We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,800
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the top 1% most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Emissions of Nitrous Oxide (N\textsubscript{2}O) and Di-Nitrogen (N\textsubscript{2}) from the Agricultural Landscapes, Sources, Sinks, and Factors Affecting N\textsubscript{2}O and N\textsubscript{2} Ratios

Ballance Agri-Nutrients Limited, Tauranga, New Zealand

1. Introduction

Nitrous oxide (N\textsubscript{2}O) is one of the key greenhouse and ozone (O\textsubscript{3}) depleting gas, constituting 7% of the anthropogenic greenhouse effect. On a molecular basis, N\textsubscript{2}O has 310 and 16 times higher global warming potential than that of CO\textsubscript{2} and CH\textsubscript{4} respectively over a 100-year period. To develop mitigation tools for N\textsubscript{2}O emissions, it is imperative to understand the processes of nitrogen (N) transformation and N\textsubscript{2}O and di-nitrogen (N\textsubscript{2}) production in soils as influenced by different land uses, management and environmental conditions. The aim of our chapter is to examine the current information and understanding of the sources of N\textsubscript{2}O and N\textsubscript{2} production and the factors affecting N\textsubscript{2}O:N\textsubscript{2} ratio from the agricultural landscapes.

Nitrous oxide concentration has increased by 20% from 270 ppbv since 1750 to a current level of 322 ppbv and continues to increase currently by 0.3% per year. Intensification of agricultural and human activities, such as the increased use of synthetic fertilizer (103 M ton of N worldwide in 2010), increasing human population and changes in their diet, inefficient use of irrigation water, increased crop production, deposition of animal excreta (urine + dung) from grazing animals, excessive application rates of farm effluents and animal manures to croplands and pastures, and management practices that enhance soil organic N mineralization and C decomposition including cultivation, residues removal or burning, and following no crop rotation are to be blamed for the increased N\textsubscript{2}O emissions of 17.7 T g of N per year to the atmosphere. This book chapter focuses on the following sub-sections including nitrogen transformations, processes of N\textsubscript{2}O and N\textsubscript{2} production across the agricultural landscape, challenges in N\textsubscript{2}O measurements and estimates across the agricultural landscape, factors affecting N\textsubscript{2}O and N\textsubscript{2} emissions and possible mitigating options, conclusions and references.

2. Nitrogen transformations

Nitrogen is an essential nutrient controlling the diversity, dynamics, and functioning of many terrestrial, freshwater and marine ecosystems. Agricultural ecosystems rely on N
inputs from a variety of sources including synthetic chemical fertilizers, predominantly urea which accounts for more than 50% of the total world N consumption, organic wastes (farm dairy effluent, animal excreta, plant residues and sewage sludge) and atmosphere (biological fixation of atmospheric N through symbiotic and non-symbiotic microorganisms) to sustain productivity. A detailed description of N cycling in agricultural ecosystems is beyond the scope of this chapter and for details on N transformations, N dynamics, sources of N inputs, and losses, the readers are referred to research papers, articles and review written by these authors (Ledgard et al., 1999; Saggar et al., 2004b, 2005, 2009, 2011; deKlein & Eckard 2008; Ledgard & Luo 2008; Luo et al., 2010); however a brief description of the various microbial and enzymatic processes involved in N cycling is given below.

2.1 A brief biochemistry of N mineralization

Nitrogen transformations within soil-plant-water and atmospheric systems refer to N cycling. As will be discussed in section 3, N cycling provides precursors like ammonium (NH_4^+) and nitrate (NO_3^-) for the production of N_2O and N_2 in soil. A simple schematic diagram of the N inputs, losses and transformation processes is presented in Fig. 1. The key N transformation processes within soil, plant and atmospheric systems include mineralization (gross and net), immobilization, nitrification (gross and net), denitrification, ammonia (NH_3) volatilization, NH_4^+ fixation and NO_3^- leaching. The first four processes (i.e. mineralization, immobilization, nitrification and denitrification) are of microbial and enzymatic origin (biotic), while the last three (i.e. NH_3 volatilization, NH_4^+ fixation and NO_3^- leaching) involve only chemical and physical processes (abiotic). Nitrogen mineralization is a sequence of microbial and enzymatic activities which involves the conversion of organic N (e.g. protein, amino acids, amines, amides, urea, chitin and amino sugars) into an inorganic form of N (mainly NH_4^+), which then serves as a substrate for a diverse group of microorganisms and for nitrification. The

![Fig. 1. N inputs, losses and transformation processes across the agricultural landscape (Zaman et al., 2008b).](www.intechopen.com)
Emissions of Nitrous Oxide (N\textsubscript{2}O) and Di-Nitrogen (N\textsubscript{2}) from the Agricultural Landscapes, Sources, Sinks, and Factors Affecting N\textsubscript{2}O and N\textsubscript{2} Ratios

The immobilization process is the opposite of mineralization, where mineral N (NH\textsubscript{4}+ and NO\textsubscript{3}-) and even organic N (amino acids) are consumed by a diverse group of microorganisms to synthesize their protein and grow in number. These diverse groups of microorganisms are mostly heterotrophic (consume organic C) bacteria, fungi, and actinomycete, which produce a wide variety of extracellular and intra-cellular enzymes (e.g. protease, deaminase and urease) in soil. They then carry out the hydrolysis of high molecular weight organic compounds like protein into low molecular weight organic compounds such as amino acids, as shown in Eq. 2.1.1

\[
\text{Peptide-bond} \xrightarrow{\text{Protease}} \text{R}_{1}^\text{R}_{2}^\text{R}_{3}^\text{NH}^{2+} \text{HO}_2^\text{O} + \text{R}_{1}^\text{R}_{2}^\text{R}_{3}^\text{CH} \text{OH} + \text{H}_{2}^\text{N} \text{HO}_2^\text{O} \text{R}_{1}^\text{R}_{2}^\text{R}_{3}^\text{NH}^{2+}
\]

(2.1.1)

The low molecular weight organic compounds such as amino acids, amines and amides produced after proteolytic decomposition or after the application of organic residues or wastes are then subjected to microbial and enzymatic decomposition such as deamination which is carried out either by extracellular deaminase (Ladd & Jackson, 1982; Zaman et al., 1999 a, b) or by direct assimilation within the microbial cell (Barak et al., 1990; Barralough, 1997). A large number of heterotrophic microorganisms are capable of carrying out the deamination of amino acids, both within and outside the microbial cell. Deaminases hydrolyse the NH\textsubscript{2}-N attached to the \(\alpha\)-C of an amino acid to NH\textsubscript{3} and CO\textsubscript{2}. The amino acids are deaminated at different rates through four different reactions, depending on their side chains, as shown below in Eq. 2.1.2. Some amino acids are reported to be readily mineralized, while others take longer to mineralize (Alef & Kleiner, 1986).

\[
\text{NH}_2 \text{COO}^- + \text{H}_2 \text{O} \xrightarrow{\text{hydrolytic deamination}} \text{R}_1^\text{R}_2^\text{R}_3^\text{COOH} + \text{NH}_3
\]

\[
\text{R}_1^\text{R}_2^\text{R}_3^\text{COOH} + \text{H}_2 \xrightarrow{\text{reductive deamination}} \text{R}_1^\text{R}_2^\text{R}_3^\text{COOH} + \text{CO}_2 + \text{NH}_3
\]

\[
\text{R}_1^\text{R}_2^\text{R}_3^\text{COOH} + 2\text{H} \xrightarrow{\text{oxidative deamination}} \text{R}_1^\text{R}_2^\text{R}_3^\text{COOH} + \text{NH}_3
\]

www.intechopen.com
Whether an amino acid is used for an energy source by microorganisms or as a building block for protein synthesis depends on the available N and soluble organic C at the micro-site where the microbial reaction occurs (Mengel, 1996). After deamination has occurred within the cell, the removal of NH$_4^+$ is carried out by enzymes such as glutamate dehydrogenase and coenzyme nicotine adenine dinucleotide (NADH). Ammonium produced by deamination is always associated with the production of new microbial biomass, and the extent of NH$_4^+$ immobilization or accumulation in the soil depends on the micro-organism’s C:N ratio (Mengel, 1996; Paul & Clark, 1996) and the available soil mineral N and organic C. The turnover of microbial biomass is reported to be fast and the new microbial biomass die after reaching a certain limit, thus serving as a substrate for enzymes and other groups of microorganisms. This turnover of microorganisms releases the NH$_4^+$ again. Thus the dead biomass, which is prone to biological decomposition (jenkinson & Ladd, 1981), serves as the main source of NH$_4^+$ production in soil (Azam et al., 1986). The non-proteinaceous cell wall constituents of bacteria and fungi, such as amino sugar and chitin, are first depolymerised by chitinase to glucose amines. These are then attacked by kinases, and this process finally releases the NH$_4^+$ in soil as shown in Eq. 2.1.3.

