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1. Inroduction 

Cerebral small vessel disease (cSVD) is a spectrum of clinical and imaging abnormalities 

linked to the pathology of small penetrating arteries and arterioles in the brain irrigating 

subcortical structures1. Accumulating data suggest that cSVD is the most prevalent 

neurological disorder in the ageing society of the developed world2, 3. The prevalence of its 

seemingly asymptomatic manifestations –silent brain infarcts- increases with age from 

approximately 6-7% at 60 years to 28% at 80 years of age according to a recent review4. In 

another study lacunar infarcts were found in 23% of all subjects over 65 years, and in 43% of 

subjects over 80 years of age5. Its acute, symptomatic manifestations –lacunar strokes- 

account for approximately 20% of all ischemic strokes6-8. Thus improved management of 

cSVD based on better understanding of the disease is of great importance. 
cSVD is characterised by the arteriolosclerosis and/or microatheromatosis of small calibre 
(50-500 μm) cerebral arterial vessels caused by various pathologies1. Its most common, 
sporadic form is related to age and vascular risk factors including hypertension and diabetes 
in particular. Inherited forms are increasingly recognised with CADASIL (Cerebral 
Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) 
being the most prevalent genetic cSVD caused by the mutation of NOTCH 3 gene encoding 
a transmembrane receptor of vascular smooth muscle cells9, 10. CADASIL -affecting young to 
middle aged, otherwise healthy individuals- provides a pure model for cSVD and therefore 
has been extensively studied 11.  Inflammatory, infective and immunologically mediated 
forms are usually part of systemic diseases of diverse origin characterised by central 
nervous system vasculitis 12. Cerebral amyloid angiopathy (CAA) –a pathological hallmark 
of Alzheimer’s disease- affects small vessels both cortically and subcortically and may also 
lead to ischemic changes, although it is particularly associated with recurrent lobar 
haemorrhages12. In this chapter we will only focus on the most common and well studied 
age and vascular risk factor related form of cSVD and CADASIL. 
cSVD predominantly affects perforating end-arteries branching usually perpendicularly 

from a large parent artery. These penetrating arteries irrigate the so called perforator areas 

including the basal ganglia and internal capsule (lenticulostriate arteries from the anterior 

cerebral artery (ACA) A1 segment and middle cerebral artery (MCA) M1 segment), the 
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thalamus (thalamoperforators from the posterior cerebral artery (PCA) and posterior 

communicating artery (PCoA)), the pons (pontine perforators from the basilar artery (BA)) 

and the hemispheric deep white matter -centrum semiovale (perforators from the cortical, 

leptomeningeal arteries)13-16. 

The pathological changes in cSVD lead to luminal narrowing, decreased autoregulation 

and vasoreactivity, and vessel wall damage in the cerebral microvessels resulting in their 

i. gradual stenosis, ii. sudden occlusion or iii. rupture. As a consequence the subcortical 

brain tissue suffers from i.: diffuse chronic hypoperfusion and ischemia leading to the 

progressive disintegration of cerebral white matter17; ii.: acute localised ischemia 

resulting in lacunar infarcts18; ad iii.: acute major haemorrhages or microbleeds 12, 19. In 

an advanced state of the disease cerebral atrophy invariably occurs as a remote and/or 

diffuse consequence of vascular lesion burden20. The pathogenesis of cSVD 

manifestations is summarized in Figure 1. The gradual ischemic tissue damage clinically 

manifests in progressive vascular cognitive impairment (mainly executive dysfunction) 

and physical disability (gait disturbances, pseudobulbar palsies, urinary incontinence 

etc.), whereas acute focal ischemia presents with the so-called lacunar syndromes. 

Cerebral microbleeds are usually asymptomatic and their clinical significance is yet to be 

determined. 

In this chapter we will summarize recent knowledge about the MRI characteristics of 
cSVD. Since the cerebral microvasculature cannot be currently visualized in vivo, the 
consequent parenchymal lesions (lacunar infarcts, white matter lesions, microbleeds and 
atrophy) have been adopted as markers of cSVD12. We will not discuss the issue of major 
haemorrhages. 

