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1. Introduction

For bandwidth-efficient communication systems, operating in high inter-symbol interference

(ISI) environments, adaptive equalizers have become a necessary component of the receiver

architecture. An accurate estimate of the amplitude and phase distortion introduced by the

channel is essential to achieve high data rates with low error probabilities. An adaptive

equalizer provides a simple practical device capable of both learning and inverting the

distorting effects of the channel. In conventional equalizers, the filter tap weights are initially

set using a training sequence of data symbols known both to the transmitter and receiver.

These trained equalizers are effective and widely used. Conventional least mean square (LMS)

adaptive filters are usually employed in such supervised receivers, see Haykin (1996).

However, there are several drawbacks to the use of training sequences. Implementing a

training sequence can involve significant transceiver complexity. Like in a point-to-multipoint
network transmissions, sending training sequences is either impractical or very costly in

terms of data throughput. Also for slowly varying channels, an initial training phase

may be tolerable. However, there are scenarios where training may not be feasible, for

example, in equalizer implementations of digital cellular handsets. When the communications

environment is highly non-stationary, it may even become grossly impractical to use training

sequences. A blind equalizer, on the other hand, does not require a training sequence

to be sent for start-up or restart. Rather, the blind equalization algorithms use a priori

knowledge regarding the statistics of the transmitted data sequence as opposed to an exact

set of symbols known both to the transmitter and receiver. In addition, the specifications of

training sequences are often left ambiguous in standards bodies, leading to vendor specific

training sequences and inter-operability problems. Blind equalization solves this problem as

well, see Ding & Li (2001); Garth et al. (1998); Haykin (1994).

In this Chapter, we provide an introduction to the basics of adaptive blind equalization.

We describe popular methodologies and criteria for designing adaptive algorithms for blind
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2 Digital Communication

equalization. Most importantly, we discuss how to use the probability density function

(PDF) of transmitted signal to design ISI-sensitive cost functions. We discuss the issues of

admissibility of proposed cost function and stability of derived adaptive algorithm.

2. Trained and blind adaptive equalizers: Historical perspectives

Adaptive trained channel equalization was first developed by Lucky for telephone channels,

see Lucky (1965; 1966). Lucky proposed the so-called zero-forcing (ZF) method to be applied

in FIR equalization. It was an adaptive procedure and in a noiseless situation, the optimal

ZF equalizer tends to be the inverse of the channel. In the mean time, Widrow and Hoff

introduced the least mean square (LMS) adaptive algorithm which begins adaptation with the

aid of a training sequence known to both transmitter and receiver, see Widrow & Hoff (1960);

Widrow et al. (1975). The LMS algorithm is capable of reducing mean square error (MSE)

between the equalizer output and the training sequence. Once the signal eye is open, the

equalizer is then switched to tracking mode which is commonly known as decision-directed

mode. The decision-directed method is unsupervised and its effectiveness depends on the
initial condition of equalizer coefficients; if the initial eye is closed then it is likely to diverge.

In blind equalization, the desired signal is unknown to the receiver, except for its probabilistic

or statistical properties over some known alphabets. As both the channel and its input are

unknown, the objective of blind equalization is to recover the unknown input sequence

based solely on its probabilistic and statistical properties, see C.R. Johnson, Jr. et al. (1998);

Ding & Li (2001); Haykin (1994). Historically, the possibility of blind equalization was first

discussed in Allen & Mazo (1974), where the authors proved analytically that an adjusting

equalizer, optimizing the mean-squared sample values at its output while keeping a particular

tap anchored at unit value, is capable of inverting the channel without needing a training

sequence. In the subsequent year, Sato was the first who came up with a robust realization of

an adaptive blind equalizer for PAM signals, see Sato (1975). It was followed by a number of

successful attempts on blind magnitude equalization (i.e., equalization without carrier-phase

recovery) in Godard (1980) for complex-valued signals (V29/QPSK/QAM), in Treichler &

Agee (1983) for AM/FM signals, in Serra & Esteves (1984) and Bellini (1986) for PAM signals.

However, many of these algorithms originated from intuitive starting points.

The earliest works on joint blind equalization and carrier-phase recovery were reported in

Benveniste & Goursat (1984); Kennedy & Ding (1992); Picchi & Prati (1987); Wesolowski

(1987). Recent references include Abrar & Nandi (2010a;b;c;d); Abrar & Shah (2006a); Abrar &

Qureshi (2006b); Abrar et al. (2005); Goupil & Palicot (2007); Im et al. (2001); Yang et al. (2002);

Yuan & Lin (2010); Yuan & Tsai (2005). All of these blind equalizers are capable of recovering

the true power of transmitted data upon convergence and are classified as Bussgang-type, see

Bellini (1986). The Bussgang blind equalization algorithms make use of a nonlinear estimate

of the channel input. The memoryless nonlinearity, which is the function of equalizer output,

is designed to minimize an ISI-sensitive cost function that implicitly exploits higher-order

statistics. The performance of such kind of blind equalizer depends strongly on the choice of

nonlinearity.

The first comprehensive analytical study of the blind equalization problem was presented

by Benveniste, Goursat, and Ruget in Benveniste et al. (1980a;b). They established that if
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Adaptive Blind Channel Equalization 3

the transmitted signal is composed of non-Gaussian, independent and identically distributed

samples, both channel and equalizer are linear time-invariant filters, noise is negligible, and

the probability density functions of transmitted and equalized signals are equal, then the

channel has been perfectly equalized. This mathematical result is very important since it
establishes the possibility of obtaining an equalizer with the sole aid of signal’s statistical

properties and without requiring any knowledge of the channel impulse response or training

data sequence. Note that the very term “blind equalization” can be attributed to Benveniste

and Goursat from the title of their paper Benveniste & Goursat (1984). This seminal paper

established the connection between the task of blind equalization and the use of higher-order

statistics of the channel output. Through rigorous analysis, they generalized the original Sato

algorithm into a class of algorithms based on non-MSE cost functions. More importantly, the

convergence properties of the proposed algorithms were carefully investigated.

The second analytical landmark occurred in 1990 when Shalvi and Weinstein significantly

simplified the conditions for blind equalization, see Shalvi & Weinstein (1990). Before this

work, it was usually believed that one needs to exploit infinite statistics to ensure zero-forcing

equalization. Shalvi and Weinstein showed that the zero-forcing equalization can be achieved

if only two statistics of the involved signals are restored. Actually, they proved that, if

the fourth order cumulant (kurtosis) is maximized and the second order cumulant (energy)

remains the same, then the equalized signal would be a scaled and rotated version of the

transmitted signal. Interesting accounts on Shalvi and Weinstein criterion can be found in

Tugnait et al. (1992) and Romano et al. (2011).

