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1. Introduction 

The studies of elemental abundance of solar wind ions allows to address by open questions 
in several major fields of research: solar physics, heliospheric and planetary physics, and 
astrophysics and cosmology. This chapter is intended to provide the current status of 
knowledge about the solar wind composition mainly  in relation to the solar physics with the 
emphasis on the effects of solar magnetic field. 

The composition of the solar wind is mainly determined by the composition of the source 
material at the solar surface, and then modified by plasma processes in the solar 
atmosphere, operating in the transition region and in the inner corona. In recent decades, 
attention in composition studies has shifted from its early models toward differences in 
chemical fractionation as well as considerable fine-structure in the region above the solar 
surface. In-situ measurements of the solar wind composition give a unique opportunity to 
obtain information on the isotopic and elem ental abundances of the Sun (e.g. Bochsler, 
1998). 

The magnetic field on the surface and in the atmosphere of the Sun is considered by many to 
play a significant role in the plasma processes, which is reflected in composition changes. 
The magnetic field on the solar surface includes two components: open magnetic flux, which 
opens into the heliosphere to form the heliospheric magnetic field (also called the 
interplanetary magnetic field); and closed magn etic flux, in the form of loops attached at 
both ends to the solar surface. The open magnetic flux controls many of the important 
processes in the solar corona. Reames (1999) argues that the interaction of loops with open 
flux is essential for an impulsive solar particle event, i.e., magnetic field reconnection 
causing the re-distribution of the magnetic fiel d in the loop, the transfer of magnetic energy 
to the local plasma, and the escape of energetic particles. The interaction and reconnection 

www.intechopen.com



 
Exploring the Solar Wind 

 

50

between open flux and coronal loops releases matter and energy from the closed onto open 
field lines, which may add to the energetisation of the solar wind. As a result, open flux is 
broadly distributed on the Sun (Fisk et al. 1999; Fisk 2003; Fisk & Zurbuchen 2006). The open 
flux also exhibits the reversal in polarity of the magnetic fiel d over the Sun. The polarity of 
coronal mass ejection (CME) footpoints tends to follow a pattern similar to the Hale cycle of 
sunspot polarity. Repeated CME eruptions and subsequent reconnection will result in 
latitudinal transport of open flux and reve rse the coronal fields (Owens et al. 2007). 
Understanding how the open flux of the solar surface behaves, how it is transported and 
distributed, is important for understand ing the heliospheric plasma flow and the 
interplanetary magnetic field. The distribution of open f lux can thus also be a sign of solar 
activity. 

Solar wind charge states are indicative of the coronal electron temperature when assuming 
local thermodynamic equilibrium between the electrons and ions (Arnaud & Raymond 1992; 
Bryans et al. 2006). Each charge state pair freezes-in at a different altitude, where the coronal 
expansion time scale overcomes its ionization/recombination time scale. Recent studies of 
charge states in fast streams found that the inferred electron temperature given by the in-situ 
observed charge states are higher than those derived from the spectroscopic measurements 
of the electron temperature. To resolve this discrepancy, two assumptions were adopted: 
one is assuming a non-Maxwellian velocity distribution for electrons with a suprathermal 
tail in the near-Sun region (Aellig et al. 1999; Esser & Edgar 2000), the other is introducing 
the differential flow speed between the adjacent charge states of the same element with the 
assumption of the Maxwellian velocity distribution for the solar wind particles (Ko et al. 
1997; Esser & Edgar 2001). However, Chen et al. (2003) found that the differential flow speed 
has no significant impact on the charge state distribution of most of the heavy ions. The only 
way to resolve this issue is to introduce a non-Maxwellian electron velocity distribution. As 
we know, the fast solar wind is accelerated by ion cyclotron waves possibly generated by 
the interaction and reconnection between open flux and small scale closed loops. Once ions 
are perpendicularly heated by ion cyclotron waves and execute large gyro-orbits, density 
gradients in the flow can excite lower hybrid  waves through which electrons can then be 
heated in the parallel direction (Laming & Lepri 2007). A weak temperature gradient can 
lead to the development of non-Maxwellian suprathermal tails on electron velocity 
distributions, invalidating the Spitzer-Harm  theory (Scudder & Olbert 1983). Therefore, 
solar magnetic field fluctuations might be a reason to cause the non-Maxwellian velocity 
distribution of electrons in the fast solar wi nd. But things would be different in the slow 
solar wind because slow solar wind plasma is believed to accumulate in closed loops for 
hours to days before being set free into the heliosphere. The ions in the loops execute 
sufficient heating and their velocity distributions become almost isotropic. The conditions  
for exciting lower hybrid waves might not be satisfied because of the isotropic velocity 
distribution. Thus the charge state distribu tions in the slow solar wind would display 
different signatures from that in fast solar wind . In Section 2, we check the signatures of the 
solar magnetic activity on the charge states of heavy ions (Fe, Si, Mg, Ne, O, C) in the slow 
and fast solar wind using ACE solar wind data, the “current sheet source surface” (CSSS) 
model of the corona, and SOHO MDI data during the 23rd solar cycle. 