2. Lacunar infarcts 

2.1 Definition 
According to the “lacunar hypothesis” first proposed by Fisher small subcortical infarcts of 

a diameter less than 15 mm –called lacunar infarcts (LI)- result from the sudden occlusion of 

penetrating arteries due to cSVD in typical locations -the perforator areas (see above) 18. 

Infarcts of this type have been linked to particular clinical syndromes with a relatively good 

prognosis called the lacunar syndromes, most frequent of which are the classical ones:  pure 

motor stroke, pure sensory stroke, ataxic hemiparesis, dysarthria-clumsy hand syndrome 

and sensorimotor stroke.  The concept of lacunar stroke that entered stroke classifications 

was based on postmortem and CT based studies both with considerable limitations. The 

pathological studies were limited by the low mortality of lacunar strokes and by the 

anatomical changes occurring in the chronic stage and/or during fixation. CT has a low 

sensitivity to detect small infarcts in certain locations (posterior fossa, cortex) and in the 

acute stage and cannot differentiate between fresh and old lesions. The advent of MRI and 

especially its newer techniques such as diffusion weighted imaging (DWI), perfusion 

weighted imaging (PWI) and diffusion tensor imaging (DTI) has slightly modified our 

understanding of LIs21. 

2.2 Conventional MRI 
Because of their small size visualizing LIs is much more problematic than that of larger 

territorial infarcts. Compared to CT conventional MRI sequences such as T1 weighted, T2  
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Fig. 1. Pathogenesis of cSVD manifestations. Abbreviations can be found in the text. 
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weighted imaging (T1/2WI) have a better spatial resolution, can image the posterior fossa 
without artifacts and have a better signal/noise ratio. LIs in the chronic stage appear as fluid 
filled cavities: hypointensities (black holes) on T1WI and hyperintensities on T2WI 
isointense with CSF.  More recent LIs can be seen as hyperintensities on T2WI 
corresponding to brain tissue with increased water content (oedema). The widely used T2 
based fluid attenuation inversion recovery (FLAIR) sequence that nulls the hyperintense 
signal of free water (mainly CSF) has some advantages over the T2WI. FLAIR is more 
sensitive in the detection of small, recent infarcts in the proximity of CSF spaces like those in 
the cortex or next to the ventricles.  It can better estimate the age of LIs, because the signal of 
bulk water in chronic infarcts (cavitations) is nulled as well, whereas the increased bound 
water content of acute infarcts (solid tissue) is hyperintense 22. Acute lesions on FLAIR give 
a relatively stable high signal for several weeks as opposed to the fluctuations in intensity 
seen on T2W images 23, 24 (Figure 2). However very early ischaemia within the first few 
hours especially in the lacunar dimension cannot be seen on any of the conventional MR 
sequences, because the signal abnormality only appears 6-8 hours after symptom onset. 

2.3 DWI 
Acute stage imaging has been revolutionised by the introduction of diffusion weighted 

imaging (DWI) that shows intracellular cytotoxic oedema resulting from  critical cerebral 

ischaemia within the first few minutes after stroke onset  25. The energy failure of brain cells 

results in the accumulation of intracellular bound water leading to a reduced diffusion of 

free water. This appears as marked hypointensity on the apparent diffusion coefficient 

(ADC) map which translates into high DWI signal 26-28.  In the case of cortical ischemia the 

reduced ADC returns to normal in 5-10 days 24, 29, while it stays low for a considerably 

longer period in subcortical disease. Consequently the hyperintensity due to diffusion 

restriction is also visible for longer30. Finally the ADC increases in the chronic stage 

indicating tissue disintegration/necrosis and vasogenic  oedema 31. At the same time the 

lesion appearing hyperintense on DWI may remain visible further on as the developing T2 

lesion is also seen as high signal (T2 shine through). Therefore DWI and ADC map images 

have to be interpreted together to judge the age of an ischaemic infarct 32, 33. The sensitivity 

of this sequence within 6 hours of symptom onset is of 95% and its specificity is of 

practically 100% for territorial infarcts 34. Although understandably less for small subcortical 

infarcts, it is still the only reliable tool to visualise hyperacute LIs making it indispensable 

for acute phase therapy decisions (Figure 2). 