3. System model and “Bussgang” blind equalizer

The baseband model for a typical complex-valued data communication system consists of an

unknown linear time-invariant channel {h} which represents the physical inter-connection

between the transmitter and the receiver. The transmitter generates a sequence of

complex-valued random input data {an}, each element of which belongs to a complex

alphabet A. The data sequence {an} is sent through the channel whose output xn is observed

by the receiver. The input/output relationship of the channel can be written as:

xn = ∑
k

an−khk + νn, (1)

where the additive noise νn is assumed to be stationary, Gaussian, and independent of the
channel input an. We also assume that the channel is stationary, moving-average and has
finite length. The function of equalizer at the receiver is to estimate the delayed version

of original data, an−δ, from the received signal xn. Let wn = [wn,0, wn,1, · · · , wn,N−1]
T

be vector of equalizer coefficients with N elements (superscript T denotes transpose). Let

xn = [xn, xn−1 · · · , xn−N+1]
T be the vector of channel observations. The output of the

equalizer is
yn = w

H
n xn (2)

where superscript H denotes conjugate transpose. If {t} = {h} ⋆ {w∗} represents the overall
channel-equalizer impulse response (where ⋆ denotes convolution), then (2) can be expressed
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4 Digital Communication

as:

yn = ∑i w∗
i xn−i = ∑l an−ltl + ν

′
n = tδ an−δ + ∑

l �=δ

tl an−l + ν
′
n

︸ ︷︷ ︸
signal + ISI + noise

(3)

Equation (3) distinctly exposes the effects of multi-path inter-symbol interference and additive
noise. Even in the absence of additive noise, the second term can be significant enough to
cause an erroneous detection.

The idea behind a Bussgang blind equalizer is to minimize (or maximize), through the
choice of equalizer filter coefficients w, a certain cost function J, depending on the equalizer
output yn, such that yn provides an estimate of the source signal an up to some inherent
indeterminacies, giving, yn = α an−δ, where α = |α|ejγ ∈ C represents an arbitrary gain. The
phase γ represents an isomorphic rotation of the symbol constellation and hence is dependent
on the rotational symmetry of signal alphabets; for example, γ = mπ/2 radians, with
m ∈ {0, 1, 2, 3} for a quadrature amplitude modulation (QAM) system. Hence, a Bussgang
blind equalizer tries to solve the following optimization problem:

w
† = arg optimizew J, with J = E[J (yn)] (4)

The cost J is an expression for implicitly embedded higher-order statistics of yn and J (yn) is a
real-valued function. Ideally, the cost J makes use of statistics which are significantly modified
as the signal propagates through the channel, and the optimization of cost modifies the
statistics of the signal at the equalizer output, aligning them with those at channel input. The
equalization is accomplished when equalized sequence yn acquires an identical distribution
as that of the channel input an, see Benveniste et al. (1980a). If the implementation method is
realized by stochastic gradient-based adaptive approach, then the updating algorithm is

wn+1 = wn ± μ

(
∂J
∂wn

)∗
(5a)

= wn + μΦ(yn)
∗
xn, with Φ(yn) = ± ∂J

∂y∗n
(5b)

where μ is step-size, governing the speed of convergence and the level of steady-state
performance, see Haykin (1996). The positive and negative signs in (5a) are respectively
for maximization and minimization. The complex-valued error-function Φ(yn) can be
understood as an estimate of the difference between the desired and the actual equalizer
outputs. That is, Φ(yn) = Ψ(yn)− yn, where Ψ(yn) is an estimate of the transmitted data an.
The nonlinear memory-less estimate, Ψ(yn), is usually referred to as Bussgang nonlinearity
and is selected such that, at steady state, when yn is close to an−δ, the autocorrelation of yn

becomes equal to the cross-correlation between yn and Ψ(yn), i.e.,

E [ynΦ(yn−i)
∗] = 0 ⇒ E

[
yn y∗n−i

]
= E [ynΨ(yn−i)

∗]

An admissible estimate of Ψ(yn), however, is the conditional expectation E [an′ |yn], see
Nikias & Petropulu (1993). Using Bayesian estimation technique, E [an′ |yn] was derived in
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Adaptive Blind Channel Equalization 5

Bellini (1986); Fiori (2001); Haykin (1996); Pinchas & Bobrovsky (2006; 2007). These methods,
however, rely on explicit computation of higher-order statistics and are not discussed here.

4. Trained and blind equalization design methodologies

Generally, a blind equalization algorithm attempts to invert the channel using both the
received data samples and certain known statistical properties of the input data. For example,
it is easy to show that for a minimum phase channel, the spectra of the input and output
signals of the channel can be used to determine the channel impulse response. However,
most communication channels do not possess minimum phase. To identify a non-minimum
phase channel, a non-Gaussian signal is required along with nonlinear processing at the
receiver using higher-order moments of the signal, see Benveniste et al. (1980a;b). Based
upon available analysis, simulations, and experiments in the literature, it can be said that
an admissible blind cost function has two main attributes: 1) it makes use of statistics which
are significantly modified as the signal propagates through the channel, and 2) optimization
of the cost function modifies the statistics of the signal at the channel output, aligning them
with the statistics of the signal at the channel input.

Designing a blind equalization cost function has been lying strangely more in the realm of
art than science; majority of the cost functions tend to be proposed on intuitive grounds
and then validated. Due to this reason, a plethora of blind cost functions is available in
literature. On the contrary, the fact is that there exist established methods which facilitate the
designing of blind cost functions requiring statistical properties of transmitted and received
signals. One of the earliest methods originated in late 70’s in geophysics community who
sought to determine the inverse of the channel in seismic data analysis and it was named
minimum entropy deconvolution (MED), see Gray (1979b); Wiggins (1977). Later in early
90’s, Satorius and Mulligan employed MED principle and came up with several proposals to
blindly equalize the communication channels, see Satorius & Mulligan (1993). However, those
marvelous signal-specific proposals regrettably failed to receive serious attention.

In the sequel, we discuss MED along with other popular methods for designing blind cost
functions and corresponding adaptive equalizers.

4.1 Lucky criterion

In 1965, Lucky suggested that the propagation channel may be inverted by an equalizer if
equalizer minimizes the following peak distortion criterion, see Lucky (1965):

Jpeak =
1

|tδ| ∑
l �=δ

|tl | (6)

This criterion is equivalent to requiring that the equalizer maximizes the eye opening. the
intuitive explanation of (6) is as follows. From (3), ignoring the noise, obtain the value of error
E due to ISI, given as E = yn − an−δ = an−δ (tδ − 1) + ∑l �=δ tl an−l . Assuming the maximum
and minimum values of an are ã and −ã, respectively; the maximum error is easily written as

Emax = |yn − an−δ|max = |an−δ| |tδ − 1|+ ã ∑
l �=δ

|tl | (7)
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6 Digital Communication

If tδ is close to unity, then the cost Jpeak is the scaled version of Emax as given by Jpeak ≈
Emax/(|tδ|ã). It is important to note that the cost Jpeak is a convex function of the equalizer
weights and has a well-defined minimum. Thus any minimum of Jpeak found by gradient
search or other systematic programming methods must be the absolute (or global) minimum
of distortion, see Lucky (1966). To prove the convexity of Jpeak, it is necessary to show that for

two equalizer settings w(a) and w(b) and for all η, 0 ≤ η ≤ 1

Jpeak(η w
(a) + (1 − η)w(b)) ≤ η Jpeak(w

(a)) + (1 − η)Jpeak(w
(b)) (8)

The above equation shows that the distortion always lies on or beneath the chord joining
values of distortion in N-spaces. Below is the proof of (8):

Jpeak(η w
(a) + (1 − η)w(b)) = ∑

l �=δ

∣∣∣∣∑
k

hk

(
η (w

(a)
l−k)

∗ + (1 − η)(w
(b)
l−k)

∗)
∣∣∣∣

≤ η ∑
l �=δ

∣∣∣∣∑
k

hk(w
(a)
l−k)

∗
∣∣∣∣+ (1 − η) ∑

l �=δ

∣∣∣∣∑
k

hk(w
(b)
l−k)

∗
∣∣∣∣

= η Jpeak(w
(a)) + (1 − η)Jpeak(w

(b)).