\[
\text{RNH}_2 + H_2O \xrightarrow{\text{ammonification enzyme}} \text{ROH} + \text{NH}_3 + \text{E} + \text{H}_2\text{O} \rightarrow \text{NH}_4^+ + \text{OH}^-
\]

(2.1.3)

Similarly urea (CO (NH$_2$)$_2$, from (i) urine deposition of grazing animals, (ii) the application of urea fertilizer or (iii) from production of hydrolytic decomposition of proteinaceous materials in soil, undergoes fast hydrolysis (Zaman et al., 2008a & 2009) and the hydrolysis is usually completed within 1 to 2 days by urease enzymes. These ubiquitous enzymes are found in soils, many plants and plant litters (frenery & Black, 1988) and in most species of bacteria, yeast and fungi (sumner, 1953). Urease catalyzes the hydrolysis of urea to NH$_4^+$ (Eq. 2.1.4) and carbamate ions, which result in the production of carbon dioxide (CO$_2$) and NH$_4^+$.

\[
\text{H}_2\text{NCONH}_2 + 2\text{H}_2\text{O} \xrightarrow{\text{Soil Urease}} (\text{NH}_4\text{HCO}_3)
\]

\[
2\text{H}^+ + 2\text{NH}_4^+ + \text{CO}_2 + \text{H}_2\text{O}
\]

(2.1.4)
The active site of urease contains two nickel (II) atoms, which are linked by a carbamate bridge. Two imidazole N atoms are bound to each Ni atom; a carboxylate group and a water molecule fill the remaining coordination site of the metal ion. The ability to hydrolyze urea is found to vary from 17 to 70% for soil bacteria and from 78 to 98% for soil fungi (Lloyd & Sheaffe, 1973; Roberge & Knowles, 1967). Although soil urease is considered to be of microbial origin (Skujins, 1976), there is evidence to suggest that some urease activity may be derived from plants (Frankenberger & Tabetabai, 1982). However, there is no direct evidence for the production of urease by plant roots (Estermann & McLaren, 1961).

3. Processes of N\textsubscript{2}O and N\textsubscript{2} production across the agricultural landscape

Gaseous N emissions from the agricultural landscape (arable, pasture and wetland soils) occur as NH\textsubscript{3}, nitric oxide (NO also called nitrogen oxide), nitrogen dioxide (NO\textsubscript{2}), N\textsubscript{2}O and N\textsubscript{2}. Quantifying N\textsubscript{2}O emission is of particular interest to those countries, which are signatories to the Kyoto Protocol, since it is one of the key greenhouse gases constituting 7% of the anthropogenic greenhouse effect. On a molecular basis, N\textsubscript{2}O has 310 and 16 times higher global warming potential than that of CO\textsubscript{2} and methane (CH\textsubscript{4}) respectively over a 100-year period (IPCC, 2007). The global atmospheric concentration of N\textsubscript{2}O has increased from 270±7 in the pre-industrial-period (1750) to a current level of 322 ppbv representing a 20% increase. Over the last two decades a nearly linear increase of 0.26% in the concentration of N\textsubscript{2}O has been measured (Saggar et al., 2009). Moreover, due to its relative stability, (150 years) after emission from the soil surface and transport through the troposphere, N\textsubscript{2}O acts as a source of NO in the stratosphere, and thus indirectly accelerates depletion of ozone (O\textsubscript{3}), a substance that protects the biosphere from harmful ultraviolet (UV) radiation (Crutzen, 1981; Duxbury, 1994). The total estimated emissions of N\textsubscript{2}O are about 17.7 Tg N per year, but there are large uncertainty ranges in each of the individual sources. About 70% of N\textsubscript{2}O emissions come from the bacterial breakdown of N in soils and in the oceans. Globally, soils in areas of natural vegetation, especially in the tropics, and the oceans account for N\textsubscript{2}O emissions of about 6.6 and 3.8 Tg N per year respectively; while human activities account for the remaining 30% of N\textsubscript{2}O emissions, or about 6.7 Tg N per year (Denman, 2007). Factors blamed for the increased N\textsubscript{2}O emissions of 17.7 T g of N per year to the atmosphere include; a rapid increase in human population (according to the latest United Nations population estimates, 77 million more people each year are being added to the current world population of 6.98 billion), intensification of agricultural and human activities, such as the increased use of synthetic fertilizer (103 million ton of N worldwide in 2010) (IFA 2011), inefficient use of irrigation water and N fertilizers (both synthetic and organic), increased grassland areas for livestock which cover 117 million km2 of vegetated lands that provide forage for over 1800 million livestock units and wildlife (World Resources Institute 2000). The other factors include increased animal stocking rates (>3 cows per ha) and intensive gazing, which results in deposition of huge amounts of N via animal excreta (urine + dung), farm management practices that enhance soil organic N mineralization and decomposition of organic C (deep cultivation, crop residues removal or burning, and following no crop rotation) and the increased consumption of dairy products worldwide especially in fast growing economies like China and India (Robertson et al., 1989; Duxbury et al., 1993; Šimek & Cooper, 2001; Rochester, 2003; Denman et al., 2007; IPCC, 2010; Zaman & Blennerhassett, 2010; Zaman & Nguyen., 2010). Nitrous oxide can also be produced during nitric acid production and fossil fuel combustion, but the amount of N\textsubscript{2}O
from fossil fuel varies with the fuel type and technology. Fossil fuel combustion and industrial processes are responsible for N\textsubscript{2}O emissions of around 0.7 Tg N per year (Denman, 2007). Other important sources include human sewage and the burning of biomass and biofuels.

Across the agricultural landscape, several microbial processes can occur simultaneously to produce harmful N\textsubscript{2}O and non-greenhouse N\textsubscript{2} in soils (pasture and arable) and sediments (drain, ditch, wetland and stream). These microbial processes are regulated by various soil, environmental and management factors, therefore making it difficult to control the rates of N\textsubscript{2}O and N\textsubscript{2} production and their ratios (Paul & Beauchamp, 1989; Stevens et al., 1997; Zaman et al., 2007, 2008 b,c; Zaman & Nguyen, 2010). The aim of our review is to examine current information and understanding of the sources of N\textsubscript{2}O and N\textsubscript{2} production and factors affecting N\textsubscript{2}O:N\textsubscript{2} ratio in agricultural landscape, to enable management practices to be devised that minimize N losses as N\textsubscript{2}O emission to the atmosphere.

