We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

5,400
Open access books available

132,000
International authors and editors

160M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the top 1% most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

The safety of allogenic blood products has been increased in the following ways: strict rules for donor selection following new insights in infectious; testing of donor blood with techniques to minimise window-period; reduction of leukocyte-count of blood products (in some countries); introduction of disinfectant techniques of plasma; introduction of quarantined plasma; culture of thrombocyte products. Other adverse effects, such as transfusion reactions, human errors, graft versus host disease, alloimmunisation, signs of an increase in nosocomial infections, as well as a possible immunosuppressive effect have contributed to the demand for alternative blood products or techniques decreasing the transfusion of allogeneic blood products, the so-called “blood-saving techniques”. To reach this goal, these techniques can be used separately. However, in most cases a combination of several methods will be employed, often referred to generally as “blood management”.

Momentarily, both pharmacological and non-pharmacological methods are available. Each technique has its’ own efficacy. Each technique however, may also carry its’ own adverse effects or complications. Most adverse effects are published in case reports or retrospective studies. Literature published studying aprotinin shows the importance of controlled randomised trials or cohort studies large enough to detect the incidence of adverse effects and to measure any differences in side effects. At the moment, haemovigilance for blood transfusion saving techniques is not regulated. However, the Dutch experiences highlight the importance of awareness of adverse effects.

Autotransfusion (red cell salvage) is one of these techniques and involves the infusion of blood collected intra-operatively from the operative field, or postoperatively from the drains, and will be discussed in this chapter. This method is one of the most commonly used techniques of autologous blood transfusion. The collected blood can be re-infused either directly or after filtration of cellular and other debris via a blood cell separator, referred to as the “washed method”. In this chapter, efficacy, quality and safety of both methods will be described.

2. Definitions of the different techniques

2.1 Unprocessed or unwashed method of autotransfusion

This is the oldest technique, first suggested in 1818 by James Blundell and first performed by Brainard in 1860 (Blundell 1818, Brainard 1860, Koopman 1993). Blood is collected under
low vacuum pressure (< 100 mm Hg) in a container and in most cases only filtered through a 170 micron filter. Several pore-sized filters are now available on the market. Originally this technique was also used intra-operatively, but because of serious adverse effects during reinfusion it was, until recently, only used for reinfusion of wound blood lost in the postoperative phase (drain blood) (Stachura et al. 2010). The blood is predominately collected without addition of anticoagulants, because the added anticoagulant is not removed by washing, and anticoagulant other than citrate may cause coagulopathy. Due to the risk of bacterial growth in the collected blood maintained at room temperature, collection and reinfusion is advised to be completed within a time span of a maximum of six hours. In cardiac surgery, longer periods of holding at lower temperature have been applied without complications (Schmidt et al. 1998). Unwashed techniques are not advised for children.

2.2 Processed or washed methods of autotransfusion

With this approach, anticoagulant (heparin or citrate) is added to the tip of the vacuum by means of a double-lumen suction catheter. The aspirated blood is filtered through a 170 micron filter. Thereafter, the blood is centrifuged in a blood cell separator, removing the plasma which contains cell remnants. The remaining erythrocytes are washed with a saline solution and infused through a 40 micron blood filter. Postoperatively, the drain-blood, with or without anticoagulant, can be collected and processed in a time span of 6 hours. There is no limit to the amount of reinfusion of washed salvaged blood. One has to realise that only erythrocytes are recovered and consequently, massive blood loss replacement of plasma and platelets must be done by means of allogeneic blood products. For children devices available to process smaller volumes of blood are available.

3. Quality of the recovered blood

When blood comes into contact with non-endothelial tissue, due to the activation of the coagulation and complement cascade, platelets and leukocytes are activated and erythrocytes are destroyed (Krohn et al. 2001, Sinardi et al. 2005, Stachura et al. 2010). Aspiration of blood increases this damage by air contact and turbulence. The amount of haemolysis depends on the type of surgery. Suction of a small amount of blood increases the risk of haemolysis and reduces the efficacy of erythrocyte recovery. The infusion of activated proteins and damaged cells may cause serious organ damage (Faught et al. 1998). Moreover, aspirated blood must be anti-coagulated with a high-dose heparin or citrate to prevent clotting which, without removal, may cause coagulopathy.

