature model, parametric model and
component and connector model, an initial unified modeling of variability can be achieved.

Table 1 summarizes the discussion related to the first classification. Based on Table 1, the
evaluation is done on our proposed notation only and there is no comparison done to other
existing methods.

7. Conclusion

An initial mapping between multiple models at requirements level to an architectural model
has been paved. The applicability of the approach has been validated in AMRPL case study.
The proposed notations and annotation used to model the AMRPL have also been evaluated
using an evaluation framework (Djebbi and Salinesi 2006). From the evaluation there are
several criteria have been fulfilled by the proposed notation among them are its readability,
simplicity and expressiveness, explicit variability types, specification for the variability,
unified modeling and tool support. Nonetheless the mapping have not yet consider design
decision as an intermediate model for vertical mapping between domain requirements to
domain architecture. The initial mapping contain basically a syntactic information of how it
can possibly be done. The semantics and rules of the mapping is the future work of this
research as these two elements are important for a more consistent approach of multiple
model mapping. In this paper also, an initial use of parametric model to represent quality
requirements has been shown. While it shows significant new way of using parametric
diagram which previously known to only represent mathematical equations, nonetheless
further refinement of how the model can be used to show the affect of non functional
requirements at architectural levels is strongly needed. The proposed approach of using
lightweight mechanism in representing the extension to map and represent the models at
different levels of abstraction also need to be evaluated with a proper matrix to ensure its
quality in representing PL architecture. Therefore, our future work is on refining the design
decision model and how the rules at requirements and architecture level can be
implemented in the design decision as a mapping between both abstraction levels.

8. Acknowledgement

This research is fully funded by the Research University Grant (RUG) from the Universiti
Teknologi Malaysia (UTM) and Ministry of Higher Education (MOHE) under Cost Center
No.Q.J130000.7128.03J23. Our profound appreciation also goes to ERetSEL lab members for
their continuous support in the working of this paper.

9. References

Armour, F., G. Miller, et al. (2001). Advanced use case modeling: software systems,

Addison-Wesley.

www.intechopen.com

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

39

Aurum, A. and C. Wohlin (2005). Engineering and managing software requirements,

Springer Verlag.

Avgeriou, P., P. Kruchten, et al. (2007). Sharing and Reusing Architectural Knowledge--

Architecture, Rationale, and Design Intent, IEEE Computer Society.

Bachmann, F. and L. Bass (2001). Managing Variability in Software Architectures.

Proceedings of the 2001 Symposium on Software reusability: Putting Software

Reuse in Context Toronto, Ontario, Canada, ACM Press.

Bachmann, F., L. Bass, et al. (2005). Designing software architectures to achieve quality

attribute requirements, IET.

Bass, L., P. Clements, et al. (2003). Software architecture in practice, Addison-Wesley

Longman Publishing Co., Inc.

Berg, K., J. Bishop, et al. (2005). Tracing Software Product Line Variability: from Problem to

Solution Space. Proceedings of the 2005 annual research conference of the South

African institute of computer scientists and information technologists on IT

research in developing countries, White River, South Africa South African Institute

for Computer Scientists and Information Technologists.

Bosch, J. (2000). Design and Use of Software Architectures: Adopting and Evolving a

Product-Line Approach, Addison-Wesley.

Bosch, J. (2004). "Software architecture: The next step." Lecture notes in computer science:

194-199.

Bragança, A. and R. J. Machado (2009). "A model-driven approach for the derivation of

architectural requirements of software product lines." Innovations in Systems and

Software Engineering 5(1): 65-78.

Brown, T. J., R. Gawley, et al. (2006). Weaving behavior into feature models for embedded

system families, Baltimore, MD, United states, Inst. of Elec. and Elec. Eng.

Computer Society.

Brown, T. J., R. Gawley, et al. (2006). Weaving behavior into feature models for embedded

system families.

Bühne, S., K. Lauenroth, et al. (2004). Why is it not Sufficient to Model Requirements

Variability with Feature Models?

Capilla, R. and M. Ali Babar (2008). On the Role of Architectural Design Decisions in

Software Product Line Engineering Software Architecture, Springer Berlin /

Heidelberg. 5292: 241-255.

Chastek, G. (2001). Product Line Analysis: A Practical Introduction. Pittsburgh, Software

Eng. Inst. (SEI), Carnegie Mellon Univ.