It is well established that the relative abundances of elements in the solar corona, solar wind, 
and solar energetic particles are similar (Meyer 1985). However, when compared to the 
photosphere, the particle populations do show an elemental fractionation that is organized 
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by the first ionization potential (FIP). This elemental fractionation, the so called FIP effect is 
widely discussed in the literatur e, and there exist several models that give account of it, for 
example Marsch et al. (1995), Arge & Mullan (1998), Schwadron et al. (1999), and Laming 
(2004). These models even differ in terms of the underlying physical processes (Hénoux 
1998), and at present there is no consensus about the actual mechanism responsible for the 
FIP fractionation happening in the solar atmo sphere. Moreover, when looking in detail at 
the various particle population s they do show some differences in different domains, as 
demonstrated for Ca (Wurz et al. 2003a) and later for several other heavy elements 
(Giammanco et al. ApJ 2007). In particular, energetic particles often show severe 
fractionation in their elemental composition.  On the other hand, low-speed CMEs are the 
most difficult to identify within the ambient low-speed solar wind (Reisenfeld et al. 2003). In 
many aspects, CME-related flow reflects most closely the low speed solar wind, except for 
the general enhancement of He. It is still an open question whether the CME-related solar 
wind needs to be considered as an independent type of flow, or whether a low-speed solar 
wind reflects a composition, produced by a multitude of small-scale CMEs, that dissolve in 
the inner corona to form a plasma stream, while only the large-scale CMEs preserve their 
plasma signatures out to distances of in-situ spacecraft observations and remain identifiable 
as independent events (Bochsler 2007). For example, the elemental composition during the 
passage of the January 6, 1997 CME was found to be different from the interstream, i.e., slow 
solar wind, and from coronal hole, i.e., fast solar wind, observed before and after it, 
respectively, with a mass-dependent element fractionation (Wurz et al. 1998). Moreover, in a 
study of CME plasma composition in the ve locity range from 390 to 520 km/s a strong 
deviation in composition of heavy ions with respect to slow solar wind was found for each 
CME (Wurz et al. 2003b). Schwadron et al. (1999) demonstrated that wave heating can 
account for both a mass-independent fractionation and a bias of low-FIP elements in active 
region loops but not on continuously open fiel d lines. Their model placed several constrains 
on the rate at which waves isotropicalize and thereby heat the species distributions, e.g. the 
spatial scale of the discontinuity must be smaller than the gyroradius of protons.  

In the following we will examine what is the role of the solar magnetic fields and their 
temporal evolution on the FIP fractionation? In examining the physic al processes that can 
account for the mass-dependent element fractionation, we will focus on the waves 
associated with an-isotropic ion distributions that would act more effectively on heavy ions 
than on protons. In the following we will in clude both quasi-stationary and intermittent 
solar wind and give the attention to the abun dance variations associated with the solar 
magnetic effects. 