Soil microbial processes, which account for major N\textsubscript{2}O production include; nitrification (Inubushi et al., 1996), denitrification (Tiedje, 1988; Firestone & Davidson, 1989; Smith, 1990; Cavigelli & Robertson, 2001) and dissimilatory NO\textsubscript{3}- reduction to NH\textsubscript{4}+ (DNRA) (Silver et al., 2001). These three microbial processes may occur in soils and sediments across the landscape depending on the physical (moisture contents or O\textsubscript{2} level) and chemical conditions [N form (i.e. NH\textsubscript{4}+ and NO\textsubscript{3}-), pH and C contents] in their micro-sites. Details of each of these processes are given below:

3.1 Nitrification

Autotrophic nitrification, a strictly aerobic process, is carried by chemolitho-autotrophic bacteria which use O\textsubscript{2} as a terminal electron acceptor. In the first step, NH\textsubscript{4}+ is oxidized to NO\textsubscript{2}- by ammonia oxidizing species of the genus Nitrosomonas, while in the second step, NO\textsubscript{2}- oxidation to NO\textsubscript{3}- is facilitated by Nitrobacter and Nitrooccus (Brenner & Blackmer, 1981; Watson et al. 1981) as shown in Eq. 3.1.1 Other genera including Nitrosococcus, Nitrosospiroa and subgenera Nitrosobulus, and Nitrosvibrio also have the ability to autotrophically oxidize NH\textsubscript{3} to NO\textsubscript{2}:

\[
\begin{align*}
2\text{NH}_4^+ + 3\text{O}_2 & \xrightarrow{\text{Nitrosomonas}} 2\text{NO}_2^- + 2\text{H}_2\text{O} + 4\text{H}^+ \\
2\text{NO}_2^- & \xrightarrow{\text{Nitrobacter}} 2\text{NO}_3^-
\end{align*}
\]

(3.1.1)

In addition to NO\textsubscript{2} production during the first stage of autotrophic nitrification, several intermediate and unstable compounds such as hydroxylamine (NH\textsubscript{2}OH) and nitroxy (NOH) are also formed. Ammonia oxidizers consume relatively large amounts of molecular O\textsubscript{2} during this first stage, causing anaerobic conditions in the microsites, which then lead to a reduction of NO\textsubscript{2} to N\textsubscript{2}O and N\textsubscript{2} (Poth & Focht, 1985; Firestone & Davidson, 1989; Zart & Bock, 1998; Colliver & Stephenson, 2000) as shown in Eq. 3.1.2.
Heterotrophic nitrification, the oxidation of reduced N compounds or NH$_4^+$ to NO$_3^-$ in the presence of O$_2$ and organic C, can also produce N$_2$O from NO$_2^-$ and typically occurs in acidic soils (Wood, 1990). However, high rates of heterotrophic nitrification relative to autotrophic nitrification have been measured in a riparian wetland soil with a pH close to 7, which was exposed to O$_2$ (Matheson et al., 2003). Production of N$_2$O via heterotrophic nitrification is poorly understood because autotrophic and heterotrophic nitrification can occur simultaneously in a given soil and it is difficult to separate the end products of these two processes without using 15N tracers (Matheson et al., 2003). Sufficient soil O$_2$ levels [(optimum at water filled pore space (WFPS) of 60%)]$_3$ adequate NH$_4^+$ concentrations, a favorable soil temperature above 5°C (optimum 25 to 35°C), and soil pH above 5 (optimum 7 to 9) are among the known soil and environmental conditions which control the rate of autotrophic nitrification (Linn & Doran 1984; Grundmann et al., 1995; Whitehead, 1995; Zaman et al., 1999a; Šimek., 2000; Zaman & Chang, 2004; Zaman et al., 2004; Zaman et al., 2007; Saggar et al., 2009; Zaman et al., 2009; Zaman & Nguyen, 2010). Among these factors, NH$_4^+$ and O$_2$ concentrations are considered the most critical factors affecting autotrophic nitrification (Zaman et al., 2007). Thus autotrophic nitrification is expected to be a dominant N transformation process in well-drained pastoral or arable systems, where soils are oxygenated (at or around field capacity or at 60% WFPS) and NH$_4^+$ is abundant [(e.g., excreta deposition after animal grazing, after the application of organic wastes, and NH$_4^+$-based synthetic fertilizer like urea, di-ammonium phosphate (DAP), ammonium sulphate, and liquid ammonia or as a result of increased mineralization of soil organic N compounds)] (Zaman et al., 1999a,b; Zaman & Chang, 2004; Zaman et al., 2007; 2008a; 2009; Zaman & Nguyen 2010). However, nitrification can also occur in waterlogged areas at a slower rate where wetland vegetation releases O$_2$ from roots (Armstrong, 1964). At the sediment-plant root interface, nitrifying bacteria are supplied with O$_2$ from plants and NH$_4^+$ from the surrounding sediment. There is evidence to suggest that autotrophic denitrification can proceed at a pH around 4, because soil aggregates protect bacterial cells against nitrous acid toxicity (De Boer et al., 1991).

3.2 Denitrification

Denitrification is predominantly a microbial process by which NO$_3^-$ and NO$_2^-$ are reduced to N$_2$O and N$_2$ in a respiratory metabolism. During respiratory denitrification, denitrifiers couple reduction of N-oxides to oxidation of organic C under anaerobic conditions and
produce adenosine tri-phosphate (ATP) by phosphorylation (Firestone, 1982; Linn & Doran, 1984; Tiedje, 1988, Smith, 1990; Cavigelli & Robertson, 2001). Four different reductase enzymes are involved in a complete denitrification reaction. These enzymes are usually distributed in different microorganisms as shown in Eq. 3.2.1.

\[
\begin{align*}
\text{NO}_3^- & \xrightarrow{\text{nitrate reductase}} \text{NO}_2^- \\
\text{NO}_2^- & \xrightarrow{\text{nitrite reductase}} \text{NO} \xrightarrow{\text{nitric oxide reductase}} \text{N}_2 \xrightarrow{\text{nitrous oxide reductase}} \text{N}_2O
\end{align*}
\]

(3.2.1)

Denitrifiers are usually aerobic bacteria; however they prefer to use N-oxides at a low O\textsubscript{2} level (Tiedje, 1988). Biological denitrification thus requires; NO\textsubscript{3} as a substrate (more than 2 mg NO\textsubscript{3}-N per kg of soil) as an electron acceptor, absence of O\textsubscript{2}, which is related to a high soil moisture content >60% WFPS, available organic C as an electron donor, suitable soil pH, which generally ranges from 5 to 8 (optimum at 7) and a soil temperature range between 5 and 30 °C (optimum 25 °C) (Ryden & Lund, 1980; Ryden, 1983; Goodroad & Keeney, 1984; Scholefield et al., 1997; Barton et al., 1999; Swerts et al., 1997; Aulakh et al., 2001; Zaman et al., 2004; Zaman et al., 2007, 2008b, 2009; Zaman & Nguyen, 2010). However, the most critical factors are the NO\textsubscript{3} concentrations, anaerobic conditions and the availability of soluble organic C (Zaman et al., 2007; 2008bc). Thus denitrification is expected to be an important N transformation process in areas where soils and sediments are subject to water logging (making them anaerobic), where they contain sufficient organic C and intercept inputs of NO\textsubscript{3} or NO\textsubscript{2} in groundwater or where there is excess nitrate after application of nitrate based fertilizers, or after nitrification (Eq. 3.1.1). These areas include; urine patches in grazed pastures, where up to 1,000 kg N ha-1 can be found (Saggar et al., 2009; Zaman & Blennerhassett, 2010), riparian wetlands (Nguyen et al., 1999; Matheson et al., 2003), drains and ditches, and stream or river channels (Garcia-Ruiz et al., 1998; Bronson & Fillery, 1998; McMahon & Dennehy, 1999; Walker et al., 2002; Groffman et al., 2002; Zaman et al., 2008b&c, Zaman & Nguyen, 2010). However denitrification can also occur in less obviously waterlogged areas within the agricultural landscape due to the existence of anaerobic microsites such as in the center of soil aggregates (Parkin, 1987) or in areas of localized high O\textsubscript{2} consumption (hot spots), which are created by decaying organic C (Burton et al., 1999; Godde & Conrad, 2000; Khalil et al., 2002; Mosier et al., 2002). Depending on soil physical and chemical conditions, other processes like chemo-denitrification can result in substantial production of N\textsubscript{2}O.