2.4 DTI  
A great proportion of LIs occur along the course of motor pathways whose affection well 
correlates with the severity of clinical symptoms and mainly determines prognosis. The 
extent of damage to these pathways can be judged by the diffusion tensor imaging (DTI) 
that is capable of visualizing white matter tracts 35. This imaging method is based on the 
principle that cell membranes constrain the diffusion of water molecules which therefore 
diffuse longitudinally along axons in the white matter. By measuring diffusion from several 
directions the net orientation of axons in a voxel of white matter can be determined as a 3 
dimensional vector –a „tensor”.  From these vectors projections of fibres can be generated 
and displayed as maps of white matter anatomy e.g. in a color-coded way where different 
colors stand for different directions, and colour brightness for the degree of anisotropy  
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B 

Fig. 2. Subacute lacunar infarct in the posterior limb of the left internal capsule in a 
hypertensive patient on axial FLAIR (A) and DWI trace (B) image. 
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(color-coded directional image)36, 37. Fiber tracking is a further development that enables 
examiners to visualize fibers passing through a certain region of interest (ROI) or linking 
two ROIs thus delineating functional systems such as the corticospinal tract (CST). This 
method has been used to specifically localize small infarcts with regard to the functional 
pathway of the CST with good topographical accuracy 38-40 . Nevertheless, only a limited 
number of such tractography studies have been published to date, and few techniques have 
been assessed for their ability to track through lesions which disrupt tracts. 

2.5 Size criterion 
The size of LIs according to the classical definition is less than 15 mm –a rather arbitrary 
criterion based on early autopsy studies representing a healed, chronic state 18. Since then 
we know that LIs in the acute stage can be significantly larger later undergoing shrinkage by 
about half their original size 41. Furthermore surprisingly large infarcts can be caused by 
single perforator occlusion due to anatomic variations of the branching pattern of the 
lenticulostriate arteries. More or even all of the penetrating arteries may arise from one 
common stem 15, 42. Therefore the size criterion for LIs can lead to stroke type 
misclassification and should be reconsidered43.  

2.6 Differentiation of underlying mechanisms 
Apart from cSVD small subcortical infarcts may be caused by emboli of arterial or cardiac 

origin or critical hypoperfusion in watershed areas due to stenosing large artery disease 

(LAD). As determining stroke subtype is crucial for further management it is important to 

make an early etiological diagnosis. Acute lesion patterns on DWI help us to differentiate 

between the underlying pathomechanisms 44. The co-existence of a small striatocapsular and 

one or more distal small cortical lesions points to an embolus originally stuck in the M1 

segment obstructing the orifices of the lenticulostriate arteries and later on fragmented and 

washed further up into one or more small cortical branches of the MCA45, 46. This scenario is 

also possible in the posterior circulation -although much less frequently- with the picture of 

a small brainstem lesion together with a PCA territory thalamic or cortical infarct. Multiple 

small subcortical lesions in the same vascular territory are associated with LAD (arterio-

arterial embolism), whereas those in different territories/bilaterally suggest a proximal 

embolic origin (heart or aortic arch) 47. In the latter case it is not clear whether they result 

from repeated embolism or a single embolic shower 44.  

It has also been proposed that multiple small infarcts may also be due to cSVD affecting 

several vessels contemporaneously 48. As mentioned earlier subcortical lesions can remain 

hyperintense on DWI for much longer than cortical ones. Thus several lesions in diffferent 

vascular territories could arise contemporaneously (i.e. within a few weeks of each other) 

but not simultaneously and all appear hyperintense on DWI falsely raising the suspicion of 

an embolic origin.  In addition the small perforators arising perpendicularly from large 

vessels seem hardly accessible for fast moving emboli from an anatomical point of view. 

