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1. Introduction 

The sense of vision has utmost significance and the loss of vision leads to the impairment of 
active human behavior as evident in pathological disorders that affect vision. Among 
different pathological visual disorders, Age Related Macular Degeneration (AMD/ARMD) 
is of serious concern as a leading cause of blindness, observed with aging globally. The 
clinical manifestation of AMD includes retinal damage with the degeneration of macula, 
leading to the partial or complete loss of acuity in vision. One form of pathologic AMD 
named, “wet form of AMD”, involves the growth of new blood vessels from the choroid 
which lies underneath the retina, leading to the pathological blood vessel growth termed as 
Choroidal Neovascularization (CNV), with subsequent damage to the retina. Thus, 
choroidal neovascularization reflects a pathological angiogenic condition, where the loss of 
regulation over angiogenesis leads to the retinal damage. It also indicates that, the 
regulation of pathological angiogenesis can be an efficient strategy in preventing CNV of 
AMD. Though, some genetic disposition and aging factors are identified as peculiar 
etiological factors causing AMD; recent studies have shown that different cellular 
mechanisms regulating angiogenesis are common in different angiogenic scenarios 
including CNV. Further, the role of different endogenous angiogenesis 
inhibitors/angioinhibitors conferring the tissues with angiogenic regulation has been 
deciphered, which can be applied for regulation of CNV in AMD through inhibition of 
angiogenic signaling mechanisms. The present chapter provides an overview of the role of 
factors leading to choroidal neovascularization, the mechanisms underlying such 
angiogenesis and also the scope for endogenous angioinhibitors in regulation of CNV of 
AMD.  

1.1 Retina and choroid   

Retina is the inner most layer of the eye, which possesses anatomically ten distinct layers 
that are broadly categorized into two layers. The inner neural layer comprising of extensive 
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nervous tissue towards the vitreous chamber and the outer retinal pigmented epithelium 
(RPE) adhering to the choroid. Some of the functions of the RPE include the phagocytosis of 
outer retinal segmental discs, maintenance of chorio-capillaries, fluid and electrolyte balance 
in subretinal space. Choroid is the highly vascular and pigmented tissue of the eye lying 
between the retina and the sclera. It consists of lamina suprachoroidea adhering to sclera, 
followed by lamina vesculosa, chorio-capillaries, stroma and Bruch membrane adhering to 
the RPE. Choroid is rich in vasculature and the extracellular matrix (ECM) components, 
including collagen and elastin fibers. It provides nutrient, metabolite and gaseous exchange 
to the retina by diffusion through chorio-capillaries.  

1.2 Choroidal neovascularization in age related macular degeneration 

The histological proximity between retinal pigmented epithelium and choroid confers not 
only physiological but also pathological effect on RPE. The mechanical barrier that separates 
the RPE from choroid is the Bruch membrane, which in turn consists of basement membrane 
secreted by RPE, inner collagenous layer, elastic layer, outer collagenous zone and the 
basement membrane of chorio-capillaries acting as a mechanical barrier for the underlying 
chorio-capillaries, but facilitating diffusion of metabolites and gaseous exchange for RPE. In 
cases of CNV the Bruch membrane is distorted with initial deposition of lipid and 
protienaceous component called ‘drusen’ followed by the growth and penetration of blood 
capillaries from choroid into Bruch membrane, finally leading to the leakage of fluid into 
sub-retinal spaces and retinal or retinal pigmented epithelial damage (Green, 1999; Green 
and Enger, 1993; Jager et al., 2008).  

1.3 Factors for choroidal neovascularization in age related macular degeneration 

Pathological neovascularization in CNV of AMD is considered to be contributed by both the 

angiogenesis and vasculogenesis, which are the processes of de-novo blood vessel formation 

(Chan-Ling et al., 2011; Jager et al., 2008). Angiogenesis is the process of formation of new 

blood vessels from the pre-existing ones, which involves the role of different cell types and 

remodeling of ECM. The inception of different cell types involved in the angiogenesis, such 

as, the endothelial cells (ECs) of RPE and choroid involved in CNV, mural cells and 

inflammatory cells occurs through vasculogenesis, by the differentiation of endothelial 

progenitor cells (EPCs). The EPCs found in the normal circulation are recruited into 

angiogenic sites, where they differentiate into different cell types leading to angiogenesis 