(9)

However, in practice, it is not an easy one to achieve this convexity in a gradient search
(adaptive) procedure, as it is necessary to obtain the projection of the gradient onto the
constraint hyperplane, see Allen & Mazo (1973). Alternatively one can also seek to minimize
the mean-square distortion criterion:

Jms =
1

|tδ|2 ∑
l �=δ

|tl |2 (10)

The cost Jms is not convex but unimodal, mathematically tractable and capable of yielding
admissible solution, see Allen & Mazo (1973). Under the assumption |tδ| = max{|t|}, Shalvi
& Weinstein (1990) used the expression (10) to quantify ISI, i.e., ISI = Jms. Using criterion (10),
we can formulate the following tractable problem for ISI mitigation:

w
† = arg min

w
∑
l �=δ

|tl |2 s.t. |tδ| = 1. (11)

where we have assumed that the equalizer coefficients (w†) have been selected such that the
condition (|tδ| = 1) is always satisfied. Introducing the channel autocorrelation matrix H,
whose (i, j) element is given by Hij = ∑k hk−ih

∗
k−j, we can show that ∑l |tl |2 = wH

n Hwn. The

equalizer has to make one of the coefficients of {tl} say tδ = t0 = w
H
n h to be unity and others

to be zero, where h = [hK−1, hK−2, · · · , h1, h0]
T; it gives the value of ISI of an unequalized

system at time index n as follows:

ISI =
wH

n Hwn

|wH
n h|2 − 1. (12)
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Adaptive Blind Channel Equalization 7

Now consider the optimization of the problem (11). Using Lagrangian multiplier λ, we obtain

∑
l �=δ

|tl|2 + λ (tδ − 1) = w
H
n Hwn − 1 + λ

(
w

H
n h − 1

)
(13)

Next differentiating with respect to w∗
n and equating to zero, we get Hwn + λh = 0 ⇒ wn =

−λH−1
h. Substituting the above value of wn in (12), we obtain

ISIn =
h

H
H

−1
h

|hH
H

−1
h|2

− 1. (14)

To appreciate the possible benefit of solution (14), consider a channel h−1 = 1 − ε, h0 = ε and
h1 = 0, where 0 ≤ ε ≤ 1. Without equalizer, we have

ISI =
(1 − ε)2 + ε2

max(1 − ε, ε)2
− 1. (15)

The ISI approaches zero when ε is either zero or unity. Assuming a 2-tap equalizer, we obtain

H =

[
(1 − ε)2 + ε2 (1 − ε)ε
(1 − ε)ε (1 − ε)2 + ε2

]
(16)

Using (14) and (16), we obtain

ISI =
ε2(1 − ε)2

1 − 4ε + 6ε2 − 4ε3 + 2ε4
. (17)

Refer to Fig. 1, the ISI (17) of the equalized system is lower than that of the uncompensated
system. The adaptive implementation of Jms can be realized in a supervised scenario.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ε

IS
I

 

 

Equalized

Unequalized

Fig. 1. ISI of unequalized and equalized systems.

Combining the two expression (7) and (10), the following cost is obtained which is usually
termed as mean square error (MSE) criterion, see Widrow et al. (1975):

Jmse = E

[∣∣an−δ − yn

∣∣2
]

(18)

99Adaptive Blind Channel Equalization
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8 Digital Communication

Minimizing (18), we obtain the following update:

wn+1 = wn + μ (an−δ − yn)
∗

xn, (19)

which is known as LMS algorithm or Widrow-Hoff algorithm. Note that the parameter μ is a
positive step-size and the following value of μ ≡ μLMS ensures the stability of algorithm, see
Farhang-Boroujeny (1998):

0 < μLMS <
1

2NPa
, (20)

where Pa = E
[
|a|2

]
is the average energy of signal an and N is the length of equalizer.

4.2 Minimum entropy deconvolution criterion

The minimum entropy deconvolution (MED) is probably the earliest principle for designing
cost functions for blind equalization. This principle was introduced by Wiggins in seismic data
analysis in the year 1977, who sought to determine the inverse channel w† that maximizes the
kurtosis of the deconvolved data yn, see Wiggins (1977; 1978). For seismic data, which are
super-Gaussian in nature, he suggested to maximize the following cost:

1
B ∑

B
b=1 |yn−b+1|4(

1
B ∑

B
b=1 |yn−b+1|2

)2
(21)

This deconvolution scheme seeks the smallest number of large spikes consistent with the data,
thus maximizing the order or, equivalently, minimizing the entropy or disorder in the data,
Walden (1985). Note that the equation (21) has the statistical form of sample kurtosis and the
expression is scale-invariant. Later, in the year 1979, Gray generalized the Wiggins’ proposal
with two degrees of freedom as follows, Gray (1979b):

J
(p,q)
med ≡

1
B ∑

B
b=1 |yn−b+1|p

(
1
B ∑

B
b=1 |yn−b+1|q

) p
q

(22)

The criterion was rigorously investigated in Donoho (1980), where Donoho developed general
rules for designing MED-type estimators. Several cases of MED, in the context of blind

deconvolution of seismic data, have appeared in the literature, like J
(2,1)
med in Ooe & Ulrych

(1979), J
(4,2)
med in Wiggins (1977), limε→0 J

(p−ε,p)
med in Claerbout (1977), J

(p,2)
med in Gray (1978), and

J
(2p,p)
med in Gray (1979a).

In the derivation of the criterion (22), it is assumed that the original signal an, which is primary
reflection coefficients in geophysical system or transmitted data in communication systems,
can be modeled as realization of independent non-Gaussian process with distribution

pA(a; α) =
α

2βΓ
(

1
α

) exp

(
− |a|α

βα

)
(23)

where signal an is real-valued, α is the shape parameter, β is the scale parameter, and Γ(·)
is the Gamma function. This family covers a wide range of distributions. The certain event
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Adaptive Blind Channel Equalization 9

(α = 0), double exponential (α = 1), Gaussian (α = 2), and uniform distributions (α → ∞)
are all members. For geophysical deconvolution problem, we have the range 0.6 ≤ α ≤ 1.5,
and for communication system where the signals are uniformly distributed we have (α → ∞).
Although, signals in communication are discrete, the equation (23) is still good to approximate
some densely and uniformly distributed signal.

In the context of geophysics, where the primary coefficient an is super-Gaussian, maximizing
the criterion (23) drives the distribution of deconvolved sequence yn away from pY (yn; p)
towards pY (yn; q), where p > q. However, for the communication blind equalization problem,
the underlying distribution of the transmitted (possibly pulse amplitude modulated) data
symbols are closer to a uniform density (sub-Gaussian) and thus we would minimize the cost
(23) with p > q. We have the following cost for blind equalization of communication channel:

w
† =

⎧
⎪⎨
⎪⎩

arg min
w

J
(p,q)
med , if p > q,

arg max
w

J
(p,q)
med , if p < q.