Therefore the purely embolic origin of multiple small subcortical DWI lesions in multiple 

vascular territories remains debated.  
Partial borderzone infarcts in the watershed of superficial and deep perforators of the MCA 
and/or ACA may also appear similar to LIs. They can be seen as a single small lesion or a 
chain of them (rosary-like pattern) in the centrum semiovale alongside and slightly above 
the lateral ventricle. The demonstration of ipsilateral carotid artery disease and consequent 
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hypoperfusion shown by a perfusion deficit on perfusion weighted imaging (PWI) far 
exceeding the lesion area leads to diagnosis 49, 50. 

2.7 Differentiation from other small cerebral lesions 
LIs –especially when occurring without overt clinical symptoms, as incidential findings- 

may be difficult to distinguish from other hyperintense focal abnormalities on T2 weighted 

images. Studies correlating these lesions on in vivo and postmortem MR images with brain 

autopsy findings have identified the following pathologies: silent LIs, dilated Virchow-

Robin spaces (VRS), foci of demyelination 51 due to incidental multiple sclerosis 52 or 

insufficient circualtion 53 54, gliosis, minute cysts and ventricular diverticuli 55, 56. Distinction 

between an infarct, a focal gliosis and a plaque of demyelination is usually impossible on 

entirely imaging grounds, while the relationship of a diverticulum or cyst to the ventricles 

and their round shape are differential features 56.  

VRSs are small perivascular spaces surrounding cerebral perforating arteries along their 

way through the parenchyma serving as drainage pathways for the cerebral interstitial fluid 
57. They are small (<1 mm) CSF isointense foci round shaped in cross section or linear in 

longitudinal section and run perpendicular to the brain surface 58-60. Dilated VRSs, that can 

resemble lacunes, appear as an irregular or ectatic focal expansion of the otherwise regular 

and smooth VRSs 60. They are still generally smaller than lacunes usually not exceeding 3 

mm in diameter 61, whereas lacunes are larger and wedge shaped 59, 60. Dilated VRSs have 

been associated with ageing 62, hypertension 63, widespread white matter lesions 64, sporadic 

cSVD65 61, CADASIL66, reduced cognitive function 64, and vascular dementia 65, 67. However 

their real clinical significance is a subject of controversy. It is generally accepted that dilated 

VRSs are related to brain shrinkage around perforating vessels thus representing brain 

atrophy68. In this perspective they can both be regarded as common ageing phenomenon or 

as a marker of various pathologies. The distinction between normal and pathologically 

dilated VRSs can be made by judging the appearance of the adjacent brain tissue and the 

clinical context 60. 

2.8 Silent cerebral infarcts 
With the increasing use of MRI and the improving image quality an increasing number of 
patients are found to harbour small cerebral infarcts without any apparent stroke-like 
symptoms. It has now become clear that LIs only cause clinically evident stroke if they hit 
main sensorimotor pathways or occur in deep, subcortical nuclei. However the majority of 
them fall outside of these strategic locations and thus remain silent. Studies have shown 
that in the general population the prevalence of silent infarcts is fivefold higher than that 
of stroke, and they can be present in more than one fourth of people over 60 years of age 
69-72. They have approximately the same risk factors as symptomatic lacunes with 
hypertension being the most important 71, 72; and their presence more than doubles the 
risk of subsequent vascular events, cognitive impairment and dementia 4, 73. The extent of 
asymptomatic small vessel disease at the time of index stroke has a significant prognostic 
value for all outcomes 41, 73. These findings have led to a modified understanding of 
cerebrovascular disease according to which strokes and TIAs –i.e. overt clinical 
symptoms- are only the tip of the iceberg of cSVD manifestations21. Silent infarcts are the 
underwater majority. It has not yet been evaluated though – and remains doubtful at 
present- whether the same diagnostic workup and risk factor management would be 
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justifiable upon finding a silent infarct as for a clinical stroke. Although by definition 
silent infarcts lack clinically overt stroke symptoms they progressively lead to less evident 
cognitive dysfunction, general physical disability and depression.  Therefore these infarcts 
should be referred to as “covert” rather than “silent”4, 74.  