(Chan-Ling et al., 2011; Jager et al., 2008). However, the salient feature of neovascularization 

involves the common sequential events of angiogenesis including the proliferation of ECs, 

degradation of ECM or vascular basement membrane (VBM) by ECs through secretion of 

proteases, migration and differentiation of ECs into tip and stalk cells, lumen development, 

ECM reorganization and finally vessel anastomosing into functional capillaries (Carmeliet 

and Jain, 2000). These sequential steps of angiogenesis are considered to be common for 

CNV, which are initiated by the release of angiogenic factors by the RPE and other cell types 

differentiated from EPCs or infiltrating through the leaky capillaries in response to aging 

evoked stress (Alon et al., 1995; Grossniklaus et al., 2002). The initiating cellular and 

physiological factors that lead to the secretion of angiogenic factors by ECs and other cell 

types have been identified in different studies, which can be systematically framed for 

synergistic interpretation of etiological factors leading to CNV.  
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The normal function of phagocytosis and degradation of phagocytosed membranes is 
impaired with aging in RPE, leading to the accumulation of lipofuscin in these cells, with 
senescence (Marshall, 1987; Young and Bok, 1969). Ischemia and hypoxia evident in the 
ocular tissues of CNV are identified as factors promoting free radical generation in RPE and 
also the release of cellular lipids and proteinaceous deposits into the Bruch membrane 
(Spaide et al., 2003). Thus, impairing Bruch membrane’s barrier function and in turn leading 
to the secretion of different angiogenic factors like vascular endothelial growth factor 
(VEGF), transforming growth factor-ǃ (TGF- ǃ), basic fibroblast growth factor (bFGF), 
insulin-like growth factor-1 and platelet derived growth factor (PDGF) by the RPE and the 
macrophages and stromal cells that are recruited by the differentiation of EPCs (Alon et al., 
1995; Grossniklaus et al., 2002; Lu and Adamis, 2006; Penn et al., 2008; Young and Bok, 
1969). Damage to the Bruch membrane is considered to enhance the diffusion of the growth 
factors, which elicit angiogenic signaling in the ECs (Lu and Adamis, 2006; Marshall, 1987; 
Penn et al., 2008).  

 

 

Fig. 1. The angiogenic balance between endogenous angioactivators and angioinhibitors 
regulate vascular homeostasis. Angiogenesis under physiological and pathological 
conditions is associated with up-regulation of endogenous angioactivators and/or down-
regulation of endogenous angioinhibitors. Up-regulation of angioinhibitors and/or down-
regulation of angioactivators may be associated with impaired neovascularization capacity 
in the choroidal neovascularization in age related macular degeneration (CNV of AMD). 
VEGF, vascular endothelial growth factor; bFGF, basic fibroblast growth factor; IGF-I, 
insulin-like growth factor-I; IL-8, interleukin-8; PDGF, platelet-derived growth factor; PlGF, 

placental growth factor; TGF-and , transforming growth factor- and  
HGFHepatocyte growth factor
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Endogenous 
Angioactivators 

Potent Receptors Angiogenic action 

Vascular endothelial 
growth factor (VEGF) & 
Placental growth factor 
(PlGF) 

VEGFRs (Flt-1, Flk-1, 
KDR, Flt-4), 
Neuropilins, HSPG, 
integrins 

Increases EC permeability, proliferation, migration, 
NO, uPA/PAI-1 & MMP production 
Inhibiting EC apoptosis,  
Promotes ECM degradation 
Monocyte migration  

Transforming growth 

factor-ǃ (TGF-ǃ)  

Transforming growth 
factor receptors 

Increased vessel stability and organization, promote 
secretion of ECM components  

basic Fibroblast growth 
factor (bFGF) 

FGFRs, HSPG, 
integrins  

Promotes EC proliferation, migration, tube 
formation, ECM degradation, vessel maturation 

Insulin-like growth 
factor-1 (IGF-1) 

Insulin-like growth 
factor receptors 

Promotes EC migration, proliferation, tube 
formation 

Platelet derived growth 
factor (PDGF) 

PDGF-ǃ, GPCRs, 
integrins 

Increases EC permeability, proliferation, migration 

Angiopoietin-1 Tie-2, integrins EC sprouting, Vessel stabilization 

Hepatocyte growth factor 
(HGF) 

Hepatocyte growth 
factor receptor 

Promotes tubulogenesis along with other factors 

Interleukin-8 (IL-8) 
C-X-C chemokine 
receptor type (CXCR-
1,2) 

Activates neovascularization increasing 
invasiveness of different cell types 

Matrix 
metalloproteinases 
(MMPs) 