(24)

The feasibility of (24) for blind equalization of digital signals has been studied in Satorius &
Mulligan (1992; 1993) and Benedetto et al. (2008). In Satorius & Mulligan (1992), implementing
(24) with p > q, the following adaptive algorithm was obtained:

wn+1 = wn + μ
B̂

∑
k=1

(
∑

B
b=1 |yn−b+1|p

∑
B
b=1 |yn−b+1|q

|yn−k+1|q−2 − |yn−k+1|p−2

)
y∗n−k+1 xn−k+1, (25)

In the sequel, we will refer to (25) as Satorius-Mulligan algorithm (SMA). Also, for a detailed
discussion on the stochastic approximate realization of MED, refer to Walden (1988).

4.3 Constant modulus criterion

The most popular and widely studied blind equalization criterion is the constant modulus
criterion, Godard (1980); Treichler & Agee (1983); Treichler & Larimore (1985); it is given by

Jcm = E

[(
|yn|2 − Rcm

)2
]

, (26)

where Rcm = E
[
|a|4

]
/E

[
|a|2

]
is a statistical constant usually termed as dispersion constant.

For an input signal that has a constant modulus |an| =
√

Rcm, the criterion penalizes output
samples yn that do not have the desired constant modulus characteristics. This modulus
restoral concept has a particular advantage in that it allows the equalizer to be adapted
independent of carrier recovery. Because the cost is insensitive to the phase of yn, the
equalizer adaptation can occur independently and simultaneously with the operation of the
carrier recovery system. This property also makes it applicable to analog modulation signals
with constant amplitude such as those using frequency or phase modulation, see Treichler
& Larimore (1985). The stochastic gradient-descent minimization of (26) yields the following
algorithm:

wn+1 = wn + μ
(

Rcm − |yn|2
)

y∗n xn, (27)

101Adaptive Blind Channel Equalization
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10 Digital Communication

which is usually termed as constant modulus algorithm (CMA). Note that, considering B̂ = 1,
p = 4, q = 2 and large B, SMA (25) reduces to CMA.

If data symbols are independent and identically distributed, noise is negligible and the length
of the equalizer is infinite then after some calculations, the CM cost may be expressed as a
function of joint channel-equalizer impulse response coefficients as follows:

Jcm =
(
E[|an|4]− 2E[|an|2]2

)
∑

l

|tl|4 + 2E[|an|2]2
(

∑
l

|tl |2
)2

− 2E[|an|4]∑
l

|tl |2 + const.

(28)
As in Godard (1980), the partial derivative of Jcm with respect to tk can be written as

∂ Jcm

∂ tk
= 4tk

(
E[|an|4](|tk|2 − 1) + 2E[|an|2]2 ∑

l �=k

|tl |2
)

(29)

The minimum can be found by solving ∂ Jcm

∂ tk
= 0, i.e.,

tk

(
E[|an|4](|tk|2 − 1) + 2E[|an|2]2 ∑

l �=k

|tl|2
)

= 0, ∀ k (30)

Unfortunately, the set of equations has an infinite number of solutions; the cost Jcm is thus
non-convex. The solutions TM, M = 1, 2, · · ·, can be represented as follows: all elements
of the set {tl} are equal to zero, except M of them and those non-zero elements have equal
magnitude of σ2

M defined by

σ2
M =

E[|an|4]
E[|an|4] + 2(M− 1)E[|an|2]2

(31)

Among these solutions, under the condition E[|an|4] < 2E[|an|2]2, the solution T1 is that for
which the energy is the largest at the equalizer output and ISI is zero. The absolute minimum
of Jcm is therefore reached in the case of zero IS1.

4.4 Shtrom-Fan criterion

In the year 1998, Shtrom and Fan presented a class of cost functions for achieving blind
equalization which were solely the function of {t} parameters, see Shtrom & Fan (1998). They
suggested to minimize the difference between any two norms of the joint channel-equalizer
impulse response, each raised to the same power, i.e.,

Jsf =

(

∑
l

|tl |p
)r/p

−
(

∑
l

|tl |q
)r/q

, p < q and r > 0 (32)

where p, q, r ∈ ℜ. This proposal was based on the following property of vector norms:

lim
s→0

s
√

∑
l

|tl |s ≥ · · · ≥ p
√

∑
l

|tl|p ≥ q
√

∑
l

|tl |q ≥ · · · ≥ lim
m→∞

m
√

∑
l

|tl|m (33)
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where p < q and equality occurs if and only if tl = ±δl−k, k ∈ Z, which is precisely the
zero-forcing condition. From the above there is a multitude of cost functions to choose from.
From (32), we have following possibilities to minimize:

∑l |tl | − maxl{|tl |}, (p = 1, q → ∞, r = 1) (34a)

(∑l |tl |)2 − ∑l |tl |2, (p = 1, q = r = 2) (34b)

(∑l |tl|2)2 − ∑l |tl |4, (p = 2, q = r = 4) (34c)

(∑l |tl|2)3 − ∑l |tl |6, (p = 2, q = r = 6) (34d)

(∑l |tl |4)2 − ∑l |tl|8, (p = 4, q = r = 8). (34e)

Some of these cost functions are easily implementable, whereas others are not.

Consider p = 2 and q = r = 2m in (32) to obtain a subclass:

Jsub
sf =

(

∑
l

|tl |2
)m

− ∑
l

|tl |2m (35)

This subclass is not convex, although it is potentially unimodal in t domain and easily
implementable. As in Shtrom & Fan (1998), the partial derivative of Jsub

sf with respect to tk

can be written as

∂ Jsub
sf

∂ tk
= 2mtk

⎛
⎝
(

∑
l

|tl |2
)m−1

− |tk|2(m−1)

⎞
⎠ (36)

The equation (36) has two solutions, one of which corresponds to tl = 0, ∀l. This solution
will not occur if a constraint is imposed. The other solution is the minimum corresponding to
zero-forcing condition. This is seen from (36) as ∑l |tl|2 = |tk|2, which can only hold when t

has at most one nonzero element, i.e., the desired delta function. Now compare this result with
that of constant modulus in equation (31) which contains multiple nonzero-forcing solutions.
It means, in contrast to CMA, it is less likely to have local minima in Jsub

sf in equalizer domain.