3. White matter lesions 

3.1 Definition 
White matter lesions seen in elderly patients and those with arterial hypertension are 

usually bilateral and more or less symmetrical areas of increased signal on T2 and FLAIR 

images (hence the name: white matter hyperintensities, WMH) located in the hemispheric 

deep white matter, the basal ganglia and the pons (Figure 3). The term “leukoaraiosis” 

meaning rarefaction of white matter is a description from the CT era of the same 

phenomenon75. WMHs are generally regarded as a consequence of ischemic brain tissue 

disintegration due to cSVD. Pathological studies found varying degrees of tissue damage 

appearing as WMH: from selective loss of myelin, to loss of myelin, axons and 

oligodendroglia consistent with incomplete infarcts, to near complete infarcts with 

astrogliosis76-79. 

3.2 Differential diagnosis 
Multifocal or diffuse white matter lesions resembling those caused by cSVD can be found 

in a wide range of central nervous system (CNS) pathologies. These are summarized in 

Table 1. Their differential diagnosis is based on the complex evaluation of patient history, 

clinical context, other diagnostic tests and some differences in MRI appearance. Some of 

these WMHs are also ischemic in origin such as those caused by hypoperfusion 1. in 

watershed areas due to large artery stenosis, or 2. in different vascular territories due to 

various types of CNS vasculitis.  These latter can occur either as an isolated CNS affection 

(primary CNS vasculitis), or as part of a systemic disease (SLE, Sjörgen syndrome, Behcet 

disease, antiphospholipid syndrome, sarcoidosis etc.) Others are a consequence of 

multifocal demyelination in multiple sclerosis (MS) and its variants or in central 

pontine/extrapontine myelinolysis. As opposed to cSVD MS is characterized by ovoid-

shaped lesions perpendicular to the ventricles (Dawson fingers), frequently found in the 

corpus callosum, some of which may enhance contrast material. Plaques may also be 

located in the optic nerves, cerebellum and spinal cord. WMH caused by transient 

vasogenic edema due to the neurotoxic effect of various complex conditions 

(preeclampsia/eclampsia, severe hypertension, allogenic bone marrow transplantation, 

organ transplantation, autoimmune diseases and high dose chemotherapy) has been 

termed as Posterior reversible encephalopathy syndrome (PRES). The typical pattern of 

WMH in PRES resembles the watershed zones with a parietal and occipital (posterior) 

predominance. The subcortical white matter but also the cortex is involved to varying 

degrees and the lesions always regress80. White matter lesions of unclear nature can be 

seen in some infective diseases /postinfective conditions such as HIV, Lyme-disease or 

Syphilis related encephalopathies, Progressive multifocal leukoencephalopathy (PML), 

Subacute sclerosing panencephalitis (SSPE) or Acute disseminated encephalomyelitis 

(ADEM); and metabolic disorders like leukodystrophies, phenylketonuria and 

mitochondrial diseases (MELAS)81, 82.  
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Table 1. CNS pathologies causing multiple/diffuse white matter lesions. Abbreviations can 

be found in the text. 

3.3 Evaluation with conventional MRI 

The severity of white matter damage on T2 and FLAIR images can be assessed 

semiquantitatively by various visual rating scales (proposed by Fazekas83, Schmidt84, 

Scheltens85, Wahlund86 and others) that take into account the location, pattern and extension 

of WMH87. The mostly used Fazekas-scale which evaluates WMH in two distinct locations: 

periventricular and deep subcortical white matter is presented in Table 2. The mildest forms 

are seen as smooth periventricular and punctuate deep WMH, whereas irregular 

periventricular, early confluent and confluent deep WMH represent an increasing severity 

of tissue damage. Furthermore the three dimensional extension of WMH can be quantified 

by volumetric evaluation88, 89. WMH volumetry is more reproducible and more sensitive for 

lesion progression than visual scales90. However the severity of white matter lesions as 

assessed by any of the above methods showed only moderate correlations with the clinical 

status represented by scores of disability and cognitive impairment91-93. 