 
Degradation of ECM components promoting EC 
migration and vessel organization, release of ECM 
or cell surface bound/sequestred angiogenic fcators 

Table 1. Endogenous activators, their receptors and angiogenic activities (EC: endothelial 
cell, ECM: extracellular matrix, FGFRs: Fibroblast growth factor receptors, Flk-1: Fetal liver 
kinase-1, Flt-1, 4: fms-related tyrosine kinase, GPCRs: G-protein coupled receptors, HSPG: 
Heparan sulfate proteoglycan, KDR: kinase insert domain receptor, MMP: matrix metallo 
proteinase, NO: nitric oxide, Pak: p21 protein activated kinase, PDGF: platelet derived 
growth factor, Tie: tyrosine kinase with immunoglobulin-like and EGF-like domains, 
VEGFRs: vascular endothelial growth factor receptors) 

The integrins and other ECM binding receptors present on ECs are essential in maintaining 
the ECM promoted survival and migration in angiogenesis (Avraamides et al., 2008; 
Mettouchi and Meneguzzi, 2006). The synergistic activation of integrins and other ECM 
binding receptors on ECs by the growth factors and cytokines leads to the activation of 
different signaling cascades mediated by the kinases, secondary messengers, transcription 

factors such as, nuclear factor kappa ǃ (NF-κǃ), hypoxia inducible factor-1 (HIF-1), and 
other enzymes such as, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) 
and metalloproteinases (MMPs) (Avraamides et al., 2008; Boosani et al., 2007; Egeblad and 
Werb, 2002; Mettouchi and Meneguzzi, 2006; Oklu et al., 2010). The transcription factors that 
are stabilized, up-regulated or expressed under hypoxia also lead to activation of different 
signaling cascades that promote effective survival and proliferation of ECs. The secretion of 
proteases such as matrix metallo-proteinases (MMPs) including collagenases and elastases, 
which degrade the collagen and elastin of vascular basement membrane (VBM) promote the 
migration of ECs. The urokinase is another proteinase, which binds to its receptors (urikanse 
binding receptor, uPAR) and activates signaling cascades leading to the secretion of MMPs, 
which promote migration of ECs and angiogenesis. The organization and differentiation of 

www.intechopen.com



Regulation of Angiogenesis in Choroidal  
Neovascularization of Age Related Macular Degeneration by Endogenous Angioinhibitors 

 

413 

migrating ECs into tip and stalk cells is further enumerated to be regulated by Wingless 
type (Wnt)/Frizzled-Notch signaling that provides an insight about formation of functional 
capillaries in neovascular vessels (Dejana, 2010; Zerlin et al., 2008).  

The inflammatory cells that are recruited through the expression of cytokines such as 
monocyte chemo-attractant protein-1 (Ccl2/MCP-1), Chemokine (C-X-C motif) liagnd 1 
(CXCL1), macrophage inflammatory protein-1/-2 (MIP-1, MIP-2) are also considered to play 
role in CNV progression (Hendricks, 2006). Further, the intriguing stimulative role of Bruch 
membrane in promoting AMD is also being deciphered by identifying the complement 
components 3a and 5a (C3a and C5a), which lead to the up-regulation of VEGF-A (Nozaki et 
al., 2006). Thus, the orchestration of various signaling events at different stages of 
angiogenesis leads to the neovascularization. The angiogenic ECs lining the neovascular 
vessels arising due to the above factors in CNV are found to possess fenestrations and also 
organize into defective capillaries leading to the leakage of macromolecules as well as 
vascular cells into the Bruch membrane and sub-retinal spaces leading to the degeneration 
of macula of retina (Dvorak et al., 1995; Roberts and Palade, 1995).  

2. Endogenous angioinhibitors 

In addition to the angiogenic factors, which activate angiogenesis, tissues and ECM also 

possess angioinhibitors, which have the potency to inhibit the angiogenesis and thus, 

regulating the pathological angiogenesis by inhibiting the signaling mechanisms activated 

by angiogenic factors (Boosani et al., 2010; Sudhakar and Kalluri, 2010, Zhang and Ma, 

2007). Nearly, 40 endogenous angioinhibitors have been characterized and some of them are 

found in the ocular tissues or secreted into vasculature and released into ocular tissues, 

where they exhibit angio-inhibition and finally regulation of CNV (Boosani et al., 2011; 

Sudhakar and Kalluri, 2010). The significance of imbalance in the levels of endogenous 

angioinhibitors and angioactivators in regulation of vascular homeostasis can be 

summarized as in Figure 1. This significance was also ascertained by the evaluations 

showing the correlation between the decrease in specific angioinhibitors and the progression 

of CNV (Bhutto et al., 2008).  