The cost functions (34a), in their current form, are not directly applicable in real scenario as
we have no information of {t}’s. These costs need to be converted from functions of {t}’s to
functions of yn’s. As in Shtrom & Fan (1998), we can show that

∑l |tl |2 =
C

yn

1,1

Ca
1,1

=
E[|yn|2]
E[|a|2] (37a)

∑l |tl|4 =
C

yn

2,2

Ca
2,2

=
E[|yn|4]− 2E[|yn|2]2
E[|a|4]− 2E[|a|2]2 (37b)

∑l |tl |6 =
C

yn

3,3

Ca
3,3

=
E[|yn|6]− 9E[|yn|4]E[|yn|2] + 12E[|yn|2]3

E[|a|6]− 9E[|a|4]E[|a|2] + 12E[|a|2]3 (37c)

where Cz
p,q is (p + q)th order cumulant of complex random variable defined as follows:

Cz
p,q = cumulant

(
z, · · · , z︸ ︷︷ ︸

p terms

; z∗, · · · , z∗︸ ︷︷ ︸
q terms

)
(38)
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Using (37a) and assuming m = 2, we obtain the following expression for Jsub
sf :

Jsub
sf =

(
E[|yn|2]
E[|a|2]

)2

− E[|yn|4]− 2E[|yn|2]2
E[|a|4]− 2E[|a|2]2 (39)

Minimizing (39) with respect to coefficients w∗, we obtain the following adaptive algorithm:

wn+1 = wn + μ

(
Rcm

Pa
Ê[|yn|2]− |yn|2

)
y∗n xn, (40a)

Ê[|yn+1|2] = Ê[|yn|2] + 1
n

(
|yn|2 − Ê[|yn|2]

)
(40b)

where Pa is the average energy of signal an and Rcm is the same statistical constant as we
defined in CMA. Note that the algorithm requires an iterative estimate of equalizer output
energy. We will refer to (40) as Shtrom-Fan Algorithm (SFA).

4.5 Shalvi-Weinstein criterion

Earlier to Shtrom and Fan, in the year 1990, Shalvi and Weinstein suggested a criterion that
laid the theoretical foundation to the problem of blind equalization, see Shalvi & Weinstein
(1990). They demonstrated that the condition of equality between the PDF’s of the transmitted
and equalized signals, due to BGR theorem Benveniste et al. (1980a;b), was excessively tight.
Under the similar assumptions, as laid by Benveniste et al., they demonstrated that it is
possible to perform blind equalization by satisfying the condition E[|yn|2] = E[|an|2] and
ensuring that a nonzero cumulant of order higher than 2 of an and yn are equal.

For a two dimensional signal an with four-quadrant symmetry (i.e., E[a2
n] = 0), they suggested

to maximize the following unconstrained cost function (which involved second and fourth
order cumulants):

Jsw = sgn

[
Can

2,2

] (
C

yn

2,2 + (γ1 + 2)
(

C
yn

1,1

)2
+ 2γ2 C

yn

1,1

)
(41a)

= sgn

[
Can

2,2

] (
E

[
|yn|4

]
+ γ1E

[
|yn|2

]2
+ 2γ2E

[
|yn|2

])
(41b)

where γ1 and γ2 are some statistical constants. The corresponding stochastic gradient
algorithm is given by

wn+1 = wn + μ sgn[Can
2,2]

(
γ1Ê[|yn|2] + |yn|2 + γ2

)
y∗n xn, (42a)

Ê[|yn+1|2] = Ê[|yn|2] +
1

n

(
|yn|2 − Ê[|yn|2]

)
(42b)

where (sgn[Can
2,2] = −1) due to the sub-Gaussian nature of digital signals. The above

algorithm is usually termed as Shalvi-Weinstein algorithm (SWA). Note that SWA unifies
CMA and SFA (i.e., the specific case in Equation (40)). Substituting γ1 = 0 and γ2 = −Rcm

in SWA, we obtain CMA (27). Similarly, substituting γ2 = 0 and γ1 = −Rcm/Pa in SWA,
we obtain SFA (40). Note that the Shtrom-Fan criterion appears to be the generalization of
Shalvi-Weinstein criterion with cumulants of generic orders.
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5. Blind equalization of APSK signal: Employing MED principle

5.1 Designing a blind cost function

We employ MED principle and use the PDFs of transmitted amplitude-phase shift-keying
(APSK) and ISI-affected received signal to design a cost function for blind equalization.
Consider a continuous APSK signal, where signal alphabets {aR + j aI} ∈ A are assumed
to be uniformly distributed over a circular region of radius Ra and center at the origin. The
joint PDF of aR and aI is given by (refer to Fig. 3(a))

pA(aR + j aI) =

⎧
⎨
⎩

1

πR2
a

,
√

a2
R + a2

I ≤ Ra,

0, otherwise.
(43)

Now consider the transformation Y =
√

a2
R + a2

I and Θ = ∠(aR, aI), where Y is the modulus

and ∠() denotes the angle in the range (0, 2π) that is defined by the point (i, j). The joint
distribution of the modulus Y and Θ can be obtained as pY ,Θ(ỹ, θ̃) = ỹ/(πR2

a), ỹ ≥ 0, 0 ≤
θ̃ < 2π. Since Y and Θ are independent, we obtain a triangular distribution for Y given by
pY (ỹ : H0) = 2ỹ/R2

a, ỹ ≥ 0, where H0 denotes the hypothesis that signal is distortion-free.
Let Yn,Yn−1, · · · ,Yn−N+1 be a sequence, of size N, obtained by taking modulus of randomly

R
a

a
I

a
R

a) b)

Fig. 2. a) A continuous APSK, and b) a discrete practical 16APSK.

generated distortion-free signal alphabets A, where subscript n indicates discrete time index.
Let Z1,Z2, · · · ,ZN be the order statistic of sequence {Y}. Let pY (ỹn, ỹn−1, · · · , ỹn−N+1 : H0)
be an N-variate density of the continuous type, then, under the hypothesis H0, we obtain

pY (ỹn, ỹn−1, · · · , ỹn−N+1 : H0) =
2N

R2N
a

N

∏
k=1

ỹn−k+1. (44)

Next we find p∗Y (ỹn, ỹn−1, · · · , ỹn−N+1 : H0) as follows:

p∗Y (ỹn , ỹn−1, · · · , ỹn−N+1 : H0) =
∫ ∞

0
pY (λỹn, λỹn−1, · · · , λỹn−N+1 : H0)λ

N−1 dλ

=
2N

R2N
a

N

∏
k=1

ỹn−k+1

∫ Ra/z̃N

0
λ2N−1 dλ =

2N−1

N (z̃N)2N

N

∏
k=1

ỹn−k+1,

(45)
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where z̃1, z̃2, · · · , z̃N are the order statistic of elements ỹn, ỹn−1, · · · , ỹn−N+1, so that z1 =
min{ỹ} and zN = max{ỹ}. Now consider the next hypothesis (H1) that signal suffers with
multi-path interference as well as with additive Gaussian noise (refer to Fig. 3(b)). Due to
which, the in-phase and quadrature components of the received signal are modeled as normal
distributed; owing to central limit theorem, it is theoretically justified. It means that the
modulus of the received signal follows Rayleigh distribution,

pY (ỹ : H1) =
ỹ

σ2
ỹ

exp

(
− ỹ2

2σ2
ỹ

)
, ỹ ≥ 0, σỹ > 0. (46)
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2
0

0.2

0.4

0.6

0.8

1

a) b)

Fig. 3. PDFs (not to scale) of a) continuous APSK and b) Gaussian distributed received signal.