Clements, P., F. Bachmann, et al. (2003). Documenting software architectures: views and

beyond, Addison-Wesley, Boston.

Dashofy, E. M., A. Hoek, et al. (2005). "A comprehensive approach for the development of

modular software architecture description languages." ACM Transactions on

Software Engineering and Methodology (TOSEM) 14(2): 199-245.

Dhungana, D. (2006). Integrated variability modeling of features and architecture in

software product line engineering. 21st IEEE/ACM International Conference on

Automated Software Engineering (ASE'06), Tokyo, Japan, Institute of Electrical and

Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States.

www.intechopen.com

Software Product Line – Advanced Topic

40

Dhungana, D., R. Rabiser, et al. (2007). "Decision-oriented modeling of product line

architectures."

Friedenthal, S., A. Moore, et al. (2008). A Practical Guide to SysML: Systems Model

Language, Morgan Kaufmann.

Garlan, D. (2000). "Software architecture: a roadmap." Proceedings of the Conference on The

Future of Software Engineering: 91-101.

Gomaa, H. (2005). Designing Software Product Lines with UML. From use cases to pattern-

based software Architectures, Addison Wesley.

Gomaa, H. and M. E. Shin (2008). "Multiple-view modelling and meta-modelling of software

product lines."

Halim, S. A., D. N. A. Jawawi, et al. (2009). Requirements Identification and Representation

in Software Product Line. Asia Pacific Software Engineering Conference

(APSEC'09), Pulau Pinang, Malaysia, IEEE.

Holt, J. and S. Perry (2008). SysML for systems engineering, Institution of Engineering &

Technology (IET).

Kaindl, H. and J. Falb (2008). Can We Transform Requirements into Architecture?

International Conference on Software Engineering Advances (ICSEA'08) IEEE

Computer Society.

Kandé, M. M. and A. Strohmeier (2000). Towards a UML profile for software architecture

descriptions, Springer-Verlag.

Kircher, M., C. Schwanninger, et al. (2006). Transitioning to a software product family

approach - challenges and best practices. Software Product Line Conference, 2006

10th International.

Lee, K. and K. C. Kang (2004). "Feature dependency analysis for product line component

design." Software Reuse: Methods, Techniques and Tools: 69-85.

Liming, Z., M. A. Babar, et al. (2004). Mining patterns to support software architecture

evaluation. Software Architecture, 2004. WICSA 2004. Proceedings. Fourth

Working IEEE/IFIP Conference on.

Lin, Y., H. Ye, et al. (2010). An Approach for Modelling Software Product Line Architecture.

International Conference on Computational Intelligence and Software Engineering

(CiSE), Wuhan, China, IEEE.

Magnus, E., B. Jurgen, et al. (2009). "Managing requirements specifications for product lines

- An approach and industry case study." J. Syst. Softw. 82(3): 435-447.

Mahvish, K. and G. Tony (2009). "A systematic review of domain analysis solutions for

product lines." J. Syst. Softw. 82(12): 1982-2003.

Mannion, M. and H. Kaindl (2008). "Using parameters and discriminants for product line

requirements." Systems Engineering 11(1).

Matinlassi, M. (2004). Comparison of Software Product Line Architecture Design Methods:

COPA, FAST, FORM, KobrA and QADA. Proceedings of the International

Conference on Software Engineering (ICSE'04), IEEE.

Medvidovic, N., E. M. Dashofy, et al. (2007). "Moving architectural description from under

the technology lamppost." Information and Software Technology 49(1): 12-31.

Medvidovic, N., P. Grünbacher, et al. (2003). "Bridging models across the software lifecycle."

Journal of Systems and Software 68(3): 199-215.

www.intechopen.com

An Approach for Representing Domain Requirements
and Domain Architecture in Software Product Line

41

Medvidovic, N., D. S. Rosenblum, et al. (2002). "Modeling software architectures in the

Unified Modeling Language." ACM Transactions on Software Engineering and

Methodology (TOSEM) 11(1): 2-57.

Mikyeong, M., Y. Keunhyuk, et al. (2005). "An approach to developing domain requirements

as a core asset based on commonality and variability analysis in a product line."

Software Engineering, IEEE Transactions on 31(7): 551-569.