2.1 Mechanisms of regulation of CNV by endogenous angioinhibitors 

2.1.1 Vasoinhibins 

The vasoinhibins (14-18 kDa) are antiangiogenic peptides found in the pituitary, retina and 
extrapituitary tissues. They constitute the amino terminal regions of three different 
precursors; prolactin, growth hormone and placental lactogen. Though their precursors do 
not exhibit angioinhibitory activities; vasoinhibins found in the tissues or those expressed 
using recombinant methods exhibit antiangiogenic properties (Clapp et al., 2008).  
The therapeutic potential of vasoinhibins in regulating angiogenesis in CNV and tumor 
growth was evaluated and studies indicate that adenovirus mediated expression of 
vasoinhibins inhibits CNV, in-vivo and also angiogenesis (Zhou et al., 2010). Mechanisms of 
regulation of EC survival, proliferation and migration by the vasoinhibins have been 
deciphered in different studies; nevertheless, the receptors through which the mechanisms 
are mediated still remain enigmatic. Vasoinhibins regulate the EC migration and survival 
through inhibition of VEGF and bFGF stimulated MAPK activation (D'Angelo et al., 1995).  
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Endogenous 
Angioinhibitor 

Parent molecule Receptors 
Mode of action/ Inhibition 
pathways 

Vasoinhibins 
Prolactin,  growth 
hormone 

Not known 

Sos/Ras/MAPK or eNOS 
/Raf/MAPK, Ca2+/ eNOS/protein 
phosphatase 2, Ras/Tiam-
1/Rac1/Pak1, Bcl-XL, NF-kǃ, 
caspases  

PEDF PEDF Not known Possible apoptosis 

Arresten 
Collagen  IV,  

1 NC1 
11 integrin, HSPG 

Raf/MEK/ERK1/2/p38-MAPK, 

HIF-1MMPs 

Canstatin 
Collagen IV, 

 2 NC1 
V3, V5 
integrins, Fas 

procaspse-8 and -9, Akt/ 
FAK/mToR, eIF-4EBP-1, 
Ribosomal S6-kinase  

Tumstatin 
Collagen IV, 

3NC1 

CD47/IAP, V3, 

61 integrins 

FAK/Akt/PI3K/mTOR/ 

eIF-4EBP1/NFB,  COX-2 signaling 

Endostatin 
Collagen  
XVIII-NC1 

V1/51 
integrins, 
HSP,   glypican, 
caveolin-1 

Ras/Raf/KDR/Flk-1 / ERK/p38-
MAPK/p125 

FAK/HIF1/Ephrin/TNF/NF, 
Wnt signaling 

Angiostatin Plasminogen 
ATP synthases, ǂVǃ3 
integrin,  angiomotin 

ǂVǃ3 integrin mediated apoptotis, 
ATP synthase 

Thrombospondins TSP 
CD36, IAP, CD47,  
HSPG, ǂ3ǃ1 , other 
integrins 

Src-family kinases/ 
Caspase-3/p38 MAPK, 
TGF-ǃ signaling 

Endorepellin Perlecan 
ǂ2ǃ1 integrins, lipid 
rafts, caveolin 

cAMP-PKA/FAK/p38-
MAPK/Hsp27, 
SHP-1, Ca2+ signaling 

Table 2. Endogenous angioinhibitors, their precursors, cell surface receptors and mode of 
action AMD/ARMD: Age related macular degeneration, Akt: protein kinase B, Bcl-XL: B-cell 
lymphoma-extra large, bFGF: basic fibroblast growth factor, Ccl2/MCP-1: chemoattractant 
protein-1, CD(CD47, CD36): cluster of differentiation, CNV: choroidal neovascularization, 
COX-2: cyclooxygenase-2, eIF-4EBP-1: eukaryotic translation initiation factor-4E binding 
protein-1, eNOS: endothelial nitric oxide synthase, ECs: endothelial cells, ECM: extracellular 
matrix, EPCs: endothelail progenitor cells, ERK1/2: extracellular signal-regulated kinase1/2, 

FAK: focal adhesion kinase, Flk-1: fetal liver kinase-1, HIF-1 hypoxia inducible factor-