Complications described include Acute Respiratory Distress Syndrome (ARDS), Disseminated Intravascular Coagulopathy (DIC), renal failure, Multi Organ Failure (MOF) (so-called "blood-salvage" syndrome), air embolism and coagulopathy (Bull & Bull 1990, Tawes & Duvall 1996). Washing of the blood product prevents these complications.

Blood collected postoperatively from wound-drains is less activated. The recovered blood contains free haemoglobin (Dalén 1995, 1997), activated cells, and mediators of the activated coagulation pathway. These factors can be measured in recipient’s plasma. Dalén showed that approximately 0.5% of the recovered erythrocytes in drain-blood are haemolysed (Dalén & Enström 1998, 1999). The haematocrit level is lower in drain-blood due to dilution with chyle. Filtration of drain blood through a leukocyte-reducing filter previous to
collection in the container, and avoiding filtration after collection, may reduce erythrocyte damage (Dalén & Enström 1998, 1999).

Unwashed drain-blood contains no fibrinogen and therefore addition of anticoagulant should not be necessary. However, clot-formation in the recovered blood has been described in 0.3% of cases (Horstmann et al. 2010). Generally, no obvious clinical side-effects have been shown, but confusion may arise with diagnostic tests e.g. biochemical confirmation of myocardial infarction (Pleym et al. 2005).

The suction tip and the collection bag may be a cause of bacterial contamination (Wollinsky 1997), but antibiotic prophylaxis is generally effective. If autotransfusion is applied following advised methods, bacterial contamination is not a major risk (Wollinsky et al. 2007, Bowley et al. 2006).

3.1 Quality of the recovered erythrocytes

The efficacy of erythrocyte recovery is determined by the type of surgery, suction-technique, the pressure of the vacuum, and the prevention foaming and turbulence of the aspirated blood. Aspiration of small volumes destroys more erythrocytes than aspiration of larger volumes. Depending on these factors, recovery of erythrocytes is between 65% (e.g. orthopaedic) and 95% (e.g. vascular surgery) (Koopman 1993). Filtration of the collected drain-blood through a leukocyte-filter before collection in the container also reduces erythrocyte damage (Jensen et al. 1999), in contrast to filtration after collection of the blood. The haematocrit of a bag of washed red cells is approximately 0.50 l/l, slightly less than that of stored allogenic erythrocytes (Ht 60 l/l). Due to haemolysis during the suction process, regular measurement of the patient’s haemoglobin level is advised.

The survival of recovered erythrocytes is normal and seems uninfluenced by the different types of autotransfusion or the type of surgery (Thorley et al. 1990, Kent et al. 1991, Wixson et al. 1994). Room temperature incubation of drain-blood causes lactate formation and swelling of the erythrocytes. Some older studies show that the osmotic resistance and 24-hour survival of stored erythrocytes after processing in a cell saver is slightly decreased (Marcus et al. 1987, Schmidt et al. 1996) compared to fresh recovered wound-blood, but more recent studies found no difference (Alleva 1995, Schmidt et al. 1996). Oxygen delivery and 2,3-DPG levels are not influenced by cell salvage or processing (McShane et al. 1987, Schmidt et al. 1996). The function of recovered leukocytes and platelets is marginally investigated, but may be depressed (McShane et al. 1987).

3.2 Washing efficacy

Processing of salvaged blood by means of centrifugation and washing removes most free haemoglobin and anticoagulant, 95 and 98%, respectively (Koopman 1993). Even in massive transfusions of more than 100 units of salvaged red cells, just 5000 IU of heparin are re-infused. Most modern devices have a haemolysis sensor controlling the wash procedure. This is of great import, reducing the amount of free haemoglobin infused, thereby reducing excretion in the renal tubules and the risk of acute renal failure.

Fat embolism is a complication due to aspiration of fat particles, orthopaedic surgery displaying the highest risk. Fat globules may adhere to the tubing and/or filters and are of
no risk for patients (figure 1). However, fat particles < 40 micron will be infused to the patient, unfiltered. A surface- or fat-filter is more effective than a screen-filter. A leukocyte filter is the most favourable (Ramirez et al. 2002, de Vries et al. 2003, 2006), but decreases reinfusion flow greatly.