The evolution of the open magnetic flux on the solar surface reflects the changing properties 
of the solar activity. The solar wind associated with the distribution of open flux is expected 
also to contain the information of solar activity. One fact is that large abundance 
enhancements are observed in the solar corona over open magnetic field structures such as 
polar plumes (Feldman 1992; Sheeley 1996), and in active regions surrounding a sunspot 
with diverging magnetic field lines (Doschek 1983). Another factor is based on the recent 
models on impulsive events, a significant frac tion of heavy elements that reside on the 
actively flaring flux rope is energized, the resonant interaction operates mainly on heavy 
elements with charge states increasing systematically with  energy (Möbius et al. 2003; 
Klecker et al. 2006; Kartavykh et al. 2007). We are therefore motivated to explore the effect of 
solar magnetic activity on the abundance variat ions of heavy ions in the solar wind plasma. 
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In Section 3, we compare the elemental abundance ratios Fe/O, Si/O, Mg/O, Ne/O, and 
C/O over the 23rd solar cycle, where attention is  being given to the varying fraction of open 
magnetic flux on the visible side of the solar disc. 

2. Effects of solar magnetic activity on the charge states o f minor ions of 
solar wind 

We extrapolate the photospheric magnetic field into a global heliospheric field by using the 
Current Sheet Source Surface (CSSS) model (Zhao & Hoeksema 1995). This model uses 
Bogdan and Low’s solution (Bogdan & Low 1986) for a magnetostatic equilibrium to 
calculate the effect of large-scale horizontal currents flowing in the inner corona and, by 
introducing the cusp surface and the source surface, uses Schatten’s technique (Schatten 
1971) to calculate the effects of the coronal and heliospheric current sheets and volume 
currents. These currents maintain the total pressure balance between regions of high and 
low plasma density. To model the effects of volume and sheet currents on the coronal 
magnetic field, we divide the solar atmosphere  into three parts, separated by two spherical 
surfaces, i.e., the cusp surface and the source surface (see Figure 1 of Zhao & Hoeksema 
1995). The inner sphere, called the cusp surface, is located approximately at the height of the 
cusp points of coronal streamers. Above the cusp surface the coronal magnetic field is open 
everywhere. The outer sphere, called the source surface, is located near the reference height 
identified in the Parker’s model above which the radially directed solar wind totally controls 
the magnetic field (Parker 1958). The cusp point is not easily defined and probably varies 
from place to place. However, the estimates of the height of cusp points from different 
experiments range from below 1.5 solar radii to above 3 solar radii (Zhao & Hoeksema 
1995). For instance, typical coronal streamers in the K-corona are approximately radial 
structures extending beyond 1.5 – 2.0 solar radii. This implies a wide height range for the 
interactions of open and close field lines to happen. Recently, Laming and Lepri (2007) 
pointed out that any heating mechanism for electrons between 1.5 and 3 solar radii needs to 
explain the discrepancy between the SUMMER measurements of coronal electron 
temperatures and electron temperatures derived from Ulysses/SWICS charge state data of 
heavy ions in the fast solar wind. If most of the cusp points are located within 1.5 – 3 solar 
radii, it implies that waves generated by reconnections of open and closed magnetic flux 
will further power the solar wind beyond the point where it can be observed by SUMER, 
i.e., ions are heated by ion cyclotron resonant Alfvén waves and part of the ion energy then 
leaks to electrons through a collisionless process (Laming 2004). This would provide a 
reasonable explanation to the charge state issue in the fast solar wind (Laming & Lepri 
2007). 

Alternatively, the potential field-source surface (PFSS) model can be used to model the 
coronal magnetic field from the observed photospheric magnetic field. The difference 
between the models is that the PFSS model is without currents and the CSSS model is with 
current sheet-currents. There are two essential advantages of the CSSS model over the 
potential field-source (PFSS) model: first, in the CSSS model the field lines are open but not 
necessarily radial at the cusp surface which includes the effects of streamer current sheets; 
second, the source surface in the CSSS model is placed near the Alfvén critical point. In-situ 
observations of the heliospheric magnetic field should be compared with the magnetic 
neutral line near the Alfvén critical point.  The radial component of the heliospheric 
magnetic field is latitude-independent, as de tected by Ulysses (Smith & Balogh 1995), and 

www.intechopen.com



 
Solar Wind Composition Associated with the Solar Activity 

 