The N-variate densities pY (ỹn, ỹn−1, · · · , ỹn−N+1 : H1) and p∗Y (ỹn , ỹn−1, · · · , ỹn−N+1 : H1)
are obtained as

pY (ỹn, ỹn−1, · · · , ỹn−N+1 : H1) =
1

σ2N
ỹ

N

∏
k=1

ỹn−k+1 exp

(
−

ỹ2
n−k+1

2σ2
ỹ

)
(47)

p∗Y (ỹn , ỹn−1, · · · , ỹn−N+1 : H1) =
∏

N
k=1 ỹn−k+1

σ2N
ỹ

∫ ∞

0
exp

(
−

λ2 ∑
N
k′=1 ỹ2

n−k′+1

2σ2
ỹ

)
λ2N−1 dλ (48)

Substituting u = 1
2 λ2σ−2

ỹ ∑
N
k′=1 ỹ2

n−k′+1, we obtain

p∗Y (ỹn , ỹn−1, · · · , ỹn−N+1 : H1) =
2N−1Γ (N)

(
∑

N
k=1 ỹ2

n−k+1

)N

N

∏
k=1

ỹn−k+1 (49)

The scale-invariant uniformly most powerful test of p∗Y (ỹn, ỹn−1, · · · , ỹn−N+1 : H0) against
p∗Y (ỹn, ỹn−1, · · · , ỹn−N+1 : H1) provides us, see Sidak et al. (1999):

O(ỹn) =
p∗Y (ỹn, ỹn−1, · · · , ỹn−N+1 : H0)

p∗Y (ỹn, ỹn−1, · · · , ỹn−N+1 : H1)
=

1

N!

[
∑

N
k=1 ỹ2

n−k+1

z̃2
N

]N
H0

≷
H1

C (50)
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where C is a threshold. Assuming large N, we can approximate 1
N ∑

N
k=1 ỹ2

n−k+1 ≈ E

[
|yn|2

]
.

It helps obtaining a statistical cost for the blind equalization of APSK signal as follows:

w
† = arg max

w

E

[
|yn|2

]

(max {|yn|})2
(51)

Based on the previous discussion, maximizing cost (51) can be interpreted as determining the
equalizer coefficients, w, which drives the distribution of its output, yn , away from Gaussian
distribution toward uniform, thus removing successfully the interference from the received
APSK signal. Note that the above result (51) may be obtained directly from (24) by substituting
p = 2 and q → ∞, see Abrar & Nandi (2010b).

5.2 Admissibility of the proposed cost

The cost (51) demands maximizing equalizer output energy while minimizing the largest
modulus. Since the largest modulus of transmitted signal an is Ra, incorporating this a priori
knowledge, the unconstrained cost (51) can be written in a constrained form as follows:

w
† = arg max

w
E

[
|yn|2

]
s.t. max {|yn|} ≤ Ra. (52)

By incorporating Ra, it would be possible to recover the true energy of signal an upon
successful convergence. Also note that max{|yn|} = Ra ∑l |tl | and E

[
|yn|2

]
= Pa ∑l |tl |2.

Based on which, we note that the cost (52) is quadratic, and the feasible region (constraint)
is a convex set (proof of which is similar to that in Equation (9)). The problem, however,
is non-convex and may have multiple local maxima. Nevertheless, we have the following
theorem:

Theorem: Assume w† is a local optimum in (52), and t† is the corresponding total channel
equalizer impulse-response and channel noise is negligible. Then it holds |tl | = δl−l† .

Proof: Without loss of generality we assume that the channel and equalizer are real-valued.
We re-write (52) as follows:

w
† = arg max

w
∑

l

t2
l s.t. ∑

l

|tl | ≤ 1. (53)

Now consider the following quadratic problem in t domain

t
† = arg max

t
∑

l

t2
l s.t. ∑

l

|tl| ≤ 1. (54)

Assume t( f ) is a feasible solution to (54). We have

∑
l

t2
l ≤

(

∑
l

|tl|
)2

≤ 1 (55)

and (

∑
l

|tl |
)2

= ∑
l

t2
l + ∑

l1

∑
l2, l2 �=l1

|tl1
tl2
| (56)
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The first equality in (55) is achieved if and only if all cross terms in (56) are zeros. Now assume

that t
(k) is a local optimum of (54), i.e., the following proposition holds

∃ ε > 0, ∀ t
( f ), ‖t

( f ) − t
(k)‖2 ≤ ε (57)

⇒ ∑l(t
(k)
l )2 ≥ ∑l(t

( f )
l )2. Suppose t(k) does not satisfy the Theorem. Consider t(c) defined by

t
(c)
l1

= t
(k)
l1

+
ε√
2

,

t
(c)
l2

= t
(k)
l2

− ε√
2

,

and t
(c)
l = t

(k)
l , l �= l1, l2. We also assume that t

(k)
l2

< t
(k)
l1

. Next, we have ‖t(c) − t(k)‖2 = ε,

and ∑l |t
(c)
l | = ∑l |t

(k)
l | ≤ 1. However, one can observe that

∑
l

(t
(k)
l )2 − ∑

l

(t
(c)
l )2 =

√
2ε
(

t
(k)
l2

− t
(k)
l1

)
− ε2

< 0, (58)

which means t(k) is not a local optimum to (54). Therefore, we have shown by a
counterexample that all local maxima of (54) should satisfy the Theorem.

5.3 Adaptive optimization of the proposed cost

For a stochastic gradient-based adaptive implementation of (52), we need to modify it to
involve a differentiable constraint; one of the possibilities is

w
† = arg max

w
E

[
|yn|2

]
s.t. fmax(Ra, |yn|) = Ra, (59)

where we have used the following identity (below a, b ∈ C):

fmax(|a|, |b|) ≡
∣∣|a|+ |b|

∣∣+
∣∣|a| − |b|

∣∣
2

=

{
|a|, if |a| ≥ |b|
|b|, otherwise.

(60)

The function fmax is differentiable, viz

∂ fmax(|a|, |b|)
∂a∗

=
a
(
1 + sgn

(
|a| − |b|

))

4|a| =

{
a/(2|a|), if |a| > |b|
0, if |a| < |b| (61)

If |yn| < Ra, then the cost (59) simply maximizes output energy. However, if |yn| > Ra,
then the constraint is violated and the new update wn+1 is required to be computed such
that the magnitude of a posteriori output wH

n+1xn becomes smaller than or equal to Ra. Next,
employing Lagrangian multiplier, we get

w
† = arg max

w

{
E[|yn|2] + λ(fmax (Ra, |yn|)− Ra)

}
. (62)

The stochastic approximate gradient-based optimization of w† = arg maxw E[J ] is realized
as wn+1 = wn + μ ∂J /∂w∗

n, where μ > 0 is a small step-size. Differentiating (62) with respect
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to w
∗
n gives

∂|yn|2
∂w∗

n
=

∂|yn|2
∂yn

∂yn

∂w∗
n
= y∗n xn

and

∂fmax(Ra, |yn|)
∂w∗

n
=

∂fmax(Ra, |yn|)
∂yn

∂yn

∂w∗
n
=

gny∗n
4|yn|

xn,

where gn ≡ 1 + sgn (|yn| − Ra); we obtain wn+1 = wn + μ
(
1 + λ gn/

(
4|yn|

))
y∗nxn. If |yn| <

Ra, then gn = 0 and wn+1 = wn + μy∗nxn. Otherwise, if |yn| > Ra, then gn = 2 and

wn+1 = wn + μ (1 + λ/(2 |yn|)) y∗nxn.