Fig. 1. Fat in the tube infusing blood from the reservoir into the blood cell separator processing bowl (arrow)

Salvaged blood of patients recovered from the area on and around a disfunctioning hip prosthesis may contain Cobalt or Chromium - washing of the salvaged blood removes, respectively, 76.3 and 78.6% of the content (Reijngoud et al. 2009).

In cardiac surgery, heart enzymes are recovered in the salvaged blood. Diagnosing perioperative complications such as myocardial infarction will be subject to error. The troponin level remains, however, uninfluenced and is therefore the most reliable indicator (Pleym et al. 2005).

4. Adverse reactions

As mentioned, reinfusion of aspirated unprocessed salvaged blood can induce serious organ damage such as ARDS, DIC, renal failure, MOF or coagulopathy. Filtration and washing largely removes toxic factors and reduces complications. Due to operating errors, however,
serious complications are reported (Faugt et al. 1998, Zijlker et al. 2011). Most research has been published investigating the safety of reinfusion of unwashed drain-blood. A Dutch study of 1819 patients undergoing orthopaedic surgery showed adverse reactions in 3.6% of cases (Horstmann et al. 2009). Most reactions were mild, such as fever (> 38.5°C) and shivering. Two patients experienced a severe adverse reaction: cardiac arrest and atrial fibrillation due to a pulmonary embolism subsequent to reinfusion of 30 and 50 ml of autologous drain-blood, respectively. Both patients survived. Other authors describe mild adverse reactions (So-Osman et al. 2006, Kirkos et al. 2006, Hendrych 2006). Some found no relationship (Faught 1998, Moonen et al. 2008). Reinfusion of IL-6 may be a contributing factor. A 7-fold increase in normal baseline levels has been found (Handel et al. 2006). Filtration by means of a leukocyte-filter has been shown to reduce the level of interleukins but may actually instigate complement activation during the filtration process itself (Dalén & Engström 1998).

Reinfusion of unwashed blood had no effect on lung perfusion (Attinel et al, 2007). However, there was a slight decrease in thrombocyte levels found (de Jong et al, 2007).

A study of 120 patients investigating the immunological response to several methods of blood transfusion showed a decrease in Natural Killer (NK-) cells and interferon gamma levels by all methods except reinfusion of unwashed drain-blood, which saw an increase (Gharehbaghian et al. 2004). The IL-10 levels did not change. Gharehbaghian argues that higher concentrations of interferon gamma or NK-cells indicate a more favourable immunological response.

Reinfusion of unwashed drain-blood is often used in the context of cardiac surgery. However, recent studies showed greater haemodynamic instability, probably caused by infusion of the abovementioned cytokines and activated complement (Marcheix et al. 2008, Boodwhani et al. 2008). Moreover, increases in cognitive dysfunction (15 vs. 6%) after unwashed autotransfusion have been witnessed (Djaiani et al. 2007). Laboratory values showed increased indicators of fibrinolysis or DIC (Krohn et al. 2001, Sinardi et al. 2005). These changes seemed to be clinically irrelevant in general, but some authors showed an increase in postoperative blood loss in cases of reinfusion of >750ml (Schönbergen et al. 1992, Wiefferink et al. 2007). Not all authors confirmed these results (Schroeder et al. 2007, Sirvinskas et al. 2007). Washing of the salvaged blood prevents these adverse events and is obligatory for processing intra-operative aspirated blood. Furthermore, in cardiac surgery this can be extended to drain-blood collected postoperatively.

There is no literature referring to the maximum amount of drain-blood that can be re-infused unwashed. In most studies, a mean of 500 ml is re-infused. Greater than 1500 ml is re-infused in just a handful of cases, 0.5% (Huët 1999, Horstman 2010). Some authors advise a maximum of 15% of circulating volume (Krohn et al. 2001, Sinardi et al. 2005). Therefore, a guideline could be a maximum 15% of the circulating blood volume, with a cut-off value of 1500 ml. In addition, reinfusion of collected drain should be performed following filtration of the blood through a 40 micron filter. For children, there are no data available. However, re-infusion of unwashed blood is not advisable.