1Hsp: heat shock protein, HSPG: Heparan sulfate proteoglycan, IAP: integrin associated 
protein, KDR: kinase insert domain receptor, MAPK: Mitogen activated protein kinase,  
MEK: MAPK-ERK kinase, MMPs: matrix metallo proteinases, mToR: mammalian target of 
rapamycin, NF-kǃ: nuclear factor kappa ǃ, Pak: p21 protein activated kinase, PDGF: platelet 
derived growth factor, PEDF: Pigment epithelium derived factor, PEX: noncatalytic Carboxy-
terminal hemopexin-like domain of MMP, PI3K: phosphatidyl inositol 3-kinase,  
Rac: Ras-related C3 botulinin toxin susbtrate 1, Raf: Ras activated factor, Ras: Rat sarcoma, 
RPE: retinal pigmented epithelium, SHP: Src homology region 2 domain-conatining 
phopshatase, Sos: Son of sevenless, Src: Schmidt-Ruppin A-2 sarcoma viral oncogene  
homolog, Tiam: T-lymphoma invasion and metastasis-inducing protein,  

TGF-ǃ: transforming growth factor ǃ, TNF: tumor necrosis factorTSP: thrombospondin, 
VBM:  vascular basement membrane, VEGF: vascular endothelial growth factor,  
Wnt: wingless-type 
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VEGF activated Sos/Ras/MAPK or eNOS/Raf/MAPK-mediated proliferative signaling and 

Ca2+/eNOS/protein phosphatase-2 mediated vascular permeability and vasodilatation 

were shown to be inhibited by the vasoinhibins (Gonzalez et al., 2004; Ziche and Morbidelli, 

2000). In addition vasoinhibins also inhibit the migration of EC stimulated by IL-1ǃ through 

Ras/Tiam-1/Rac-1/Pak1 and promote apoptosis through conversion of Bcl-XL to 

proapoptoctic Bcl-Xs and NF-kǃ mediated activation of initiator and effector caspases 

(Martini et al., 2000; Tabruyn et al., 2003).  

2.1.2 Pigment Epithelium Derived Factor (PEDF) 

Pigment epithelium derived factor (PEDF) is a 50 kDa, secreted, serpin family 
glycoprotein, first identified from the cultured fetal RPE conditioned media (Tombran-
Tink et al., 1991). PEDF accumulates in the vitreous humor and is also expressed in 
different adult tissues (Tombran-Tink et al., 1991). Addition of PEDF to the cultured 
HUVECs increased the number of TUNEL positive cells suggesting apoptotic mode of 
action of PEDF and thus, possibly preventing EC response to ischemia in-vivo (Ho et al., 
2007). The levels of PEDF were found to be decreased in Bruch membrane with 
progression of AMD and concomitant increase in VEGF levels were also identified with 
decrease in PEDF levels (Bhutto et al., 2008). Different methods of PEDF upregulation 
have been applied to investigate the effect of PEDF on CNV. Intravitreous injections of 
adenovirus expressing the PEDF and ultrasound-microbubble technique of noninvasive 
gene transfer of PEDF gene in rats exhibited significant decrease in the CNV (Gehlbach et 
al., 2003; Zhou et al., 2009). However, studies also demonstrate that PEDF at lower doses 
(90μg/ml) has negative effect on CNV whereas; higher doses (2-4 fold) can augment CNV; 
thus, indicating a strategic approach to be developed during clinical trials for CNV 
treatment with PEDF (Apte et al., 2004).  

2.1.3 Angiostatin 

Angiostatins are 38-45 kDa kringle domains derived by the protease activity of parent 

molecule plasminogen, which itself has significant role in activation of fibrinogen and blood 

clotting (Hayashi et al., 2008). Some of the angiostatin peptide derivates exhibit anti-

angiogenic properties including inhibition of EC proliferation, tube formation and 

migration. The application of angiostatins in regulating CNV of AMD was evaluated by the 

expression of the angiostatins in-vivo, using viral vectors (Lai et al., 2001). Angiostatins bind 

to ATP synthases on the surface of ECs leading to their apoptotic death (Burwick et al., 2005; 

Tarui et al., 2001). Further V3 integrin and angiomotin are also shown to bind angiostatin 

and induce apoptosis (Burwick et al., 2005; Tarui et al., 2001).  

