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1. Introduction 

Meiosis is a specialized cell division that directs a diploid germ cell to produce haploid 
gametes (reviewed in Schvarzstein et al, 2010; Sakuno and Watanabe, 2009). Meiosis differs 
from mitosis, in that one round of DNA replication is followed by two rounds of 
chromosome segregation. In the first round, meiosis I, homologous chromosomes separate 
(reductional division), and in the second round, meiosis II, sister chromatids separate 
(equational division). Meiosis II is similar to mitosis in that in both processes, replicated 
sister chromatids orient away from each other (are said to be bioriented), and will be 
separated at the metaphase to anaphase transition. By contrast, meiosis I, represents special 
challenges to the cell. In the first meiotic division, sister chromatids must face the same pole 
(are monooriented), and instead homologs, connected by the chiasma, are oriented away 
from each other toward opposite poles (Fig. 1). This chapter discusses our current 
understanding of how sister chromatid monoorientation and homolog biorientation are 
achieved during meiosis I.  

 

Fig. 1. Orientation of sister chromatids and homologous chromosomes in mitosis and 
meiosis. Arrowheads indicate the direction chromatids or chromosomes face. 
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Organisms with different chromosomal organization deal with this challenge differently. 
The majority of eukaryotic model organisms studied (such as yeast, flies and mammals) 
have monocentric chromosomes. Monocentric chromosomes have a single centromere, the 
region on the chromosomes where the kinetochore assembles. During mitosis and meiosis 
the kinetochores serve as site of attachment for spindle microtubules (Sakuno and 
Watanabe, 2009). In monocentric organisms, the centromere is where many meiotic events 
are coordinated, including orientation of chromosomes. Holocentric chromosomes (in 
organisms such as the nematode C. elegans) lack a localized centromere. On these 
chromosomes the kinetochore assembles along the entire length of the chromosomes during 
mitosis and forms cup-like structures encompassing each homolog during meiosis 
(Schvarzstein et al., 2010) (Fig. 2). Comparisons of the strategies used on chromosomes with 
such diverse organizational features highlight the common themes and the conserved 
molecular factors implementing these strategies. 

 

Fig. 2. The organization of kinetochores on monocentric and holocentric chromosomes 
during mitosis and meiosis I. During mitosis on monocentric chromosomes the kinetochore 
assembles at the region defined by the centromere. On holocentric chromosomes the 
kinetochores assemble along the entire length of the chromosomes. During meiosis I on 
monocentric chromosomes, kinetochores of sister chromatids function as one unit and orient 
toward the same pole. On holocentric chromosomes the kinetochore cups the volume of the 
sister chromatid pair. 

One crucial player in the process of chromosome orientation is the chromosomal passenger 
complex (CPC), which monitors and regulates kinetochore-microtubules attachments. The 
CPC is composed of Aurora B kinase, inner centromere protein INCENP, Survivin and 
Borealin/Dasra B. Homologs of CPC subunits have been identified in organisms from yeast 
to humans. CPC proteins first associate with condensing chromatin at prophase, accumulate 
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at the centromere during prometaphase and metaphase, relocate to the spindle midzone at 
the metaphase-anaphase transition, and finally associate with the midbody during telophase 
and cytokinesis (Vagnarelli and Earnshaw, 2004). This characteristically dynamic 
localization of the CPC likely reflects movement of Aurora B to act on different substrates. 
While on chromosomes, the CPC has important functions in condensin recruitment, 
facilitation of accurate microtubule-kinetochore attachments, spindle checkpoint function, 
and cohesin regulation. After the CPC transfers onto the central spindle and midbody, it is 
needed for the successful execution of cytokinesis (Vagnarelli and Earnshaw 2004). 