A preventable complication is air embolism, particularly when blood is infused under pressure (Faugt et al. 1998). As reinfusion bags and tubing from all systems contain air, an air detector placed in the infusion system is then mandatory.
5. Indications

Perioperative autotransfusion may be indicated for all operations with great blood loss. Most experiences are in the context of vascular surgery. In a retrospective study of 9918 patients, Giordano (Giordano et al. 1993) concluded that cell salvage an efficient method of reducing use of allogenic blood transfusions. Most randomised studies, however, are conducted in cardiac, vascular or orthopaedic surgery (Carless et al. 2010; table 1). For all other types of surgery, data regarding efficacy is sparse.

<table>
<thead>
<tr>
<th>Author and study protocol</th>
<th>Study groups</th>
<th>Results</th>
<th>Adverse events</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 RCT:</td>
<td></td>
<td>Ortho: RR = 0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ortho: n = 36</td>
<td>- 77 washed: RR = 0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Cardio: n = 33</td>
<td>- 78 unwashed: RR = 0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Vasc: n = 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washed: n = 27</td>
<td>Cardio: RR = 77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unwashed: n = 40</td>
<td>- 79 washed: RR = 0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other: n = 8</td>
<td>- 80 unwashed: RR = 0.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT-protocol: n = 60</td>
<td>Vasc: RR = 0.63 n.s.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 75 55 x postop.</td>
<td>BT-protocol: RR = 0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 76 21 x intra- and postoperative</td>
<td>No BT-protocol: RR = 0.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No BT-protocol: n = 15</td>
<td>Mean 0.68 EC less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients: n = 3857</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Ortho = orthopedic; Cardio = cardiology; Vasc = vascular surgery; B.T. = Blood Transfusion; N.S. = Not significant; RCT = Randomised Controlled Trial; RR = Relative Risk for allogeneic blood transfusion

Table 1. Meta-analysis 75 RCT.

5.1 Autotransfusion during cardiac surgery

Reinfusion of intra- and postoperative collected blood reduces the need for allogenic blood transfusions (Ferrari et al. 2007, Klein et al. 008). Washed techniques are more efficacious (RR washed 0.61 vs. unwashed 0.87) (Huët et al.1999, Carless et al. 2010). Most complications, such as increase in bleeding and cognitive dysfunction, are described under unwashed methods (see 4.0). In conclusion, washed techniques reduce adverse events, especially the frequency of cognitive dysfunction up to > 50% (Carrier et al. 2006, Westerberg 2005, Djazani et al. 2007, Svenmarker et al. 2004). In cardiac surgery this should be state-of-the-art.
5.2 Autotransfusion in orthopaedic surgery

Reinfusion of intra- and postoperative collected blood is in most studies an efficacious method of reducing the need for allogenic blood transfusions. (Huët et al. 1999, Tylman et al. 2001, Jones et al. 2004, Carless et al. 2010, Tsumara et al. 2006, Smith et al. 2007, Zacharopoulos et al 2007, Amin et al. 2008, Tripkovic et al. 2008, Munoz et al. 2011). The haematocrit of drain-blood is approximately 0.25-0.30 l/l due to mixture with chyle. The Cochrane analysis shows an RR of 0.48 for washed techniques vs. 0.47 for unwashed techniques (Carless et al. 2010). A disadvantage is the lack of inclusion of transfusion protocol in all trials. Moreover, surgical techniques have changed in the last few years, questioning the validity of older studies, as shown in our recent multicenter, randomied study of 2579 patients (So-Osman et al. 2011).

Approximately 75% of postoperative blood loss occurs in the ensuing 6 hours, falling within the 6-hour window recommended for re-infusion (Wood et al. 2008). Wood also showed that increase in the collection time leads to augmented wound healing.

5.3 Autotransfusion in vascular surgery

Although intra-operative autotransfusion is most widely used in vascular surgery, and yet few randomised studies (Wong et al. 2002, Takagi et al. 2007, Carless et al. 2010, Huët et al. 1999) have been published. Adverse events are never published.