2.1.4 Thrombospondins 

Thrombospondins (TSPs) are secreted ECM glycoproteins playing key role in the cellular 

and ECM interactions (Bornstein, 2001; Lawler, 2000). The NH2-terminal peptides derived 

from the TSPs, by the action of different proteases are identified to possess angioinhibitory 

properties. TSP-1 and TSP-2 are trimeric globular domain subunits (145 kDa) categorized 

into subgroup-A and subgroup-B consists of TSP’s 3-5, which are pentameric subunits (110 

kDa) (Bornstein, 2009). TSP-1 was the first identified ECM derived endogenous 
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angioinhibitor from many normal tissues and produced by a variety of cells including 

platelets, megakaryocytes, epithelial, endothelial and stromal cells (Bornstein, 2009). TSP-1 

is secreted by the retinal-pigmented epithelium (RPE) and regulates angiogenesis in normal 

eye (Miyajima-Uchida et al., 2000). Immunolocalization studies showed decrease in the 

levels of TSP in the chorio-capillaries and the Bruch membrane of AMD samples (Bhutto et 

al., 2008). Wispostatin-1 (WISP-1) repeat derived peptide from TSP-1 was shown to inhibit 

the CNV in LASER induced CNV mice models (Cano Mdel et al., 2009). TSP-1 induces 

apoptosis in ECs through CD36 and integrin associated protein (IAP)/Src-family protein 

kinases/Caspase-3/p38 MAPK signaling (Dawson et al., 1997). In addition TSP-1 can also 

bind to different integrins, including CD47 and heparin sulfated proteoglycans (Kaur et al., 

2011). Thus the significance of TSPs in regulation of CNV have been evaluated through 

detection of endogenous levels in pathological tissues and also by evaluating the effects of 

TSPs both in vitro and in vivo. 

2.1.5 Arresten   

Arresten [1(IV)NC1], is the 26 kDa collagen type IV, 1 chain derived non-collagenous 
domain, which functions via binding to ǂ1ǃ1 integrin and heparan sulfate proteolgycans, 
regulating bFGF and VEGF stimulated activation of ECs (Boosani and Sudhakar, 2006; 
Colorado et al., 2000; Sudhakar et al., 2005). It inhibits the survival of mouse lung 
endothelial cells through inhibition of FAK phopshorylation in AKT independent manner 

(Sudhakar et al., 2005). FAK inhibition by arresten via 11 integrin leads to inhibition of 

downstream Raf/MEK/ERK1/2/p38 MAPK signaling and HIF-1 expression (Figure 2). 

Inhibition of HIF-1 by arresten is critical in preventing hypoxic survival of ECs through 
VEGF regulation (Sudhakar et al., 2005). Arresten inhibited VEGF-mediated angiogenesis by 
promoting apoptosis, caspase-3/PARP activation and negatively impacting FAK/p38-
MAPK phosphorylation, Bcl-2 and Bcl-xL expressions leading to mouse retinal endothelial 
cell (MREC) death (Boosani et al., 2009). In addition angioinhibitory activity of arresten was 
found to inhibit bFGF induced proliferation of MREC in-vitro in a dose dependent manner. 
It also inhibited the bFGF-induced migration of MREC mediated by MMP-2 activity but not 
the expression levels of MMP-2 (Boosani et al., 2010). Thus, arresten was shown to effect the 
proliferation and migration of choroidal endothelial cells and regulate CNV of AMD. The 
endothelial specific inhibitory actions of arresten may be of benefit in the treatment of a 
variety of eye diseases with a neovascular component. 

2.1.6 Canstatin 

It is the 24 kDa collagen type IV, 2 derived non-collagenous domain [2(IV)NC1], which 

binds to the V3 and V5 integrins and  inhibits EC proliferation, migration  and tube 
formation by enhancing apoptosis in these cells (Magnon et al., 2005; Magnon et al., 2007; 
Petitclerc et al., 2000; Roth et al., 2005). The antiangiogenic efficacy of canstatin in regulating 
the neovascularization of cornea was also evaluated using the recombinant canstatin in 
alkali burn induced neovascularization study (Lima et al., 2006; Wang et al., 2011). Cantstain 
was shown to induce apoptosis through the induction of Fas-ligand, activation of procaspse-
8 and -9 cleavage, reduction in membrane potential, inhibition of Akt, FAK, mToR, eIF-
4E/4E-BP1 and ribosomal S6-kinase phosphorylations, in cultured HUVECs (Figure 2) 
(Panka and Mier, 2003).  
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Fig. 2. Schematic illustration of distinct angioinhibitory signaling mediated by different 
extracellular matrix (ECM) reloaded molecules. Tumstatin, arresten, canstatin and 

endostatin interact with V3/31, 11, V3/V5 and 51 integrins respectively, to 

inhibit the phosphorylation of focal adhesion kinase (FAK). Tumstatin: It binds to V3 and 