 

 periventricular deep subcortical 

0 absence no or a single punctate lesion 

1 „caps” or pencil-thin lining multiple punctate lesions 

2 smooth „halo” beginning confluency of lesions 

3 irregular PVH extending into deep WM large confluent lesions 

Table 2. Fazekas visual rating scale for WMH (0-6 points)83 

Ischemia 

 Watershed hypoperfusion in large artery stenosis 

 Primary CNS vasculitis 

 Secondary CNS vasculitis (SLE, Sjörgen syndrome, Behcet disease, 
antiphospholipid syndrome, sarcoidosis etc.) 

 
Demyelination 

 Multiple sclerosis and variants 

 Central pontine/extrapontine myelinolysis 
 
Vasogenic oedema 

 PRES  
 
Unclear origin 

 Infective/postinfective: HIV-, Lyme-, Syphilis- encephalopathy, PML, SSPE, 
ADEM 

 Metabolic: leukodystrophies, phenylketonuria, MELAS 
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3.4 Evaluation with non-conventional MRI 
The whole spectrum of microscopic brain tissue changes due to cSVD appears uniformly 
as WMH on conventional T2 based MR sequences. In order to obtain information on the 
degree of underlying tissue damage, non-conventional MRI techniques have been 
developed such as T1- and T2 relaxation time mapping, magnetisation transfer imaging 
(MTR) and diffusion tensor imaging (DTI)94, 95. This latter technique, that measures the 
degree and orientation of tissue water diffusivity, has been widely used in various 
cerebral diseases and conditions including cSVD96. As diffusivity partly depends on the 
density of cells in a given tissue volume (cell membranes and intracellular particles 
restrict water diffusion), the increase in diffusivity (as measured by a non-oriented 
derivate of the tensor, the mean diffusivity, MD) is proportional to the degree of 
ultrastructural tissue disintegration97, 98. Region of interest (ROI) based measurements 
detected increased MD inside but also outside of WMH, in the normal appearing white 
and subcortical grey matter99, 100. DTI can thus show tissue damage „invisible” for 
conventional MRI. In diffuse cerebral pathologies however -such as cSVD - a global, 
approach of whole brain diffusion histograms is more informative about the overall 
disease severity than a ROI analysis. Accordingly, MD histogram parameters have been 
reported to correlate more with clinical scores than WMH visual rating scales and 
volumetric data in cSVD both cross sectionally and longitudinally. Furthermore they were 
more sensitive than clinical scales in detecting change over time 101-106. There are data 
indicating that the much simpler, quicker and widely available (DWI) derived ADC can 
be used similarly to DTI derived MD to quantify brain damage due to cSVD (findings of 
Gunda et al. to be published)(Figure 3 and 4). Therefore these quantitative MRI 
techniques seem to be a promising tool in the quantified monitoring of cSVD and could 
possibly act as surrogate markers in future therapeutic trials. 

4. Cerebral microbleeds 

4.1 Definition 
Gradient echo (or T2* weighted) imaging is a sequence highly sensitive of blood. With its 

increasing use the number of visible haemorrhagic brain lesions has grown considerably 

and even millimetre-sized bleedings in the parenchyma have become detectable.  Cerebral 

microbleeds (cMB) appear as small (<5 mm), homogenous, rounded foci of low signal 

intensity on T2* images107(Figure 5).  The signal loss is caused by hemosiderin –a 

paramagnetic blood degradation product that remains in macrophages for several years 

after haemorrhage indicating previous blood extravasation108.  Thus the age of cMBs cannot 

be determined by MRI but the total haemorrhage burden can be assessed. Cerebral 

microbleeds appear larger on T2* images than the real tissue lesions due to the “blooming 

effect” of the MR signal109. The few studies relating cMBs on MRI to histopathological 

findings revealed focal hemosiderin deposits from the rupture of small vessels showing 

evidence of arteriolosclerosis or occasionally amyloid angiopathy clearly indicating an 

underlying small vessel pathology110, 111.  