5.4 Autotransfusion in obstetrics

Autotransfusion of washed shed blood may be used for Extra Uterine Pregnancies (EUP) or caesareans. Use of a cell saver for EUP improved the haematocrit level at discharge significantly (Thomas D. 2005, Selo-Ojeme & Feyi-Waboso2007, Allam et al. 2008). In the past, intra-operative autotransfusion during obstetric haemorrhage has been discouraged because of the risk of amniotic fluid embolism. Reinfusion of amniotic fluid may cause amniotic fluid syndrome with DIC, ARDS and sometimes death. Recent literature, however, shows that harmful substances are removed during the washing process (Thomas D. 2005). A consequence of leukocyte filtration is improved removal of all foetal substances in all cases. Foetal erythrocytes are present in amniotic fluid with subsequent induction of irregular antibody formation in the mother after reinfusion. However, the quantity of foetal erythrocytes seems comparable with that circulating normally amount normally circulating in the mother’s blood during delivery. Use of unwashed techniques is inadvisable.

5.5 Autotransfusion in urology

Autotransfusion of washed unirradiated shed blood is often employed during cystectomies and prostatectomies (Nieder et al. 2004, 2007, Davis et al. 2003, Ford et al. 2007, Gallina et al. 2007, Stoffel et al. 2005, Waters et al. 2004). In these studies, blood was collected from the surgical field subsequent to prostatic manipulation. Stoffel performed measurements of the Prostate Specific Antigen (PSA) in subjects’ blood: 1 hour prior to surgery; immediately subsequent to reinfusion of the shed blood; and 3-5 weeks following surgery (Stoffel et al. 2005). He also measured the PSA level in the processed salvaged blood. He found PSA expressing cells in 88% of the samples of the salvaged blood and in 13% of the preoperative
samples. Furthermore, PSA-expressing cells were found in 16% of the autotransfused patients and in 4% of the non-autotransfused patients, immediately following transfusion. No PSA-expressing cells were detected in the peripheral blood samples taken 3-5 weeks postoperatively. Authors suggest PSA expressing cells are damaged by processing of the blood and the damaged cells are removed by the immune system of the subject.

5.6 Autotransfusion in traumatology

Autotransfusion is often applied during trauma surgery, especially in cases of liver or splenic ruptures. In this field, just one randomised study has been published, subjects experiencing abdominal trauma in combination with bowel perforations (n = 44; Bowley et al. 2006). Bowel perforation is generally considered a contraindication to autotransfusion. Somewhat unexpectedly, this study displayed no difference in survival or complications. However, necessity for erythrocyte transfusions was significantly less (6.47 vs. 11.17U). All operations were performed with antibiotic prophylaxis. Grossly contaminated blood with faeces or other debris was collected in a separate reservoir and not used for autotransfusion. In conclusion, this study shows that in emergency situations with abdominal trauma, washed autotransfusion may be used, provided that is under antibiotic prophylaxis.

5.7 Jehovah’s Witnesses

Many Jehovah’s Witnesses accept the use of perioperative autotransfusion provided that the machine is transformed to a closed system such as a heart-lung machine, and is completely filled with a saline solution prior to commencement of the procedure, and connected to the patient by means of an intravenous line. Some contraindications may be relative in this situation when autotransfusion may increase survival (McInroy 2005, Van Wolswinkel 2009, Wooley 2005). In the context of operative treatment of neoplasms, when irradiation of the washed blood product is not possible, the use of a leukocyte filter will provide a 1 log reduction of the tumour load.

5.8 Other indications

Autotransfusion may be contraindicated in subjects with haemoglobinopathies. In a case of a patient with Beta-thalassaemia requiring caesarean section which involved 9L of blood loss, increased haemolysis was noticed in the aspirated blood. This was countered by increasing the wash-volume. A sensor measuring the level of haemolysis in the effluent wash fluid was, in this case, a useful instrument (Waters et al. 2003).