3.3 Dissimilatory \textsubscript{NO\textsubscript{3}}- reduction to \textsubscript{NH\textsubscript{4}}+ (DNRA)

DNRA is the 3rd biological process, which is known to produce considerable amounts of N\textsubscript{2}O as a byproduct under anaerobic conditions (Tiedje, 1988; Silver et al., 2001) as shown in Eq. 3.3.1

Conditions required for DNRA are similar to those required for denitrification and besides anaerobiosis include available NO\textsubscript{3} and organic C (Tiedje, 1988). DNRA has been found in anaerobic sludge and animal rumen, and also in lake littoral sediments, riparian wetland soil (Matheson et al., 2002) and tropical forest soils (Silver et al., 2001). Matheson et al., (2002) has also shown that DNRA is likely to be a more important process of NO\textsubscript{3}
transformation relative to denitrification under more reducing (O$_2$ limited) conditions, since the microbes capable of DNRA are fermentative, and are able to grow in the absence of O$_2$ contrary to predominantly aerobic denitrifiers. Silver et al. (2001) reported that in upland tropical forest soils, DNRA accounted for 75% of the turnover of the NO$_3^-$ pool and N$_2$O emission rates via DNRA, were 3 times greater than the combined N$_2$O and N$_2$ fluxes from nitrification and denitrification. Within the agricultural landscape, DNRA is likely to be an important N transformation process in wetland or stream sediments but may also occur in slow-draining upland soils where anaerobic sites are prevalent.

\[\text{NO}_3^- \xrightarrow{\text{DNRA}} \text{NO}_2^- \xrightarrow{\text{NH}_4^+} \]

As discussed above, while nitrification and DNRA produce only N$_2$O, denitrification produces both N$_2$O and N$_2$. Stevens and Laughlin (1998) hypothesized that N$_2$O produced by various processes might form one common pool before being reduced to N$_2$ by nitrous oxide reductase. However, there is limited information available about the bulk reduction of N$_2$O to N$_2$.

4. Challenges in N$_2$O measurements and estimates across the agricultural landscape

Nitrous oxide emission and estimation across the different agricultural landscapes (arable, pasture, and wetland) is extremely variable (both spatially and temporally), thus posing the greatest challenge to researchers, modellers and policy makers to accurately predict N$_2$O emissions. Among the different field and laboratory methods, the static chamber method has most widely been used to determine the rate of N$_2$O emissions from soil because these chambers are easy to design, portable, compact, easy to install, and can be readily adapted to take gas measurements in the presence of animals and growing crops (Saggar et al., 2009). Readers are referred to Saggar et al. (2009) for detailed information on the static chamber method. Other methods, including the sub-surface measurement of N$_2$O emissions (Arah et al., 1991; Gut et al., 1998; Clark et al., 2001), the Push and Pull technique of Addy et al. (2002) modified by Zaman et al., 2008b to quantify N$_2$O and N$_2$ emissions from wetland soils and the estimation approach of the Intergovernmental Panel on Climate Change (IPCC) have also been used to quantify N$_2$O emissions.

Few studies have carried out simultaneous measurements of N$_2$ and N$_2$O across the agricultural landscape. This is probably due to a lack of robust, easy and less expensive measurements and analytical methods. The most commonly used methods for measuring production of N$_2$ and N$_2$O in and their emission from the soils, include a technique based on the acetylene (C$_2$H$_2$) inhibition of N$_2$O reduction (Tiedje et al., 1988) and methods using substrates enriched in 15N which allow subsequent 15N gas determination by isotope-ratio mass spectrometry (Mosier & Klemmedtsson, 1994). These methods are not only expensive but far from perfect and have some serious biological implications. For example, C$_2$H$_2$ inhibition method needs paired soil samples (with or without C$_2$H$_2$), which is not only time
consuming and expensive to analyze but a small amount of \(\text{C}_2\text{H}_2 \) (1%) can block nitrification and thus underestimates denitrification in \(\text{NO}_3^- \) limited soils. Denitrifiers after repeated exposure to \(\text{C}_2\text{H}_2 \) adapt to \(\text{C}_2\text{H}_2 \) and use it as a source of \(\text{C} \), which stimulates denitrification rates. Therefore both paired soil samples need to be discarded after 24 hrs of incubation to avoid this problem. In addition, acetone, which is added to \(\text{C}_2\text{H}_2 \) as stabilizer, also acts as a source of \(\text{C} \) for denitrifiers (Gross & Bremner, 1992) and needs to be removed before injecting \(\text{C}_2\text{H}_2 \) into soil cores or incubation jars. The most problematic step of this technique however, is to successfully achieve a uniform distribution of the desired concentration of \(\text{C}_2\text{H}_2 \) in microsites inhabited by denitrifiers if intact soils cores are used (Zaman & Nguyen, 2010). Similarly a lack of inhibitory effect of \(\text{C}_2\text{H}_2 \) on \text{Nitrosospira briensis}, one of the common ammonia-oxidizing bacteria in soils, observed by Wrage et al., (2004) also poses a challenge, especially in soil treated with ammonium-based fertilizer where \(\text{N}_2\text{O} \) production via nitrifier-denitrification is likely to be overestimated. Thus although the technique of \(\text{C}_2\text{H}_2 \) inhibition has been widely used in laboratory conditions, when sieved soils or small monoliths were deployed, it has rarely been used in field conditions. To avoid the inhibitory effects of \(\text{C}_2\text{H}_2 \) on nitrification and denitrification, recently there has been an increasing interest in developing isotopic methods, which enable researchers to measure both \(\text{N}_2\text{O} \) and \(\text{N}_2 \) concurrently and identify the source of \(\text{N}_2\text{O} \) production from various microbial processes including nitrification, denitrification and DNRA (Stevens et al., 1997; Matheson et al., 2003; Sutka et al., 2006). \(\text{N}_2\text{O} \) production during nitrification and denitrification involves significant isotopic discrimination (\(\varepsilon = 35–60\%o \) and 28–33\%o, respectively) (Robinson, 2001). Tilsner et al. (2003) reported that \(\text{N}_2\text{O} \) emitted during denitrification under controlled laboratory conditions was highly depleted in \(^{15}\text{N} \) (–40.8 ± 5.7\%o). Similarly Stevens et al. (1997) differentially labelled the \(\text{NH}_4^+ \) and \(\text{NO}_3^- \) pools simultaneously with \(^{15}\text{N} \), and periodically measured their individual \(^{15}\text{N} \) enrichments and \(\text{N}_2\text{O} \) emission. A random distribution of \(^{15}\text{N} \) in \(\text{N}_2\text{O} \) indicated a single source of origin whereas a non-random distribution indicated the two or more sources of \(\text{N}_2\text{O} \) origin. Despite the fact that the isotopic method permits the fractional contribution of each pathway to \(\text{N}_2\text{O} \) production and concurrent measurements of both \(\text{N}_2\text{O} \) and \(\text{N}_2 \), few researchers have used this method due to the high cost of \(^{15}\text{N} \)-substrates and \(^{15}\text{N} \) gases analyses, limited access to gas chromatograph with isotope-ratio mass spectrometers, and the difficulties associated with the uniform labeling of \(\text{N} \) pools in drier soils. Recently Mondini et al. (2010) developed a robust automated dynamic closed chamber technique for concurrent measurement and analysis of \(\text{N}_2\text{O} \), \(\text{CO}_2 \) and \(\text{CH}_4 \) under laboratory conditions. In their system, a gas chromatograph is connected to a fully computerised sampling system composed of 16 sample jars and 2 multiposition valves. For further details on these various methods, the readers are referred to the above mentioned papers.