The Structural Maintenance of Chromosomes (SMC) protein containing complexes 
condensin and cohesin, influence many aspects of chromosome organization and 
segregation and play roles in regulating chromosome orientation as well. Condensin is 
composed of a heterodimer of an SMC2 class and an SMC4 class ATPase protein, and three 
regulatory subunits referred to as chromosome associated polypeptide (CAP) proteins 
(Hirano, 2004; Hudson et al., 2009, Losada and Hirano, 2005). Budding and fission yeasts 
have a single condensin complex, but higher eukaryotes have two: condensin I and II. 
Condensins I and II differ in the identity of their CAP subunits. Condensin I contains CAP-
G, -D2, and –H, while condensin II contains CAP-G2, -D3, and –H2. The single yeast 
condensin is most similar to the condensin I complex of higher eukaryotes. Although their 
exact molecular contribution to chromosome packaging remains a mystery, condensin 
complexes are essential for the precise organization and structural integrity of chromosomes 
(Bhat et al., 1996; Chan et al., 2004; Cobbe et al., 2006; Coelho et al., 2003; Dej et al., 2004; 
Gerlich et al., 2006; Hagstrom et al., 2002; Hartl et al., 2008; Hirota et al., 2004; Hudson et al., 
2003; Lieb et al., 1998; Oliveira et al., 2003, 2005; Ono et al., 2003, 2004; Ribeiro et al., 2009; 
Samoshkin et al., 2009; Savvidou et al., 2005; Siddiqui et al., 2003; Stear and Roth, 2002; 
Steffensen et al., 2001; Vagnarelli et al., 2006; Watrin and Legagneux, 2005; Wignall et al., 
2003; Yu and Koshland, 2003, 2005). SMC2 and 4 were originally identified as structural 
components of mitotic chromosomes in Xenopus and chicken cells (Hirano and Mitchison, 
1994; Saitoh et al., 1994) and as important regulators of chromosome condensation and 
segregation in budding and fission yeast (Saka et al., 1994; Strunnikov et al., 1995). 

Cohesin contains two SMC ATPase proteins of the SMC1 and SMC3 subclasses, and two 
regulatory subunits, Scc1 and Scc3 (Hirano, 2002, Jessberger, 2002). In meiosis, Scc1 is 
replaced by its paralog, Rec8 (Watanabe and Nurse, 1999). Cohesin mediates sister 
chromatid cohesion from the time they are replicated in S phase until sister chromatids 
separate at anaphase of mitosis and meiosis (Hirano, 2000; Nasmyth et al., 2001). Condensin 
and cohesin functions have been recently reviewed elsewhere. In this chapter we will 
concentrate on their role in regulating chromosome orientation. 

2. Biorientation of sister chromatids in mitosis 

Regulation of kinetochore orientation has been most extensively studied in mitosis. As the 
principle forces orientating chromosomes in mitosis and meiosis are likely mediated by the 
same factors, we will begin with a brief review of mitotic chromosome orientation. Mitotic 
chromosome segregation is preceded by a round of DNA replication, resulting in identical 
sister chromatids held together by cohesin. At entry into mitosis, or early during mitosis, 
condensin complexes associate with chromosomes to facilitate their compaction and 
segregation. In higher eukaryotes, the bulk of cohesin is removed from chromosomes arms 
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in prophase, while centromeric cohesin is released at the metaphase to anaphase transition. 
In yeast, cohesin is removed from chromosomes in a single step, at the metaphase to 
anaphase transition (Nasmyth, 2002).  

Prior to their separation, chromosomes align on the metaphase plate. Chromosome 
alignment and orientation is complete when all kinetochores are under tension, as a result of 
two opposing forces. Tension is generated because kinetochore microtubules are pulling 
sister chromatids toward opposite poles, and this poleward force is opposed by cohesion 
between sister chromatids in the centromeric region (Hauf and Watanabe, 2004; Sakuno and 
Watanabe, 2009). Sister kinetochores are arranged back-to-back, an arrangement that 
naturally facilitates biorientation. Kinetochore–microtubule attachments occur via trial and 
error, and are stabilized only when tension is established. An ideal attachment in mitosis, 
with two sister kinetochores attached to microtubules from opposite poles, is called an 
amphitelic attachment. Erroneous chromosome-spindle attachments, such as attachment of 
both sister kinetochores to the same pole (syntelic attachment), or attachment of only one 
sister kinetochore to a pole (monotelic attachment), result in insufficient tension. Merotelic 
attachment (one sister attached to both poles) could, in principle, establish tension, but must 
also be corrected (Fig. 3) (Cimini, 2007). 

 

Fig. 3. Various forms of kinetochore-microtubule attachments at mitosis. Chromosomes are 
shown in blue, centromeres in black, kinetochores in red, and microtubules in green. 