Sickle cell disease (SCD) is an absolute contraindication due to erythrocyte haemolysis during hypoxic stress. Reinfusion of this blood caused serious coagulopathies (Fox et al. 1994). Less absolute is autotransfusion in patients with the milder sickle cell trait. Storage of autologous blood has been described, without sickling (Romanoff 1988). Recently, in two case reports, sickling was displayed in 15-20% of the washed salvaged product, with subjects experiencing uneventful recovery (Okunuga & Skelton 2009). However, the proportion of HbS differs among the various carrier states (Hulatt & Fisher 2010). When applied, measurement of sickling in the collected blood prior to reinfusion is advisable.
6. Contraindications

6.1 Bacterial contamination

Not all authors consider bacterial contamination an absolute contraindication. It has been demonstrated that bacteria are not completely removed by centrifugation and washing (5-21% subsequently present) (Boudraux et al. 1983, Faught et al. 1998). As described in the trauma study (Bowley et al. 2006), in emergency cases, autotransfusion can be life-saving without causing harm to the patient. A few other case-reports confirm that prophylactic intravenous antibiotic therapy or addition of antibiotics to the anticoagulant solution could prevent bacteraemia or sepsis (Faught et al. 1998, Wollinsky et al. 1997).

6.2 Tumour surgery

Tumour surgery is considered an absolute contraindication to the use of autotransfusion due to fear of inducing metastases. Centrifugation and washing during processing of the aspirated blood does not remove all tumour cells and resulted in <1 log reduction in tumour load (Hanssen et al. 2002, 2004 (2x), 2006; Thomas MJG 1999, Stoffel et al. 2005). Tumour load in aspirated blood may be as high as 10^7 cells/litre (Hanssen 2002, 2006). The tumour cells remain viable and proliferate, as shown in in-vitro and animal models. Furthermore, leukocyte filtration can achieve just less than one more log reduction (Hanssen et al. 2004 (2x), 2006, Thomas MJG 1999). Radiation of the aspirated blood with 50 Gy resulted in a 10 log reduction in tumour load, after which no DNA-metabolism could be found (Thomas MJG 1999, Hanssen et al. 2002). There are special bags on the market for irradiation. The duration of the procedure is 6-15 minutes and is a complicated logistic process. However, combination of leukocyte filtration with irradiation has been found to remove all active tumour cells (Poli et al. 2008). Detailed studies showed that irradiation does not damage the red cells and that recovery in the first the 24 hours is improved, presumed due to selective loss of senescent erythrocytes (Hanssen et al. 2002). Experience with transfusion of irradiated salvaged blood has been described in more than 700 patients without adverse effects (Valbonesi et al. 1999). Comparison of subject outcome with regard to differences between filtration or the irradiation techniques have not been published. Therefore, based on non-clinical studies, the irradiation technique is the only method that can be safely used.

A personal opinion is that in life-threatening bleeding during tumour surgery in the case of a Jehovah’s Witness, reinfusion of autotransfused blood through a leukocyte filter may be considered.

6.3 Other contraindications

The following are described in guidelines, but not investigated in randomised studies: cleansing of the wound with toxic fluids; usage of haemostatic medicines on collagen or thrombin base; or aspiration of fat.

7. Haemovigilance

Risks of allogenic blood transfusions have been one of the motives for introduction of blood-saving techniques and employment of alternative methods. Years ago, haemovigilance was introduced to monitor the safety of allogenic blood transfusions. Currently, haemovigilance
for blood transfusion-saving techniques is not regulated. The Dutch foundation for haemovigilance (Transfusion Reactions In Patients: TRIP) has formulated a guideline comparable with that for allogeneic blood transfusions, and begun with registration on a voluntary basis.

In 2004, a number of hospitals spontaneously reported incidents with autologous blood transfusion techniques (Zijlker et al. 2011). An annual increase in participation of other hospitals has been witnessed. The biggest hurdle is that registration of the total number of autotransfusions performed in Dutch hospitals (cell savers, drain blood reinfusion) in the Netherlands is not known, and a more complicated registration compared with allogeneic blood transfusions which involve compulsory registration. In 2009, 2384 events were reported (2.9/1000 units of blood products), 98 of them were serious events (0.19%) including 3 involving autotransfusion techniques. In total, 35 incidents with cell savers or drain blood were reported (www.tripnet.nl). Momentarily, 18 hospitals not only report their adverse events, but also the total amount of procedures performed. Participation of other hospitals is encouraged by TRIP. More insight in risks may result in greater prevention in the future. In addition, long term outcome may be important as the study involving Aprotinin showed us (Mangano 2006, 2007, Karkouti 200). In summary, registration of long-term outcome should be encouraged for allogeneic blood transfusions as well as for alternative techniques.