4.2 Differential diagnosis 
CMBs need to be distinguished from other causes of focal signal loss on T2* images. These 

include: flow voids of small arteries in cross-section that can be followed on 
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Fig. 3. Diffuse white matter lesions in a 70 year-old hypertensive patient on axial FLAIR 
image (upper row) and ADC map (lower row). Note the increased diffusion (ADC) 
corresponding to areas of WMH (FLAIR). 

consecutive/neighbouring slices; the usually symmetrical calcifications or iron deposits in 

the globi pallidi that appear hyperdense on CT; type IV cavernous malformations and 

capillary teleangiectasias; foci of hypointensity compatible with hemorrhagic shear injury in 

head trauma, and even artefacts of metallic materials released from mechanical heart 

valves112, 113. Etiological differentiation of signal loss is based on the location, number and 

distribution of lesions, associated imaging findings and patient history. 
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Fig. 4. ADC histogram of the patient on Figure 3 (green line) compared to a normal control 
(dashed blue line) (X: diffusivity in 10 -5 mm2/s, thresholded at 180; Y: relative frequency of 
voxels in %). 

 

 

Fig. 5. Multiple cMBs in a 48 year-old hypertensive patient on axial T2* image. 

4.3 Epidemiology 
CMBs have been found in various patient populations as well as healthy elderly. Their 
occurrence was the most frequent in patients with intracerebral haemorrhage (ICH) and 
lacunar infarcts (due to hereditary or sporadic cSVD), less so in ischemic stroke patients of 
other subtypes. The most comprehensive review on cMB published in 2007 pooled data 
from comparable studies and found the overall prevalence of cMBs to be 5% among healthy 
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adults; 34% in ischemic stroke patients; and 60% in patients with ICH.  The prevalence 
according to ischemic stroke subtype was 54% in lacunar-, 36% in atherothrombotic - and 
19% in cardioembolic stroke. 38% of CADASIL patients had cMB. CMBs were more 
prevalent among patients with recurrent than first-ever stroke (44 vs 23% for ischemic and 
83 vs 52% for haemorrhagic stroke)114.  

4.4 Clinical significance 
CMBs were found to be associated with age, hypertension, other manifestations of cSVD 
(lacunar infarcts and WML), previous ischemic stroke and ICH, and an increased risk of 
recurrent lacunar infarct or ICH in those with lacunar infarct or ICH114. These findings further 
emphasize the common pathophysiological basis for cMB, LI, WML and ICH. Studies have 
shown that the anatomical distribution of ICHs is similar to that of cMBs in individual 
patients, but it is not the pre-existing cMBs that evolve into major haemorrhages115. Similarly 
several cases have been reported where patients with cMBs developed major haemorrhage 
after thrombolysis or antiplatelet therapy remote from the cMBs116. Thus cMBs can be 
considered as markers of a diffuse, bleeding-prone microangiopathy. This raised the important 
question whether patients with cMB are at an increased risk of ICH when treated with 
antiplatelet, anticoagulant or thrombolytic agents. For the time being there is no sufficient 
evidence to give a definite answer (some studies reported an increased risk, others not, all of 
them underpowered to draw firm conclusions)116-120.  However some stroke centres already 
incorporate cMBs in their treatment decisions.  
In conclusion cMBs are markers of a haemorrhage-prone cSVD and predictors of recurrent 
vascular events (be it ischemic or haemorrhagic). At present they cannot be considered as a 
contraindication to antithrombotic or thrombolytic therapies, but may play a role in the 
individual stratification of haemorrhagic risk, and may be incorporated in the design of 
clinical trials of anticoagulation/antiaggregation drugs. 