In the estimation approach, the IPCC divides \(\text{N}_2\text{O} \) emissions from the agricultural landscape into direct and indirect emissions. Direct \(\text{N}_2\text{O} \) emission refers to \(\text{N}_2\text{O} \) derived from applied fertilizer and manure \(\text{N} \), which is believed to increase with fertilizer use. Under the United Nations Framework Convention for Climate Change (UNFCCC), the majority of the countries use the IPCC default value of the 1% as emission factor (EF) (IPCC, 2006) from agricultural soils receiving synthetic fertilizers, farm dairy effluents (FDE), organic wastes and \(\text{N} \) fixed via biological fixation by leguminous crops (Bouwman et al., 2002; Stehfest & Bouwman 2006). However, a wide range of direct \(\text{N}_2\text{O} \) emissions (i.e. 3 to 22% of applied \(\text{N} \)) across the agricultural landscape have been reported in the literature (Corre et al., 1996;
Lovell & Jarvis, 1996; Velthof et al., 1996; Jambert et al., 1997; Goossens, et al., 2001; De Klein et al., 2003; Zaman et al. 2007; 2008b, c; Saggar et al., 2007b; Zaman & Nguyen, 2010) which is greater than the 1% EF value of the IPCC. A comprehensive review collected by Saggar et al., (2009) indicated that \(\text{N}_2\text{O} \) emissions from synthetic fertilizers range between 0.1 and about 2% of applied N. The large variations in the EF could be related to differences in soil types, time of fertilizer application, climatic conditions, weather patterns and form of synthetic fertilizers (ammonium and nitrate-based chemical fertilizers), animal urine and different protocols of \(\text{N}_2\text{O} \) measurement such as static chambers, \(\text{C}_2\text{H}_2 \) inhibition, micrometeorological, and isotopic methods. Crutzen et al (2007) also reported that the IPCC methodology seriously underestimates \(\text{N}_2\text{O} \) emissions from agriculture. Their estimates, using known global atmospheric removal rates and concentration growth of \(\text{N}_2\text{O} \), show an overall EF of 3–5%, whereas the EFs estimated for direct and indirect emissions using IPCC methodology cover only part of these emissions. Saggar et al (2009) further argued that the IPCC approach is limited by a number of uncertainties in emission factors, and in indirect emissions, limited data on the type and amount of N excreted by grazing animals, and in spatial and temporal variability of \(\text{N}_2\text{O} \) emissions. Furthermore, the IPCC methodology does not allow for any mitigation options such as the use of urease or nitrification inhibitors and others. It is therefore critical to collect more data to validate the IPCC emission factor for \(\text{N}_2\text{O} \) emission from agricultural soils, which may enable us to accurately predict the global \(\text{N}_2\text{O} \) budget.

According to the IPCC, indirect \(\text{N}_2\text{O} \) emission consists of 3 parts; \(\text{N}_2\text{O} \) emissions associated with atmospheric N deposition \(\{\text{N}_2\text{O} \ (\text{G})\} \), human waste \(\{\text{N}_2\text{O} \ (\text{S})\} \), and with N lost via surface runoff and leaching \(\{\text{N}_2\text{O} \ (\text{L})\} \). Indirect \(\text{N}_2\text{O} \) emissions represent 1/3 of the total agricultural emissions, and the majority (75% of the total indirect emission) come from riparian zones (riparian wetlands, drainage ditch and stream sediments), where \(\text{NO}_3^- \) in leachate and \(\text{NH}_4^+ \) in runoff from farmland are microbially converted to \(\text{N}_2\text{O} \) and \(\text{N}_2 \) (Groffman, 2002; Zaman et al., 2007; Zaman et al., 2008b,c; Zaman and Nguyen, 2010). \(\text{N}_2\text{O} \) emission rates from riparian wetlands are generally higher than those of agricultural soils (Lowrance et al., 1984; Pinay et al., 1993; Zaman et al., 2008c) which could be attributed to the higher C in riparian soils and enriched \(\text{NO}_3^- \) inputs from surrounding areas via seepage and groundwater flow to riparian zones. Given the potentially higher \(\text{N}_2\text{O} \) emission rates from wet soils c.f. dry soils in agricultural landscapes, and the general lack of data from wet soils, there is a clear need for more data on \(\text{N}_2\text{O} \) emission rates from riparian wetlands. Limited studies have been conducted to measure the rate of \(\text{N}_2\text{O} \) emissions from streams and rivers. Garcia-Ruiz et al. (1999) found that \(\text{N}_2 \) production ranged from 0.05-0.27 µmol N m\(^{-2}\) h\(^{-1}\) in the Swale-Ouse River system to 570 µmol N m\(^{-2}\) h\(^{-1}\) in the River Wiske. In the River Wiske, \(\text{N}_2\text{O} \) production accounted for up to 80% of total N gas production. Using the current IPCC methodology, approximately 40% of indirect \(\text{N}_2\text{O} \) emissions (emissions not accounted for from direct N sources such as fertilizers and applied animal urine) are derived from streams, rivers and estuaries.

5. Factors affecting \(\text{N}_2\text{O} \) and \(\text{N}_2 \) emissions and possible mitigating options

As reviewed in Section 3 (Processes of \(\text{N}_2\text{O} \) and \(\text{N}_2 \) production across the agricultural landscape), autotrophic and heterotrophic nitrification and DNRA produce only \(\text{N}_2\text{O} \); while
denitrification produces both N_2O and N_2. The emissions of N_2O and N_2 and their ratios are affected by various soil and management factors, including mineral N concentration, available C, soil pH, soil aeration status, soil temperature and their interactions as shown in Table 5.1.

<table>
<thead>
<tr>
<th>Factors</th>
<th>Management</th>
<th>Impact</th>
<th>Management practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil NH_4^+ & NO_3^- concentration</td>
<td>Decrease</td>
<td>Reduce nitrification & denitrification and lower $N_2O:N_2$</td>
<td>Use urease and nitrification inhibitors to enhance fertilizer use efficiency; split N fertilizer application to synchronize plant N demand and to minimize N losses; avoid over grazing; manipulation of animal diet; use of constructed or natural riparian wetland, improving water use efficiency to avoid anaerobicity</td>
</tr>
<tr>
<td>Soil organic C</td>
<td>Increase</td>
<td>Improve soil health, facilitate denitrification and thus lower $N_2O:N_2$</td>
<td>Sequester more C by adopting management practices including zero or minimum tillage, retention of crop residues, mulching, application of organic and farm wastes, biochar, and applying chemical fertilizers with organic amendments</td>
</tr>
<tr>
<td>Soil pH</td>
<td>Increase</td>
<td>Facilitate nitrification and denitrification and thus lower $N_2O:N_2$</td>
<td>Regular liming each year or if possible with every N fertilizer application</td>
</tr>
<tr>
<td>Soil aeration and water status</td>
<td>Improve</td>
<td>Facilitate nitrification and denitrification and thus lower $N_2O:N_2$</td>
<td>Improving soil structure via C sequestration, avoiding soil compaction; improving soil drainage condition and also water use efficiency</td>
</tr>
</tbody>
</table>

Table 5.1. Factors affecting N_2O and N_2 emissions and their ratios.

In the section below, an attempt has been made to discuss these soil and management factors. Understanding these factors may help us to design mitigating tools to reduce the rate of N_2O production and to lower $N_2O:N_2$ ratios.
5.1 Soil NH$_4^+$ and NO$_3^-$ concentrations

The amount of mineral N, both NH$_4^+$ and NO$_3^-$, are critical for the production of N$_2$O, N$_2$ and their ratio. The amount of NH$_4^+$ in soil under aerobic soil conditions, and hence its availability for nitrification, can directly regulate N$_2$O emission via nitrifier-denitrification (Webster & Hopkins, 1996; Wrage et al., 2001; Dalal et al., 2003; Ma et al., 2007), while NO$_3^-$ is used as a substrate by both denitrification and DNRA and thus affects N$_2$O production (Webster and Hopkins, 1996; Zaman et al., 2008c). A higher level of NO$_3^-$ in soil is also known to result in incomplete denitrification and thus higher N$_2$O:N$_2$ due to suppression of nitrous oxide reductase activity, the enzyme responsible for microbial conversion of N$_2$O to N$_2$ (Eq. 3.2.1). To mitigate N$_2$O emissions, researchers during the past two decades focused mainly on reducing the rate of nitrification while little work has been done to exert control on the denitrification level. For example, to reduce N$_2$O emissions from applied urea, ammonium based fertilizers or urine N, researchers have developed different mitigation technologies including the use of N inhibitors to reduce the entry of mineral N from applied fertilizer/urine into the available N pool, application of soil amendments like zeolites to capture soil NH$_4^+$ and controlled release and split applications of N fertilizers to match crop N demand. Among these options, coating chemical fertilizers with N inhibitors or applying N inhibitors on their own to treat urine patches in grazed pastures have received the most attention. The two major classes of N inhibitors are urease inhibitors (UIs) and nitrification inhibitors (NIs). Urease inhibitors retard the hydrolysis of soil-applied urea and delay the entry of urea-N into the NH$_4^+$ pool, which is likely to produce less N$_2$O via nitrification due to the limited availability of NH$_4^+$ (Watson, 2000; Xu et al., 2000; Zaman et al., 2008a; Zaman et al., 2009) as shown earlier in Eq. 2.1.4. Such a reduction in urea hydrolysis also limits the opportunity for nitrite (NO$_2^-$) accumulation in the soil, which is known to produce N$_2$O (Eq. 3.1.2).