53 

can be taken as uniform on a spherical surface above 5 solar radii (Suess & Smith 1996). 
However, the magnetic field distribution on  the source surface obtained using the PFSS 
model is not uniform, which does not agree with the Ulysses observations of the 
heliospheric magnetic field (Poduval & Zh ao 2004). In addition, the CSSS model shows 
better prediction of solar wind and interplanetary magnetic field (IMF) polarity and 
intensity measured near the Earth’s orbit than the PFSS model. The correlation coefficient 
between the observed interplanetary magnetic field and the calculated 27-day averages is 
0.89 for the CSSS model, which is better than that of the PFSS model, which is 0.77 (Zhao & 
Hoeksema 1995). To obtain a uniform magnetic field on the source surface, we set the source 
surface at 15 solar radii (Zhao, Hoeksema, & Rich 2002) and the optimum cusp surface is 
determined by matching trial calculations of  Carrington rotation-averaged open magnetic 
flux with in-situ solar wind speed. 

SoHO/MDI daily magnetic field synoptic data are used to obtain the daily proportion of 
open magnetic flux on the front side (i.e., the Earth-ward side) of the photosphere (Fig. 1a) 
during the 23 rd solar cycle. We define the open magnetic flux fraction alpha = opnf/(opnf+clsf),  

 
Fig. 1. (a) The fraction of the open magnetic flux on the front side of photosphere – alpha (for 
the definition of alpha see main body of the text) as a function of time during solar cycle 23rd. 
(b) The correlation of the daily fraction of  open flux with the daily sunspot number. 
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where opnf indicates open magnetic flux and clsf close magnetic flux, respectively, on the 
front side of the photosphere. The correlation of the open magnetic flux fraction alpha with 
the sunspot number is displayed in Fig. 1b. Thus, we can use the parameter alpha to describe 
the intensity of solar activity in this paper, where a small alpha corresponds to a high solar 
activity and vice versa.. 

The observed solar wind is traced back to the source surface in the corona along the 
Archimedian spiral assuming little radial accele ration (constant speed) and pure radial flow, 
neglecting interaction between fast and slow solar wind streams. That is, the heliographic 
latitude at the source surface is the same as that of in-situ observed point. The Carrington 
longitude at the source surface is shifted to the west according to the daily values of in-situ 
observed solar wind speed (Neugebauer et al. 2002). Here ACE/SWEPAM daily average 
solar wind data are used to infer the longitude shift. Once the shifted longitude is obtained, 
we get the time of day when the solar wind co mes out of the source surface, and we further 
get the daily fraction of open magnetic flux on the front side of photosphere of that day. By 
this mapping technique, we can associate the in-situ observed solar wind with low, middle, 
and high solar magnetic activity, i.e., alpha>0.14, 0.075<alpha<0.14, and alpha<0.075, 
respectively.  

We do not use the inverse relation between flux tube expansion factor and solar wind speed, 
because the solar wind will be traced back to a region bounded within a narrow range of 
longitude that sensitively depends on the ma pping speed used, but rather emphasize the 
influence of the background magnetic field on th e properties of solar wind, i.e., the fraction 
of the open flux on the fron t side of the photosphere.  

Note that the solar wind speed profile obtained at 1 AU is the result of the interaction 
between solar wind streams of different speeds as they propagate outwards since the 
stream-stream interactions are inevitable. Our constant speed assumption would inevitably 
introduce the longitude shift error and cause a possible error in the mapping of solar wind 
with solar activity. However, we use the da ily synoptic MDI data for the mapping that 
weakens the influence of the longitude shift error to some degree. For instance, a longitude 
error of less than 13 degree would not change the mapping result.  