As mentioned earlier, in this case, we have to compute λ such that wH
n+1xn lies inside the

circular region without sacrificing the output energy. Such an update can be realized by
minimizing |yn|2 while satisfying the Bussgang condition, see Bellini (1994). Note that the
satisfaction of Bussgang condition ensures recovery of the true signal energy upon successful
convergence. One of the possibilities is λ = −2(1 + β)|yn|, β > 0, which leads to

wn+1 = wn + μ(−β)y∗n xn.

The Bussgang condition requires

E
[
yny∗n−i

]
︸ ︷︷ ︸

|yn|<Ra

+ (−β)E
[
yny∗n−i

]
︸ ︷︷ ︸

|yn|>Ra

= 0, ∀i ∈ Z (63)

In steady-state, we assume yn = an−δ + un, where un is convolutional noise. For i �= 0, (63)
is satisfied due to uncorrelated an and independent and identically distributed samples of un.
Let an comprises M distinct symbols on L moduli {R1, · · · , RL}, where RL = Ra is the largest
modulus. Let Mi denote the number of unique (distortion-free) symbols on the ith modulus,
i.e., ∑

L
l=1 Ml = M. With negligible un, we solve (63) for i = 0 to get

M1R2
1 + · · ·+ ML−1R2

L−1 +
1

2
MLR2

L −
β

2
MLR2

L = 0 (64)

The last two terms indicate that, when |yn| is close to RL, it would be equally likely to update
in either direction. Noting that ∑

L
l=1 MlR

2
l = MPa, the simplification of (64) gives

β = 2
M

ML

Pa

R2
a
− 1. (65)

The use of (65) ensures recovery of true signal energy upon successful convergence. Finally
the proposed algorithm is expressed as

wn+1 = wn + μ f(yn) y∗n xn,

f(yn) =

{
1, if |yn| ≤ Ra

−β, if |yn| > Ra.

(66)
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Note that the error-function f(yn)y
∗
n has 1) finite derivative at the origin, 2) is increasing for

|yn| < Ra, 3) decreasing for |yn| > Ra and 4) insensitive to phase/frequency offset errors. In
Baykal et al. (1999), these properties 1)-4) have been regarded as essential features of a constant
modulus algorithm; this motivates us to denote (66) as βCMA.

5.4 Stability of the derived adaptive algorithm

In this Section, we carry out a deterministic stability analysis of βCMA for any bounded
magnitude received signal. The analysis relies on the analytical framework of Rupp & Sayed
(2000). We shall assume that the successive regression vectors {xi} are nonzero and also
uniformly bounded from above and from below. We update the equalizer only when its
output amplitude is higher than certain threshold; we stop the update otherwise.

In our analysis, we assume that the threshold is Ra. So we only consider those updates when
|yn| > Ra; we extract and denote the active update steps with time index k. We study the
following form:

wk+1 = wk + μkΦ∗
k xk, Φk �= 0, k = 0, 1, 2, · · · (67)

where Φk ≡ Φ(yk) = f(yk)yk. Let w∗ denote vector of the optimal equalizer and let zk =
wH∗ xk = ak−δ is the optimal output so that |zk| = Ra. Define the a priori and a posteriori
estimation errors

ea
k := zk − yk = w

H
k xk

e
p
k := zk − sk = w

H
k+1xk

(68)

where wk = w∗ − wk. We assume that |ea
k| is small and equalizer is operating in the vicinity

of w∗. We introduce a function ξ(x, y):

ξ(x, y) :=
Φ(y)− Φ(x)

x − y
=

f(y) y − f(x) x

x − y
, (x �= y) (69)

Using ξ(x, y) and simple algebra, we obtain

Φk = f(yk) yk = ξ(zk, yk)e
a
k (70)

e
p
k =

(
1 − μk

μk

ξ(zk, yk)

)
ea

k (71)

where μk = 1/‖xk‖2. For the stability of adaptation, we require |ep
k | < |ea

k |. To ensure it, we
require to guarantee the following for all possible combinations of zk and yk:

∣∣∣∣1 −
μk

μk

ξ(zk, yk)

∣∣∣∣ < 1, ∀ k (72)

Now we require to prove that the real part of the function ξ(zk, yk) defined by (69) is positive
and bounded from below. Recall that |zk| = Ra and |yk| > Ra. We start by writing zk/yk = rejφ

for some r < 1 and for some φ ∈ [0, 2π). Then expression (69) leads to

ξ(zk, yk) =

(=−β)
︷ ︸︸ ︷
f(yk) yk −

(=0)
︷︸︸︷
f(zk) zk

zk − yk
=

β yk

yk − zk
=

β

1 − rejφ
.

(73)
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It is important for our purpose to verify whether the real part of β/(1 − rejφ) is positive. For
any fixed value of r, we allow the angle φ to vary from zero to 2π, then the term β/(1 − rejφ)
describes a circle in the complex plane whose least positive value is β/(1 + r), obtained for
φ = π, and whose most positive value is β/(1 − r), obtained for φ = 0. This shows that for
r ∈ (0, 1), the real part of the function ξ(zk, yk) lies in the interval

β

1 + r
≤ ξR(zk, yk) ≤

β

1 − r
(74)

Referring to Fig. 4, note that the function ξ(zk, yk) assumes values that lie inside a circle in the

✲

✻

(0, 0)
� � �

�

�

ξ I

ξR

(
β

1 + r
, 0

)✓
✓✼ (

β

1 − r
, 0

)❙❙♦(
β

1 − r2
, 0

)❆
❆❑

(
β

1 − r2
,

βr

1 − r2

)❆
❆❑

Fig. 4. Plot of ξ(zk, yk) for arbitrary β, r and φ ∈ [0, 2π).

right-half plane. From this figure, we can obtain the following bound for the imaginary part
of ξ(zk, yk) (that is ξ I(zk, yk)):

− β r

1 − r2
≤ ξ I(zk, yk) ≤

β r

1 − r2
. (75)

Let A and B be any two positive numbers satisfying

A2 + B2
< 1. (76)

We need to find a μk that satisfies

∣∣∣∣
μk

μk

ξ I(zk, yk)

∣∣∣∣ < A ⇒ μk <
A μk

|ξ I(zk, yk)|
(77)

and ∣∣∣∣1 −
μk

μk

ξR(zk, yk)

∣∣∣∣ < B ⇒ μk >
(1 − B)μk

ξR(zk, yk)
(78)

Combining (77) and (78), we obtain

0 <
(1 − B)μk

ξR(zk, yk)
< μk <

A μk

|ξ I(zk, yk)|
< 1 (79)

Using the extremum values of ξR(zk, yk) and ξ I(zk, yk), we obtain

(1 + r)(1 − B)

β ‖xk‖2
< μk <

(1 − r2)A

β r‖xk‖2
(80)
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We need to guarantee that the upper bound in the above expression is larger than the lower
bound. This can be achieved by choosing {A, B} properly such that

0 < (1 − B) <
1 − r

r
A < 1 (81)

From our initial assumptions that the equalizer is in the vicinity of open-eye solution and
|yk| > Ra, we know that r < 1. It implies that we require to determine the smallest value of r
which satisfies (81), or in other words, we have to determine the bound for step-size with the
largest equalizer output amplitude. In Fig. 5(a), we plot the function fr := (1 − r)/r versus r;
note that for 0.5 ≤ r < 1 we have fr ≤ 1.