Decisions about N fertilizer application are usually dependent on the availability of water, and the N application rate is determined by crop growth stage and the productivity goals. Fast urea hydrolysis starts within hours of urea fertilizer application or after deposition of urine from grazing animals and is completed within 1 to 3 days, during which time a significant amount of NH$_3$ (up to 30% of the applied N) is lost. UI like N-(n-butyl) thiophosphoric triamide (nBTPT) or Agrotain® applied at a very low concentration (0.01%) with urea fertilizer is reported to delay such fast urea hydrolysis by 7 to 9 days (Watson et al., 2008), which has implications for worldwide urea use in pasture and cropping systems where there is a high risk of NH$_3$ loss due to low moisture and high temperature, especially during summer or early autumn. Such a delay in urea hydrolysis allows more time for rainfall or irrigation water to wash the applied urea from surface soil and thus minimizes the risk of NH$_3$ emissions. After application, nBTPT is quickly converted to its oxygen analog N-(n-butyl) phosphoric triamide (NBPT) (Eq. 5.1.1), which is the actual UI (McCarty et al., 1989; Christianson et al., 1990; Creason et al., 1990), and it is bound and moves along with urea molecule in the soil (Christianson & Howard, 1994). The conversion of nBTPT to NBPT is rapid, occurring within minutes/hours in aerobic soils (Byrnes & Freney, 1995), but can take several days in the floodwater of tropical soils. NBPT forms a tridentate ligand with the urease enzyme, blocking the active site (Manunza et al., 1999).

In addition to reduced nitrification, Agrotain is also known to reduce N$_2$O emission indirectly through reduced NH$_3$ volatilization (Watson et al., 1990; 1994 a & b, 1998, 2008;
Chadwick et al., 2005; Meneer et al., 2008; Sanz-Cobena et al., 2008; Singh et al., 2008; Zaman et al., 2008a & 2009; Zaman & Blennerhassett, 2010). Ammonia itself is not a greenhouse gas, but it can act as a secondary source of N₂O production after its deposition on land (Martikainen, 1985) and thus contributes indirectly to climate change. To our knowledge, New Zealand is the only country that has included NH₃ reduction from Agrotain treated urea in its national inventory on N₂O. Sherlock et al. (2008) after a literature search on NH₃ emission, recommended to the New Zealand Ministry of Agriculture and Forestry (MAF) that a specific value of 0.1 for FracGASF and FracGASF be considered for adoption. In New Zealand, studies where nBtPT (0.025% w/w) was applied reduced NH₃ emissions by 43% from urea and by 48% from urine (Singh et al., 2008; Meneer et al., 2008; Zaman et al., 2008a & 2009; Zaman & Blennerhassett 2010). Based on these estimates of reductions in NH₃ emission from nBtPT treated urea applications, a New Zealand specific value of 0.06 for FracGASF is recommended for adoption where fertilizers containing the urease inhibitor, nBtPT are applied. Saggar et al. (2010) recommended to MAF that where nBtPT is applied with urea, FracGASF should be calculated as follows,

\[\text{FracGASF} = \left(\frac{\text{FN}_{\text{U}}}{\text{FN}} \times 0.06\right) + \left(\frac{\text{FN} - \text{FN}_{\text{U}}}{\text{FN}} \times 0.10\right) \]

Where FracGASF is the fraction of total fertilizer N emitted as NH₃, FN is the total amount of applied fertilizer N, FNₙ is the amount of applied fertilizer N treated with the urease inhibitor, nBtPT. Changing the FracGASF from 0.1 to 0.06 for the current use of 18.4 Gg N of Agrotain treated urea reduces indirect N₂O emissions by 0.012 Gg, which equates to 3.6 Gg CO₂eq. However, assuming all urea is applied with nBtPT in New Zealand, changing the FracGASF from 0.1 to 0.06 will reduce the indirect N₂O emissions by 0.14 Gg, which equates to 43.4 Gg CO₂eq.

Nitrification inhibitors are compounds (both natural and synthetic) that delay bacterial oxidation of NH₄⁺ either by temporarily suppressing the activities of nitrifiers or killing them in the soil, thus maintaining the applied N in more stable form (i.e. NH₄⁺-N). Slowing down nitrification in soils lowers N₂O production associated with nitrifier-denitrification (Webster & Hopkins, 1996; Wrage et al., 2001; Ma et al., 2007), or indirectly by reducing the amount of NO₃⁻ substrate available for denitrification. Among the many synthetic NIs, only nitrapyrin or N-Serve (NP) (2-chloro-6-(tri-chloromethyl) pyridine), dicyandiamide (DCD) and 3,4-Dimethylpyrazol-phosphate (DMPP) have gained substantial practical and commercial importance in agricultural and horticultural crop production.

Nitrapyrin because of its high volatility needs to be injected into the soil. Therefore nitrapyrin may be a preferred NI where injecting chemical fertilizers or farm dairy effluent (FDE) into the soil is a common practice. Unlike nitrapyrin, DCD is relatively soluble in
water, non-volatile, cheap and can be easily treated/coated onto solid ammonium based N fertilizers such as urea, diammonium phosphate (DAP); ammonium nitrate (NH₄NO₃) and ammonium sulfate (NH₄)₂SO₄ or directly added into FDE to improve their N use efficiency and minimize N losses. However after application, separation of DCD from applied NH₄⁺, DCD leaching, and its rapid decomposition with increasing soil temperature are reported to lower its efficacy. Contrary to this, DMPP has several advantages over DCD and nitrapyrin. Lower application rates (0.5 to 1.0 kg of the active compound ha⁻¹) are needed to achieve optimal nitrification inhibition to reduce N₂O emissions and NO₃⁻ leaching. After application, DMPP is less prone to leaching and remains effective much longer than that of DCD (Weiske et al., 2001; Zerulla et al., 2001).

In intensive agricultural system like grazed pastures, other mitigation options including feeding dairy cows with low N feed such as palm kernel and maize silage instead of high N pastures to reduce the amount of N in animal excreta, using winter feed pads and restricted grazing to avoid soil compaction and to minimize urine depositions during critical times (winter) (de Klein et al., 2006), natural and constructed riparian wetlands to intercept N entering from adjacent pasture soils and to process it before entering water bodies (Zaman et al., 2008b), applying lime or zeolite as soil amendments to reduce N₂O emissions and shift the balance between harmful N₂O and non-greenhouse N₂ (Zaman et al., 2007, 2008c; Zaman & Nguyen, 2010), adding salts to animal feed to increase urine volume and spread (Ledgard et al., 2007), increasing the hippuric acid concentration in urine by manipulating animal feed (Bertram et al., 2009) have been suggested as additional mitigation tools.