We analyzed ACE/SWICS charge state distribution data of heavy ions, from Fe, Si, Mg, Ne, 
O, to C, from the years 1998 to 2007. We used the criterion O+7/O+6 < 0.8 to separate 
interplanetary coronal mass ejections (ICMEs) from the quasi-stationary solar wind, which 
is based on the results by Richardson and Cane (2004). The corresponding charge state 
distributions of Fe and Mg of the solar wind for six different speed ranges are compiled in 
Fig. 2. The wide range of charge states of the measured distribution is due to a mix of 
sources in the solar wind. As the solar wind speed is increasing, two opposite trends are 
identified: for iron, a charge  state peak shifts from Q=9 to Q=10 with a tail extending to 
Q=20; for magnesium, the charge state peak shifts from Q=10 to Q=9 with a tail extending to 
Q=5. Opposite trends for Fe and Mg may be due to the effects of resonant acceleration at 
high altitude in the corona, where the magn etic effects dominate and preferentially 
accelerate species with lower charge state (that is with higher m/q) in the slow solar wind. 
The slow solar wind plasma is believed to accumulate in closed loops in the solar 
atmosphere for hours to days before being released into the heliosphere by magnetic field 
reconnection of closed with open flux. The heating will occur in the loops of the corona by 
the interaction of ions with MHD turbulence, i.e., magnetic fluctuations. If ions are heated  
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Fig. 2. Charge state distributions of Fe and Mg of the solar wind for six solar wind speed 
bins ranging from 250 km/s to 850 km/s during solar cycle 23 rd. 

by magnetic fluctuations, which have a power-law spectrum  P(�Ú)�ß�Ú-�Ì, the ions with higher 
m/q will be heated more strongly. Therefore, we see lower charge states of Fe ions in the 
slow solar wind. However, the m/q for Mg ions is nearly half of that for Fe ions, which 
implies less power at the Mg-resonance. As a result, the resonant heating at high altitudes of 
the corona is much less efficient for Mg ions than for Fe ions. So the charge distribution of 
Mg, dominated by Mg 10+ over a wide range of electron temperatures, still keeps the 
information of the source temperature of the i nner corona, with a different trend for the Fe 
charge states.  

To explore the magnetic effects on the m/q distribution, we calculated  the mean charge states 
within different solar wind sp eed bins as a function of m/q, which are displayed in Fig. 3a. 
For comparison, the dependence on the first ionization potential (FIP) is given in Fig. 3b. We 
find that the fractions of the high charge states (QFe > +10, QMg > +7, QSi > +7, QNe > +7, QO > 
+6, QC > +5) increase with the solar wind speed when the m/q is above 3; below this  
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Fig. 3. (a) Mean charge states for four speed bins as a function of m/q (black: 250�ï350 km/s, 
green: 350�ï450 km/s, red: 450�ï550 km/s, yellow: 650�ï750 km/s); (b) Mean charge state for 
four speed bins as a function of FIP. 

value, the fractions decrease with solar wind speed. No significant variation is found for Ne 
(m/q=2.63). The resonant heating of ions by the magnetic fluctuation with a power-law 
spectrum will preferentially select species with lower charge state (i.e., with higher m/q) in the 
slow solar wind, which leads to the higher fracti ons of lower charge states in slow solar wind. 
On the other hand, ions are perpendicularly heated by ion cyclotron resonant Alfvén waves in 
the fast solar wind, electrons would be heated as well through the lower hybrid waves excited 
by the density gradients in the flow (Laming & Lepri 2007). The increased electron 
temperature then further ionizes the plasma and leads to a higher ionization charge states in 
the fast streams. Once heated by lower hybrid waves, the electron distributions would depart 
from a Maxwellian velocity distribution (Laming & Lepri 2007). This is consistent with the 
theoretical assumption of non-Maxwellian veloci ty distribution for electrons to solve the 
discrepancy on coronal electron temperatures associated with in fast streams (Aellig et al. 1999; 
Esser & Edgar, 2000). In comparing the ionic charge states for different types of solar wind, Ko 
et al. (1999) found that the charge states of C and O for low latitude fast solar wind (VSW > 500 
km/s) are higher than those for south polar fast wind with the speed (V SW > 700 km/s), but 
the charge states of Si and Fe for low latitude fast wind are lower than those for south polar 
wind (see Figure 5 of their paper). This result does not violate the m/q-dependent response of 

www.intechopen.com



 
Solar Wind Composition Associated with the Solar Activity 

 

57 

the charge states to the magnetic effects in the fast solar wind, although the authors attributed 
the difference to either lower ion velocity or higher electron density toward lower latitude, 
rather than the electron temperature. They also compared the charge states for low latitude 
slow solar wind to those of south polar solar wind. But they did not find lower charge states 
for Fe in the slow solar wind (see Figure 6 of their paper) as we found in our observations. The 
discrepancy is likely due to either the latitude-dep endence of the charge states in the fast solar 
wind or the possibility that th e solar activity dependence of the charge states is more 
significant in low latitude than that in high latitude. At least near solar minimum this would 
be the case. Further investigation of this issue needs a combined data set observed from low 
latitude to high latitude. 