8. Conclusion

Perioperative autotransfusion started with reinfusion of unwashed shed blood intra- and postoperatively and soon appeared to be potentially dangerous (Koopman 1993). Results showed that blood collected intra-operatively was more dangerous than that collected postoperatively. This is explained by the damage caused by suction, high negative pressure, and contact with the air. Removal of the supernatant plasma and cell fragments by centrifugation and washing reduces side effects and the recovered product appeared safe for intra-operative use. Initially, infusion of unwashed drain blood was considered quite dangerous, but experience in recent years shows that despite the presence of potentially harmful substances, transfusion may be safe when used within certain limits. Such limits are: negative pressure not exceeding 100 mm Hg; reinfusion via a 40 micron filter; and a volume restriction of 15% of circulating volume with a maximum of 1500 ml for adults (this volume restriction is based on lack of randomised studies using larger volumes).

Provided all safety precautions are adhered to with regard to collection and apparatus used, there seems to be no volume restriction for the use of washed shed blood. Equipment with reliable optic sensors and a haemolysis controlling sensor are of import.

Several clinical and laboratory studies show that the quality of the saved erythrocytes (reflected in oxygen transport, osmotic fragility and survival) is equal to the circulating erythrocytes of the subjects, and better than stored autologous or allogeneic erythrocytes. Massive blood loss can be managed by autotransfusion of recovered erythrocytes. Plasma and platelet concentrates, however, must be supplemented according to guidelines for massive blood loss.

With regard to all risks involved, and in comparison with allogeneic transfusion, a 50-60% decrease is witnessed with autotransfusion.
In the case of children, only specialised apparatus may be employed in washing techniques. Disadvantages of autotransfusion in the case of tumour surgery or bacterially-contaminated surgical fields may be less than originally feared. In the context of a low degree of contamination, antibiotic prophylaxis may be adequate. Aspirated tumour cells are not sufficiently removed by filtration and washing. Currently, only irradiation of the recovered washed blood with 50 Gy has shown to give an adequate (10 log) reduction of tumour load. This requires, however, additional time, transport, validation of the irradiation process, labelling, and identification. This all adds to the costs of an irradiated unit. Filtration of the blood by means of a leukocyte depletion filter, taking 15 to 40 minutes, gives only a 2-3 log reduction of tumour load, and is therefore considered unsafe for employment in cancer surgery. However, in emergency cases or for Jehovah’s Witnesses, it may be in certain circumstances an option to discuss with the patient. With an eye on the future, it is worthwhile to investigate if more simplistic methods of tumour cell reduction can be developed.

Blood saving techniques also have there side effects and incidents. At the moment haemovigilance of these incidents is not regulated. The Dutch experiences however highlight the importance of registration of these incidents comparable with those of allogeneic blood products.

9. References

of Systematic Reviews 2010, Issue 4. Art. No.: CD001888. DOI: 10.1002/14651858.CD001888.pub4

www.intechopen.com

Reijngoud, L.W.P., Pattyn, C., De Haan, R., De Somer, F., Campbell, P.A., Harinderjit, S., Gil, H.S. & De

Thomas, M.J.G. (1999. Infected and malignant fields are an absolute contraindication to intraoperative cell salvage: fact or fiction? Transfusion Medicine. Vol. 9:269-278. ISSN 0958-7578

Blood Transfusion in Clinical Practice focuses on the application of blood transfusion in different clinical settings. The text has been divided into five sections. The first section includes a chapter describing the basic principles of ABO blood group system in blood transfusion. The second section discusses the use of transfusion in various clinical settings including orthopedics, obstetrics, cardiac surgery, etc. The third section covers transfusion transmitted infections, while section four describes alternative strategies to allogenic blood transfusion. The last section speculates over immunomodulatory effects of blood transfusion.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

© 2012 The Author(s). Licensee IntechOpen. This is an open access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.