5.2 Soil available organic C concentration

Soil organic C is another important controller of N₂O and N₂ production in soils and sediments as denitrifiers are strictly heterotrophs and use available organic C as electron donor and indirectly affects O₂ concentrations of aerobic soils (Groffman et al., 1987). However the effect of available C on the amounts of N₂O and N₂ produced in and emitted from the soils, as well as on the ratio between the two gases, is reported to vary with soil NO₃⁻ concentration and WFPS (Zaman et al., 2007, 2008b,c). In anaerobic zones of non-fertilized soils, NO₃⁻ availability may control the denitrification rates as discussed above in section 5.1, while in soils with high NO₃⁻ inputs (i.e. after application of chemical fertilizers and FDE or urine patches after grazing), available soil organic C would be the main driver of N₂O and N₂ production via denitrification (Tiedje, 1988). Applying urea fertilizer with C source (wheat straw and green manure) was reported to substantially reduce N₂O emission compared to urea fertilizer alone (Aulakh et al., 2001) possibly due to the microbial immobilization (Tiedje, 1988) or DNRA (Matheson et al., 2002). Zaman et al., (2008b) during an incubation study observed that wetland soils treated with KNO₃ emitted more N₂ emissions than those of the pasture soils which they attributed to the availability of highly enriched organic C and high WFPS in wetland soils. Weier et al. (1993) also measured N₂O and N₂ emissions from 4 soils treated with a range of available C (0, 180 and 360 kg ha⁻¹), NO₃⁻-N (0, 50 and 100 kg ha⁻¹) and WFPS (60, 75 and 90%). They reported that N₂ emission was favored at the highest available C rate of 360 kg C ha⁻¹ and 90%WFPS, while the higher NO₃⁻ concentration inhibited the conversion of N₂O to N₂, resulting in higher N₂O:N₂ ratios. Similarly Yao et al. (2002) observed a negative correlation between N₂O emission and soil organic C from N fertilized wheat crop. The N₂O:N₂ ratio could be explained by an
interaction of C availability, NO$_3^-$ concentration and enzyme status (Swerts et al., 1996). There are reports that the N$_2$O:N$_2$ ratios are lower in the rhizosphere, which provides more available organic C in the form of root exudates and root debris, and is characterized by low partial pressure of O$_2$ (due to O$_2$ consumption by plant roots) (Casella et al., 1984).

Depending on the management practices, agricultural soils can act as a source or sink for atmospheric CO$_2$. Improved land management practices in croplands and grasslands can store up to 1 Gt C in the soil on an annual basis (IPCC, 2000). It is therefore possible to store between 100 to 1000 kg SOC ha$^{-1}$ year$^{-1}$ depending on the climate, soil and vegetation types, and site-specific soil management practices. Improved land management practices like zero or minimum tillage, retention of crop residues via crop rotation and mulching, application of FDE, organic residues and manure, following crop rotation especially with N fixing crops and avoiding burning crop residues after harvest may offer potential mitigation tool to sequester more C in the soils to offset the increase in atmospheric CO$_2$ as well as to improve soil fertility, soil structure, aggregate stability, pore size geometry and distribution, water and nutrients holding capacity and soil quality (increased microbial and enzymatic activities). Such improvement in soil physical and chemical fertility and health will minimize conducive conditions like anaerobicity and soil compaction which stimulate denitrification. Increased soil C may also help to shift the balance between harmful N$_2$O and non-greenhouse gas N$_2$ during denitrification as the activity of nitrous oxide reductase enzymes is stimulated by available soil C.

5.3 Soil pH

Soil pH is among the key regulators of the microbiological processes that affect N$_2$O and N$_2$ production and their ratios. Nitrification activity is generally higher with higher soil pH (> 6) (Bremner & Blackmer, 1981; Bramley & White, 1989). The critical soil pH threshold for nitrification is 5; however, nitrification can occur even at a soil pH of 4.5 due to acid-adapted nitrifier strains (Bouwman, 1990). Denitrification has been reported to occur over a wide range of soil pH values (5 to 8) (Weier & Gilliam, 1986; Ramos, 1996; Flessa et al, 1998); however, laboratory experiments with artificially adjusted soil pH suggest, that under optimized conditions (very low pO$_2$, NO$_3^-$ and glucose amendments), denitrification can proceed even at pHs below 4 or above 10 (Simek & Hopkins, 1999, Simek et al., 2002). Numerous laboratory and field studies have shown that soil pH affects N$_2$O and N$_2$ and the ratio of these gases (e.g. Weier & Gilliam, 1986; Stevens & Laughlin, 1998). Under controlled environment experiments, we found that raising soil pH to 7 through lime application significantly increased N$_2$ emission from pasture and wetland soils treated with urine, urea and KNO$_3$ at 200 kg N ha$^{-1}$ rate (Zaman et al., 2007 & 2008c). More recently in a field experiment, a similar trend of enhanced N$_2$ after raising soil pH to 7 was observed in pasture soils treated with urea/urine (Zaman & Nguyen, 2010). This idea is further supported by our studies on cattle pasture soil (Hynšt et al., 2007). At the site with the greatest animal impact, the ratio of N$_2$ to N$_2$O produced during denitrifying enzyme activity (DEA) measurements was five-fold higher, and the pH was 2 units higher, compared to the site with the least animal impact, which indicated that soil conditions were favourable for production of N$_2$ rather than N$_2$O in the area where excretal returns and treading was intense.

Types of chemical N fertilizers are also likely to regulate N$_2$O:N$_2$ ratios, as NH$_4^+$ based fertilizers (i.e. ammonium sulphate, ammonium nitrate, and mono-ammonium phosphate)
are reported to lower soil pH after their application (Thornton et al., 1996; Mulvaney et al., 1997; Nobre, 2001; Cai et al., 2002). For example, Mulvaney et al. (1997) have reported that ammonium-based fertilizers with soil acidifying effects produce a higher $\text{N}_2\text{O}:\text{N}_2$ ratio compared to alkaline forming fertilizers (anhydrous ammonia, urea or di-ammonium phosphate). Most researchers attribute high N_2O and low N_2 emissions in acidic conditions to the suppression of nitrous oxide-reductase at low soil pH (inhibition at soil pH 4.5) (Kostina et al., 1996; Daum & Schenk 1998; Flessa et al., 1998; Stevens and Laughlin, 1998; Zaman et al., 2007). It is also likely that all denitrifying enzymes are susceptible at low soil pH and produce N_2O from intermediate products (Nägele & Conrad, 1990). However, the extensive review conducted by Šimek and Cooper (2002) reported that the lower rates of N_2 and high $\text{N}_2\text{O}:\text{N}_2$ ratio at low soil pH could be due to lower amounts of soil organic C and mineral N available to the denitrifying population under acid conditions rather than a direct effect of low pH on denitrification enzymes. Regardless of the biochemical reasons for changes in soil pH on N_2 emission, raising soil pH through application of soil amendment like lime appears to offer a mechanism for mitigation of N_2O (Šimek et al., 2002; Zaman et al., 2007, 2008b, Zaman & Nguyen, 2010).