31 integrins and inhibits the pathway that includes phosphorylation of FAK, PI3-K, Akt, 
mTOR, 4E-BP1 and eIF4E to decrease endothelial cell protein synthesis and proliferation. In 

addition tumstatin also inhibits NFB mediated signaling in hypoxic conditions leading to 
the inhibition of COX-2, VEGF and bFGF expressions, resulting in inhibition of hypoxic 

tumor angiogenesis. Arresten: It binds to 11 integrin and inhibit phosphorylation FAK, 
causes inhibition of Ras, Raf, extra cellular signal related kinase 1 (ERK1) and p38 MAPK 

pathways that leads to inhibition of HIF-1and VEGF expression resulting in inhibition of 
endothelial cell migration, proliferation and tube formation. In addition arresten initiates 
two apoptotic pathways, involving activation of caspase-9 and -8, leading to activation of 
caspase-3 and PARP cleavage. (a) Arresten activates caspase-3 directly through inhibition of 

FAK/p38-MAPK/Bcl-2/Bcl-xL and activation of caspase-9; (b) Integrin 11 cross talk with 
Fas-L through mitochondrial pathway and leads to activation of caspase-8 and-3 in 
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proliferating endothelial cells. Canstatin: It binds to V3/V5 integrins and inhibits two 
apoptotic pathways, involving activation of caspase-8 and casoase-9, leading to activation of 
caspase-3. Canstatin activates procaspase-9 not only through inhibition of the 
FAK/PI3K/AKT pathways but also by integrins cross talking mitochondrial pathway 
through Fas-L dependent caspase-8 activation leads to endothelial cell apoptosis. CM 

represents cell membrane. Endostatin: It binds to 51 integrin and inhibit phosphorylation 
FAK, causes inhibition of Ras, Raf, extra cellular signal related kinase-1 (ERK1) and p38 
MAPK pathways that leads to inhibition of endothelial cell migration and tube formation.  

2.1.7 Tumstatin 

Tumstatin [3(IV)NC1], is a 28 kDa collagen type IV, 3 chain derived non-collagenous 

domain with anti-angiogenic and proapoptotic activities. It binds to the CD47/IAP, V3, 

31 and 61 integrins and inhibits the signaling cascade mediated by FAK, Akt, 

PI3K/mTOR/eIF-4E/4E-BP1 and NFκB/COX-2 (Boosani et al., 2007; Hamano et al., 2003; 

Maeshima et al., 2002; Monboisse et al., 1994; Sudhakar et al., 2003). Inhibition of eIF-4E/4E-

BP1 by tumstatin leads to the regulation of cap dependent translational level of genes, 

whereas inhibition of transcriptional factor signaling such as NFκB leads to regulation of 

genes such as COX-2 at transcriptional level (Figure 2) (Boosani et al., 2007). Thus, tumstatin 

exhibits gene regulation in endothelail cell-specific and integrin-dependent manner. 

Angioinhibitory effect of tumstatin has been evaluated in regulation of CNV in mice 

(Boosani et al., 2011). Recombinant tumstatin regulated tube formation by mouse corneal 

endothelial cells (MCECs) in-vitro and adenoviral mediated expression of tumstatin in-vivo 

in mice has shown reduction in CNV (Boosani et al., 2011; Gunda et al., 2011). 

2.1.8 Endostatin 

Endostatin is the partial 20-kDa fragment of collagen type XVIII, carboxy terminal non- 

collagenous domain, derived from the parent collagen by proteolytic cleavage activities of 

elastase and cathepsin-L (Felbor et al., 2000). Endostatin is found in normal circulation 

enabling it to be utilized as an effective angioinhibitor without toxic effects (Fukai et al., 

2002). Lower levels of endostatin have been recorded in CNV samples compared to the 

healthy donor eyes and within the tissues of progressive AMD (Bhutto et al., 2008; Fukai et 

al., 2002). Deletion of endostatin or collagen type XVIII massively up-regulates LASER 

induced CNV; where as administration of physiological concentrations of endostatin was 

able to inhibit such CNV in these mice (Marneros et al., 2007). Endostatin also down 

regulates the expression of VEGF in experimental CNV rat models (Takahashi et al., 2003). 