The mean charge states for all the six heavy elements are compiled in Fig. 4, separated into 
groups of different solar magnetic activity, in which the black, green, red points correspond 
to the low, middle, high solar activity, respec tively, as defined above. The speed intervals 
correspond to the ones indicated in Fig. 2. The error bar shows the 1-sigma statistical error 
of the mean charge state. When the solar activity is high, the error bars are large in the fast 
solar wind. However, for solar wind speeds below 700 km/s, the mean charge states still 
reveal a significant overall variation of the char ge state distributions with solar activity. The 
yellow points in Fig. 4 correspond to the mean charge states, averaged over all three solar 
activity cases with a half speed interval of Fig. 2. When the solar wind speed is above 550 
km/s, we find that the mean charge states depend significantly on the solar activity. At 
lower solar wind speeds, no significant solar activity dependence is found. Also, when 
plotted as a function of solar wind speed, the mean charge states for iron display a trend to 
increase with solar wind speed, and on the contrary, for magnesium display a trend to 
decrease with speed. For the other four ions (Si, Ne, O, C) this trend changes from negative 
speed dependence to positive speed dependence at the point near 675 km/s. 

In conclusion, we present several interesting findings in this section: first, we observe a 
dependence of the charge state distribution of heavy ions with solar activity. This 
dependence is more important in the fast solar wind than that in the slow solar wind; 
second, iron is different from other species in that it displays lower charge states in slow 
wind than in fast wind; third, the fractions of the high char ge states for Fe and Si (QFe > +10, 
QSi > +7) increase with the solar wind speed, while for the species with lower m/q, the 
fractions of the high charge states (QMg > +7, QO > +6, QC > +5) decrease with the solar wind 
speed. 

3. Solar wind elemental abundances related to the Sun’s o pen magnetic flux 

Using the CSSS extrapolation method introduced in Section 2, we analyzed the elemental 
abundance ratios Fe/O, Mg/O, Si/O, Ne/O, C/ O, and He/O as measured by ACE/SWICS, 
with attention given to the fraction of the open  magnetic flux. In Fig. 5 we compiled the 3D 
plots for the charge states and elemental abundances versus solar wind speed for different 
alpha value. Each data point corresponds to a two-hour average. This survey covers the data 
from DOY 36, 1998 to DOY 110, 2007 of the ACE mission. The quality flags in the ACE data 
we used are quality flag = 0 and 1. 

Mean abundance ratios and the charge state ratios relative to oxygen for the six solar wind 
speed bins are compiled in Fig. 6. Considering the ratios in Fig. 6, a systematic  
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Fig. 4. Mean charge states for Fe, Si, Mg, Ne, O, C, underlying different solar magnetic 
activity (black – low activity, green – middle activity, red – high activity). Yellow points 
indicate the mean charge states of all solar wind bins without ICMEs. 

instrumental error would only be a second order effect, the shown uncertainties are the 
statistical 1-sigma error. We find that, for the low-FIP elements Fe and Si, the charge state 
ratios (QO /  QFe, and QO /  QSi) in the high solar magnetic activity bin ( alpha < 0.07) are lower 
than the ratios in the higher activity bins wh en the solar wind velocity is between 550 km/s 
and 750 km/s, and they tend to decrease with solar wind speed. Although this dependence is 
not obvious in another low-FIP element Mg, the ratio  QO /  QMg still shows some decreases in 
the high solar magnetic activity bin ( alpha < 0.07) when the solar wind velocity is between 650  

www.intechopen.com


