Moon, M., Yeom, K and Chae, HS (2005). "An Approach to Developing Domain

Requirements as a Core Asset Based on Commonality and Variability Analysis in

Product Line." IEEE Transactions on Software Engineering 31(7): 551-569.

Oquendo, F., B. Warboys, et al. (2004). Distilling Scenarios from Patterns for Software

Architecture Evaluation – A Position Paper. Software Architecture, Springer Berlin

/ Heidelberg. 3047: 225-229.

Paech, B., A. H. Dutoit, et al. (2002). Functional requirements, non-functional requirements,

and architecture should not be separated - A position paper. REFSQ, Essen.

Polzer, A., S. Kowalewski, et al. (2009). Applying Software Product Line Techniques in

Model-based Embedded Systems Engineering. MOMPES 2009, Vancouver,

Canada.

Savolainen, J., I. Oliver, et al. (2005). Transitioning from product line requirements to

product line architecture, Edinburgh, Scotland, United Kingdom, Institute of

Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331,

United States.

Savolainen, J., T. Vehkomäki, et al. (2002). "An Integrated Model for Requirements

Structuring and Architecture Design." Proceedings of the Seventh Australian

Workshop on Requirements Engineering, Melbourne.

Schmid, K. and I. John (2004). "A customizable approach to full lifecycle variability

management." Science of Computer Programming 53(3): 259-284.

Sochos, P., M. Riebisch, et al. (2006). The Feature-Architecture Mapping (FArM) Method for

Feature-Oriented Development of Software Product Lines. Proceedings of the 13th

Annual IEEE International Symposium and Workshop on Engineering and

Computer Based Systems (ECBS'06).

Taylor, R. N., N. Medvidovic, et al. (2009). "Software Architecture: Foundations, Theory, and

Practice."

Thiel, S. and A. Hein (2002). Systematic Integration of Variability into Product Line

Architecture Design. Software Product Lines : Second International Conference,

SPLC 2, San Diego, CA, USA, August 19-22, 2002. Proceedings: 67-102.

Turban, B., M. Kucera, et al. (2009). Bridging the Requirements to Design Traceability Gap

Intelligent Technical Systems, Springer Netherlands. 38: 275-288.

Yu, C. C., A. L. Akhihebbal, et al. (1998). Handling Variant Requirements in Software

Architectures for Product Families. Proceedings of the Second International ESPRIT

ARES Workshop on Development and Evolution of Software Architectures for

Product Families, Springer-Verlag London, UK.

Zhang, W., H. Mei, et al. (2006). "Feature-driven requirement dependency analysis and high-

level software design." Requirements Engineering 11(3): 205-220.

www.intechopen.com

Software Product Line – Advanced Topic

42

Zhu, C., L. Yuqin, et al. (2007). "A Feature Oriented Approach to Mapping from Domain

Requirements to Product Line Architecture." Journal of Computer Research and

Development 7.

Zhu, L. and I. Gorton (2007). Uml profiles for design decisions and non-functional

requirements, IEEE Computer Society.

www.intechopen.com

Software Product Line - Advanced Topic

Edited by Dr Abdelrahman Elfaki

ISBN 978-953-51-0436-0

Hard cover, 122 pages

Publisher InTech

Published online 04, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The Software Product Line (SPL) is an emerging methodology for developing software products. Currently,

there are two hot issues in the SPL: modelling and the analysis of the SPL. Variability modelling techniques

have been developed to assist engineers in dealing with the complications of variability management. The

principal goal of modelling variability techniques is to configure a successful software product by managing

variability in domain-engineering. In other words, a good method for modelling variability is a prerequisite for a

successful SPL. On the other hand, analysis of the SPL aids the extraction of useful information from the SPL

and provides a control and planning strategy mechanism for engineers or experts. In addition, the analysis of

the SPL provides a clear view for users. Moreover, it ensures the accuracy of the SPL. This book presents new

techniques for modelling and new methods for SPL analysis.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shahliza Abd Halim, Dayang N. A. Jawawi, Noraini Ibrahim and Safaai Deris (2012). An Approach for

Representing Domain Requirements and Domain Architecture in Software Product Line, Software Product Line

- Advanced Topic, Dr Abdelrahman Elfaki (Ed.), ISBN: 978-953-51-0436-0, InTech, Available from:

http://www.intechopen.com/books/software-product-line-advanced-topic/an-approach-for-representing-

domain-requirements-and-domain-architecture-in-software-product-line

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