1/5 1/2 1  
0

1

4

r

f r =
 (

1
−

r)
/r

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

B

f B

ρ = 1

ρ = 0.8

ρ = 0.6

ρ = 0.4

ρ = 0.2

a) b)

Fig. 5. Plots: a) fr and b) fB.

Let {Ao, Bo} be such that (1 − Bo) = ρAo, where 0 < ρ < 1. To satisfy (81), we need 0.5 ≤ r <
1 and ρ < (1 − r)/r. From (76), Bo must be such that

(1 − Bo)
2 ρ−2 + B2

o < 1 (82)

which reduces to the following quadratic inequality in Bo:

(
1 + ρ−2

)
B2

o − 2ρ−2Bo +
(

ρ−2 − 1
)
< 0. (83)

If we find a Bo that satisfies this inequality, then a pair {Ao, Bo} satisfying (76) and (81) exists.
So consider the quadratic function fB :=

(
1 + ρ−2

)
B2 − 2ρ−2B +

(
ρ−2 − 1

)
. It has a negative

minimum and it crosses the real axis at the positive roots B(1) =
(
1 − ρ2

)
/
(
1 + ρ2

)
, and

B(2) = 1. This means that there exist many values of B, between the roots, at which the
quadratic function in B evaluates to negative values (refer to Fig. 5(b)).

Hence, Bo falls in the interval (1 − ρ2)/(1 + ρ2) < Bo < 1; it further gives Ao = 2ρ/
(
1 + ρ2

)
.

Using {Ao, Bo}, we obtain

3ρ2

β (1 + ρ2) ‖xk‖2
< μk <

3ρ

β (1 + ρ2) ‖xk‖2
(84)
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Note that, arg minρ ρ2/(1 + ρ2) = 0, and arg maxρ ρ/(1 + ρ2) = 1. So making ρ = 0 and ρ = 1

in the lower and upper bounds, respectively, and replacing ‖xk‖2 with E
[
‖xk‖2

]
, we find the

widest stochastic stability bound on μk as follows:

0 < μ <
3

2βE [‖xk‖2]
. (85)

The significance of (85) is that it can easily be measured from the equalizer input samples. In

adaptive filter theory, it is convenient to replace E
[
‖xk‖2

]
with tr (R), where R = E

[
xkxH

k

]

is the autocorrelation matrix of channel observation. Also note that, when noise is negligible

and channel coefficients are normalized, the quantity tr (R) can be expressed as the product

of equalizer length (N) and transmitted signal average energy (Pa); it gives

0 < μβCMA <
3

2βNPa
(86)

Note that the bound (86) is remarkably similar to the stability bound of complex-valued LMS

algorithm (refer to expression (20)). Comparing (86) and (20), we obtain a simple and elegant

relation between the step-sizes of βCMA and complex-valued LMS:

μβCMA

μLMS
<

3

β
. (87)

6. Simulation results

We compare βCMA with CMA (Equation (27)) and SFA (Equation (40)). We consider

transmission of amplitude-phase shift-keying (APSK) signals over a complex voice-band

channel (channel-1), taken from Picchi & Prati (1987), and evaluate the average ISI traces

at SNR = 30dB. We employ a seven-tap equalizer with central spike initialization and use

8- and 16-APSK signalling. Step-sizes have been selected such that all algorithms reached

steady-state requiring same number of iterations. The parameter β is obtained as:

β =

{
1.535, for 8.APSK

1.559, for 16.APSK
(88)

Results are summarized in Fig. 6; note that the βCMA performed better than CMA and SFA

by yielding much lower ISI floor. Also note that SFA performed slightly better than CMA.

Next we validate the stability bound (86). Here we consider a second complex channel (as

channel-2) taken from Kennedy & Ding (1992). In all cases, the simulations were performed

with Nit = 104 iterations, Nrun = 100 runs, and no noise. In Fig. 7, we plot the probability

of divergence (Pdiv) for three different equalizer lengths, against the normalized step-size,

μnorm = μ/μbound. The Pdiv is estimated as Pdiv = Ndiv/Nrun, where Ndiv indicates the

number of times equalizer diverged. Equalizers were initialized close to zero-forcing solution.

It can be seen that the bound does guarantee a stable performance when μ < μbound.
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Fig. 6. Residual ISI: a) 8-APSK and b) 16-APSK. The inner and outer moduli of 8-APSK are
1.000 and 1.932, respectively. And the inner and outer moduli of 16-APSK are 1.586 and
3.000, respectively. The energies of 8-APSK and 16-APSK are 2.366 and 5.757, respectively.
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Fig. 7. Probability of divergence on channel-1 and channel-2 with three equalizer lengths, no
noise, Nit = 104 iterations and Nrun = 100 runs for a) 8-APSK and b) 16-APSK.

7. Concluding remarks

In this Chapter, we have introduced the basic concept of adaptive blind equalization in
the context of single-input single-output communication systems. The key challenge of
adaptive blind equalizers lies in the design of special cost functions whose minimization or
maximization result in the removal of inter-symbol interference. We have briefly discussed
popular criteria of equalization like Lucky, the mean square error, the minimum entropy, the
constant modulus, Shalvi-Weinstein and Shtrom-Fan. Most importantly, based on minimum
entropy deconvolution principle, the idea of designing specific cost function for the blind
equalization of given transmitted signal is described in detail. We have presented a case study
of amplitude-phase shift-keying signal for which a cost function is derived and corresponding
adaptive algorithm is obtained. We have also addressed the admissibility of the proposed
cost function and stability of the corresponding algorithm. The blind adaptation of the
derived algorithm is shown to possess better convergence behavior compared to two existing
algorithms. Finally, hints are provided to obtain blind equalization cost functions for square
and cross quadrature amplitude modulation signals.
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8. Exercises

1. Refer to Fig. 8 for geometrical details of square- and cross-QAM signals. Now following the
ideas presented in Section 5, show that the blind equalization cost functions for square- and
cross-QAM signals are respectively as follows:

max
w

E

[
|yn|2

]
, s.t. max {|yR,n| , |yI,n|} ≤ R. (89)

and

max
w

E

[
|yn|2

]
, s.t. max {|ρ yR,n| , |yI,n|}+ max {|yR,n| , |ρ yI,n|} − max {|yR,n| , |yI,n|} ≤ ρR.

(90)

R

RX

Y

R

RX

Y

ρR

(1−ρ)R

a) b)

Fig. 8. Geometry of a) square- and b) cross-QAM
(

ρ = 2
3

)
.

2. By exploiting the independence between the in-phase and quadrature components of
square QAM signal, show that the following blind equalization cost function may be obtained:

max
w

E

[
|yn|2

]
, s.t. max {|yR,n|} = max {|yI,n|} ≤ R. (91)

The cost (91) originally appeared in Satorius & Mulligan (1993). Refer to Meng et al. (2009)
and Abrar & Nandi (2010a), respectively, for its block-iterative and adaptive optimization.
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