5. Brain atrophy 

Brain atrophy is best evaluated on T1WI and appears as shrinkage of brain parenchyma 
with a reduction of cortical thickness and an increase of internal and external CSF spaces. It 
can be assessed by visually rating the degree of ventricular dilatation and sulcal widening, 
by measuring the width of sulci or ventricles in a standard location, or by different three-
dimensional volumetric methods that have now become the methods of choice.  
Brain atrophy is a common phenomenon in normal ageing that increases progressively 
beyond the age of 65 years121. This process can be accelerated by numerous cerebral 
pathologies causing diffuse brain tissue loss such as degenerative diseases (like Alzheimer’s 
disease and other primary dementias)122, demyelinating diseases (MS)123 and 
cerebrovascular disorders (Figure 6).  In these latter conditions, the importance of brain 
atrophy has only recently been recognised.  A number of imaging studies using quantitative 
brain volumetry demonstrated atrophy in both focal and diffuse cerebrovascular diseases124-

127. Brain atrophy correlated strongly with the clinical status and cognitive scores, and 
proved to be a sensitive marker of disease progression in cSVD104, 128, 129. It is now widely 
accepted that purely subcortical cSVD can lead to cortical volume loss129, 130. How 
subcortical ischemic damage leads to cortical atrophy is not fully elucidated, but the diffuse 
and/or remote effect of lacunar lesions and tissue microstructural changes through 
Wallerian degeneration, secondary axonal loss due to deinervation and local or remote 
neuronal apoptosis are possible mechanisms20, 124, 131, 132.  
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Fig. 6. Widespread WMH and diffuse brain atrophy in a 89 year-old hypertensive patient on 
axial FLAIR images. 

 

 

Table 3. Utility of different MRI sequences in cSVD. Abbreviations can be found in the text. 

T1   
 cavitated, chronic LIs appear hypointens („black hole”) 
 good for evaluation of brain atrophy and cortical thickness, volumetry as surrogate 

marker 
T2  

 subacute LIs appear hyperintens (fluctuating); good visualisation of VRS 
 white matter damage appears as WMH; good for judging deep WMH 

FLAIR  
 (sub)acute LIs give more stable high signal; good for detection of periventricular LIs, 

differentiates acute (hyperintens) from chronic (hypointens) LIs 
 white matter damage appears as WMH; good for judging both deep and 

periventricular WMH 
T2*  

 cMBs appear as small, hypointense foci, marker of bleeding-prone microangiopathy 
DWI   

 the only method to visualize (hyper)acute LIs that give high signal on DWI, low 
signal on ADC; acute lesion patterns guide differential diagnosis 

 chronic LI gives low signal on DWI, ultrastructural tissue damage causes increased 
diffusivity (high signal on ADC map), whole brain ADC histogram as surrogate 
marker? 

DTI  
 localisation of LIs in relation to WM tracts (tractography) 
 ultrastructural tissue damage causes increased diffusivity (high signal on MD map), 

whole brain MD histogram as surrogate marker 
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Brain atrophy is an aspecific finding and can be regarded as the final common pathway in 
the pathophysiology of various cerebral pathologies. As in degenerative diseases, atrophy is 
now recognized as a strong marker of disease progression in cSVD and thus could serve as a 
surrogate marker in future clinical trials similarly to whole brain diffusion histogram 
parameters133. 

6. Conclusions, perspectives 

New and continuously developing MRI sequences and postprocessing techniques have 
greatly helped to explore and better understand cSVD. Diffusion MRI methods have proved 
to be particularly useful in: i. visualizing hyperacute LIs thus guiding acute phase therapy 
and etiologic diagnosis (DWI); ii. detecting ultrastructural changes even in otherwise normal 
appearing WM, and quantifying the global burden of tissue damage in cSVD (whole brain 
DTI/DWI histogram measures). Brain atrophy –a phenomenon previously considered to be 
related to cortical disease- is now recognised as a marker of cSVD based on studies using 
volumetric measures. In the future an increasing use of quantitative MRI techniques 
(diffusion histograms, volumetry) can be expected as they are more sensitive to the full 
spectrum of cSVD expressions, and could provide surrogate markers for disease progression 
in future therapeutic trials for patients with cSVD. The utility of different MRI sequences in 
cSVD is summarized in Table 3. 
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