5.4 Soil aeration and water status

Soil aeration, namely O_2 concentration and gas exchange between soil and atmosphere, affects all microbial N transformation processes including nitrification, denitrification, and DNRA. Control of the denitrification enzymes, especially nitrous oxide reductase, represents the key mitigation option for the rate of N_2O production and can therefore shift the balance between harmful N_2O and non-greenhouse N_2 production across the agricultural landscape (Smith & Tiedje, 1979; Mosier et al., 1986; Robertson & Tiedje, 1987; Henrich & Haselwandter, 1997; Bollmann & Conrad, 1998; Mosier et al., 2002). In soil, O_2 concentration changes with soil moisture content and organic matter decomposition by soil microorganisms. After rainfall or applying irrigation water, soils become temporarily anaerobic; the extent and duration of anaerobiosis differs with soil types (drainage class). Fine-textured soils with a higher clay content are reported to remain anaerobic for a longer period of time at low WFPS than coarse-textured soils because of the greater number of micro pores in the former (Barton et al., 1999). Therefore fine-textured soils with poorly drained conditions are likely to emit more N_2O for a longer period than those of coarse-textured soils with well-drained conditions (Groffman & Tiedje, 1989; Aulakh et al., 1991; Clayton et al., 1997; Dobbie & Smith, 2001; Saggar et al., 2004a). At higher O_2 partial pressure (>0.5 vol. %), nitrification is expected to proceed, provided there is sufficient water for optimum activity of nitrifiers (Linn & Doran, 1984; Bollmann & Conrad, 1998); if the soil WFPS increases and O_2 decreases, the rate of N_2O production and the proportion of N_2O to NO_3^{-} produced also increases (Smith et al., 2003). Under such specific conditions at WFPS>60%, nitrification is considered to be the predominant source of N_2O as opposed to denitrification or DNRA (Inubushi et al., 1996). Although DNRA is understood to be an anaerobic process, information about the critical levels of WFPS or O_2 for DNRA is lacking in the literature. Denitrification becomes a major source of N_2O and N_2 production at lower O_2 partial pressure (<0.5 vol. %) and higher WFPS (>60%) (Davidson, 1993; Scholefield et al., 1997; Bronson & Fillery, 1998; Khalil et al., 2002). In such scenarios, more aerobic soils are likely to produce mainly N_2O because denitrification reductases (Eq. 3.2.1) especially nitrous oxide reductase is reported to be sensitive to soil O_2 level, while anaerobic soils and
sediments will generate both N\(_2\)O and N\(_2\). A number of studies have reported higher amounts of N\(_2\) than N\(_2\)O at lower O\(_2\) partial pressure and WFPS above 70% (Eriksen & Hartwig, 1993; Dendooven et al., 1999; Kwong et al. 1999, Khalil et al., 2002). Aulakh et al. (2001) reported that gaseous N losses as N\(_2\)O after application of urea (120 kg ha\(^{-1}\)) to flooded rice were 8 to 10 times higher than those of upland wheat because of the anaerobic conditions in the former. Recently we found that riparian wetland soils treated with NO\(_3\)-N (200 kg N ha\(^{-1}\) rate) emitted 4 and 8 times more N\(_2\)O and N\(_2\) respectively than pasture soils during 28-day incubation (Zaman et al., 2008 c). However, the relative production of N\(_2\)O and N\(_2\) in anaerobic or aerobic soil conditions is not that simple since O\(_2\) level or WFPS is only one of the many known soil and management factors which affect this relationship (Fillery, 1983; Scholefield et al., 1997; Stevens & Laughlin, 1998; Zaman et al., 2008b). In their comprehensive review on emissions of N\(_2\)O and NO from fertilized fields published, Bouwman et al. (2002) concluded that restricted drainage and fine texture favors N\(_2\)O emissions. Thus our current understanding of the processes of N\(_2\)O and N\(_2\) production in anaerobic and aerobic soil conditions is limited. At this stage we can only suggest that improving soil drainage conditions and avoiding soil compaction through use of the heavy farm machinery and grazing animals (pugging) in wet soil conditions (especially in winter) could help to maintain aerobicity in soils, which in turn may reduce N\(_2\)O emission rates through nitrification, denitrification and DNRA (Bhandral et al., 2003, 2007b, Luo et al., 2008b).

Apart from the above mentioned factors, temperature is also known to affect N\(_2\)O production and the N\(_2\)O:N\(_2\) ratio (Cho et al., 1997; Daum et al., 1997, Muller et al., 2002). However, controlling soil temperature is mostly beyond the ability of farmers. Manipulation of the interaction between mineral N supply (NH\(_4^+\) and NO\(_3^-\)), organic C, soil aeration and pH offers the best hope for minimizing N\(_2\)O emission from soils. Similarly the export of N via surface and sub-surface runoff from upland to water bodies can be minimized by using riparian zones (both natural and constructed) along river and stream banks. Since denitrification is considered to be the major NO\(_3^-\) removal process in wetland, proper management of wetlands include, regular application of lime to keep the pH above 6.5, sequestering C to build C reserves, and exclusion of grazing animals to minimize N inputs are essential. All these management practices are known to stimulate the activity of nitrous oxide reductase, which will help to result in emissions of more N\(_2\) than N\(_2\)O as discussed above.

6. Conclusions

Nitrogen is the most dynamic plant, microbial and animal nutrient which affects the diversity, dynamics, and functioning of many terrestrial, freshwater and marine ecosystems. Gaseous N losses in the form of N\(_2\)O are undesirable because N\(_2\)O is an important greenhouse gas and is also involved in the depletion of stratospheric ozone. Nitrification, denitrification and DNRA are the main microbial processes for N\(_2\)O production across the agricultural landscape which can sometimes operate concurrently in a given soil system. N losses as N\(_2\)O across the agricultural landscape are extremely variable and range from about 1% to more than 20 % of the applied N. Such losses are generally higher from wetland soils than those from pasture or arable soils. The critical soil and management factors affecting the rates of N\(_2\)O and N\(_2\) production and their ratios are concentration of mineral N, soil
Emissions of Nitrous Oxide (N\textsubscript{2}O) and Di-Nitrogen (N\textsubscript{2}) from the Agricultural Landscapes, Sources, Sinks, and Factors Affecting N\textsubscript{2}O and N\textsubscript{2} Ratios

organic C, soil pH, and soil aeration status. N\textsubscript{2} production dominates over that of N\textsubscript{2}O at lower mineral NO\textsubscript{3}- content, increasing organic C contents, increasing soil pH (above 6.5), lowering O\textsubscript{2} partial pressure or increasing WFPS; above 70\%. Manipulation of these factors offers potential tools for mitigation of N\textsubscript{2}O.

7. Acknowledgments

The senior author acknowledges the financial assistance for page charges by Ballance Agri-Nutrients Ltd. We also acknowledge Sharon Long for her assistance in proof reading this chapter and the unknown reviewers for their positive comments.

8. References

Emissions of Nitrous Oxide (N\textsubscript{2}O) and Di-Nitrogen (N\textsubscript{2}) from the Agricultural Landscapes, Sources, Sinks, and Factors Affecting N\textsubscript{2}O and N\textsubscript{2} Ratios

Rates and Assessment of N\textsubscript{2}O in Groundwater, Riparian Zones and Rivers Maastricht, The Netherlands, pp. 159-166.

Jambert, C. Serca, D. & Delmas, R. (1997). Quantification of N\textsubscript{2}O losses as NH\textsubscript{3}, NO, and N\textsubscript{2}O and N\textsubscript{2} from fertilized maize fields in southwestern France. Nutrient Cycling in Agroecosystems, 48, pp. 91-104.

www.intechopen.com
Emissions of Nitrous Oxide (N\textsubscript{2}O) and Di-Nitrogen (N\textsubscript{2}) from the Agricultural Landscapes, Sources, Sinks, and Factors Affecting N\textsubscript{2}O and N\textsubscript{2} Ratios

Emissions of Nitrous Oxide (N\textsubscript{2}O) and Di-Nitrogen (N\textsubscript{2}) from the Agricultural Landscapes, Sources, Sinks, and Factors Affecting N\textsubscript{2}O and N\textsubscript{2} Ratios

with urea under Mediterranean conditions. *Agriculture Ecosystem and Environment*, 126, pp. 243-249.

Understanding greenhouse gas sources, emissions, measurements, and management is essential for capture, utilization, reduction, and storage of greenhouse gas, which plays a crucial role in issues such as global warming and climate change. Taking advantage of the authors’ experience in greenhouse gases, this book discusses an overview of recently developed techniques, methods, and strategies:

- A comprehensive source investigation of greenhouse gases that are emitted from hydrocarbon reservoirs, vehicle transportation, agricultural landscapes, farms, non-cattle confined buildings, and so on.
- Recently developed detection and measurement techniques and methods such as photoacoustic spectroscopy, landfill-based carbon dioxide and methane measurement, and miniaturized mass spectrometer.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