These observations along with the evidence of inhibition of CNV with intravenous injection 

of adenoviral vectors that express secretable endostatin, confirm the significance of 

endostatin in regulation of CNV (Mori et al., 2001; Wickstrom et al., 2003).  

Endostatin elicits the anti-proliferative and anti-migratory effects by binding to different EC 
surface molecules and regulating the signaling cascades (Faye et al., 2009). Recombinant 

endostatin binds to V integrin as shown in human endothelial cells (Rehn et al., 2001). 
Further studies have also shown localization of endostatin in the lipid rafts and association 
with caveolae (Wickstrom et al., 2002; Wickstrom et al., 2003). Surface plasmon resonance 

assays characterized the binding of endostatin to both V1 integrins and the heparin 
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sulfates and also localization to the lipid rafts (Ricard-Blum et al., 2004). In-vitro assays using 

ECs also showed the co-localization of endostatin with 51 integrin, actin stress fibers, 
membrane anchor protein and caveolin-1, which enumerates the interaction of endostatin 
with caveolae, inhibiting EC migration through the disassembly of actin stress fibers/focal 
adhesions, activation of Src and impaired fibronectin deposition by ECs in response to bFGF 
(Wickstrom et al., 2002; Wickstrom et al., 2003; Sudhakar et al., 2003). Binding of endostatin 
with integrins also down-regulates the activity of RhoA-GTPase and inhibits signaling 
pathways mediated by small kinases of the Ras and Raf families (Ricard-Blum et al., 2004). 
In addition, binding to the KDR/Flk-1, endostatin inhibits the VEGF-induced tyrosine 
phosphorylation of KDR/Flk-1 and activation of ERK, p38 MAPK, and p125FAK in 
HUVECs (Kim et al., 2002; Sudhakar et al., 2003). Further signaling cascades regulated by 

the endostatin are being identified, which are mediated by activator protein 1 (Id), HIF1, 

ephrin, tumor necrosis factor- (TNF), nuclear factor-B (NFB), coagulation cascades, 
adhesion molecules and Wnt, which indicate the potential role of endostatin as an 
endogenous angioinhibitor (Nyberg et al., 2005) (Figure 2).  

2.2 Scope for endogenous angioinhibitors in CNV treatment 

Current modalities of treatment for the CNV in AMD include the regulation of angiogenesis 
as angiogenesis being one of the pathological factors of neovascularization. The therapies 
such as LASER photocoagulation, photodynamic therapy and anti-VEGF therapies using 
Macugen or Lucentis, that are currently being applied to regulate the CNV have their own 
constraints such as development of lesions, loss of acuity in vision and frequent 
administration, respectively (Gallemore and Boyer, 2006). Alternative strategies for the 
treatment of CNV in AMD are therefore being developed in which the specific targeting on 
angiogenesis can be possible. Endogenous angioinhibitors are considered as one of the area 
to be explored in this arena to include them in regimens of complementary treatments for 
the regulation of CNV (Chappelow and Kaiser, 2008; Do, 2009). The signaling cascades 
regulated by some of endogenous angioinhibitors have been identified (Table 2 and Figure 
2), which enabled the application of those inhibitors in CNV. 

3. Conclusions  

The cellular, extracellular milieu and genetic factors responsible for the neovascularization 
arising in AMD are being deciphered with emphasis on identifying those factors that play a 
key role in the inception and progression of CNV. In this scenario, different etiological 
factors have been identified which regulate angiogenesis, effecting both extracellular milieu 
and intracellular angiogenic signaling pathways. Identification of the signaling cascades 
leading to the pathological angiogenesis in CNV has further lead to the possibility of 
regulating CNV, by focusing on signaling pathways as one of the targets. Application of 
endogenous angioinhibitors has proven as a promising strategy in this scenario of inhibiting 
angiogeneic pathways that are identified in CNV. The inhibitors such as vasoinhibins, 
PEDF, angiostatin, endostatin, tumstatin, canstatin and arresten that have been so far 
evaluated for regulation of CNV have not only shown promising evidence of CNV 
regulation, but also provided new strategies for inhibiting CNV through differential mode 
of actions. Such variation exhibited by different endogenous angioinhibitors can be 
beneficial in targeting CNV using different combinations of these inhibitors. It can be 
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realized that these naturally occurring inhibitors can pose low immune reactions and thus, 
an efficient way of regulating diseases. Further, clinical studies using individual and 
combinations of endogenous angioinhibitors, included in different regimens along with 
current therapies of CNV would elaborate the application of endogenous angioinhibitors for 
regulating CNV of AMD.  
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