During mitosis, the CPC is enriched at the inner centromere where it is perfectly situated to 
monitor and correct aberrant kinetochore-microtubule attachments. (Tanaka, 2002; 
Vagnarelli and Earnshaw, 2004; Ruchaud et al. 2007; Watanabe, 2010) CPC depletion 
drastically disrupts metaphase chromosome alignment and orientation and subsequent 
anaphase segregation (Biggins et al., 1999; Biggins and Murray, 2001; Carvalho et al., 2003; 
Cimini et al., 2006; Ditchfield et al., 2003; Hauf et al., 2003, 2007; Honda et al., 2003; Kallio et 
al., 2002; Knowlton et al., 2006; Lens et al., 2003; Liu et al., 2009; Tanaka et al., 2002; Zhu et 
al., 2005). Aurora B and the CPC detect inappropriate or reduced tension at sites of incorrect 
attachment, and facilitate the release of these ill-fated connections. Aurora B appears to 
assume a more emphatic role in regulating syntely (Hauf, 2003, 2007; Lampson, 2004), but 
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merotely is also fixed by the kinase (Cimini et al., 2006; Hauf et al., 2007; Knowlton et al., 
2006).  Hesperadin (a specific Aurora B inhibitor) treated HeLa cells showed a high 
incidence of syntelic attachments, and monotelic attachments were reduced six fold 
compared to control. These results led to a model whereby kinase function is required for 
the conversion of syntelic into temporary monotelic connections, such that the newly 
released kinetochore can search for microtubules from the correct pole (Hauf et al., 2003). A 
study in budding yeast suggests that centromeric INCENP-survivin (another CPC subunit) 
is a tension sensor that communicates with Aurora B to specifically destroy attachments 
under aberrant tension (Sandall et al., 2006).  

Recent research has suggested that the spatial distribution of Aurora B is key to coupling 
tension sensing with the stability of kinetochore-microtubule attachments. Aurora B kinase 
influences microtubule interactions via phosphorylation of various centromeric/kinetochore 
targets. The phosphorylation status of Aurora B substrates depends on the extent of spatial 
separation from Aurora B at the inner centromere. Targets experiencing low tension (for 
example, in a syntelic connection) are physically closer to the kinase at the inner centromere, 
and undergo phosphorylation, whereas targets subjected to high tension (as seen in a 
bioriented attachment) are pulled away from Aurora B and escape phosphorylation (Tanaka 
et al., 2002; Liu et al., 2009).  

Aurora B targets include the centromere associated kinesin MCAK (Andrews et al., 2004; 
Lan et al., 2004) and kinetochore proteins Dam1p, Ndc80p (Cheeseman et al., 2002) and 
Ndc10p (Biggins et al., 1999). Aurora B activation abolishes incorrect kinetochore- 
microtubule attachments by promoting microtubule fiber turnover and disassembly 
(Lampson et al., 2004; Cimini et al., 2006). Paradoxically, the microtubule-depolymerizing 
activity of MCAK, a major regulator of microtubule dynamics, is suppressed by Aurora B 
phosphorylation (Andrews et al., 2004; Lan et al., 2004). Perhaps phosphorylation of MCAK 
temporarily turns off its depolymerizing activity and supports new attempts at establishing 
kinetochore–microtubule connections, once incorrect attachments have been resolved 
(Knowlton et al., 2006; Lan et al., 2004).  

Phosphorylation by Aurora B reduces the microtubule binding affinity of its kinetochore 
substrates (Cheeseman et al., 2006; DeLuca et al., 2006; Ciferri et al., 2008). Phosphorylation 
by Aurora B also disrupts subunit interactions within the multiprotein kinetochore and may 
thus contribute to the elimination of inappropriate kinetochore-microtubule connections 
(Shang et al., 2003). Thus, phosphorylation of the kinetochore targets of aurora B reduces 
their affinity for microtubules, causing them to relinquish wrong connections, and seek out 
fibers coming from the appropriate pole.  

The CPC functions not only to detect and dissolve improper attachments, but it also 

activates the spindle attachment checkpoint (SAC) (Biggins and Murray, 2001; Carvalho et 

la., 2003; Ditchfield et al., 2003; Lens  et al., 2003). SAC is activated in response to insufficient 

tension or unattached kinetochores. Checkpoint activation delays anaphase onset, so that 

bipolar attachments can be achieved for all chromosomes.  

Tension is only established if the pulling forces of the spindle are counteracted by cohesion 

between sister centromeres. Centromeric cohesin function is needed for bipolar attachment 

of sister kinetochores (Sonoda et al., 2001; Tanaka et al., 2000). In fission yeast, cohesin 

localizes specifically to pericentric regions, and less to the core centromere (Bernard et al., 
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2001; Nonaka et al., 2002; Tomonaga et al., 2000). These results support a model in which 

reduced levels of cohesin at the core centromere allow core regions to open up and assume 

back-to-back orientation, while pericentric cohesion ensures proper establishment of tension 

(Sakuno et al., 2009; Sakuno and Watanabe, 2009). 

In addition to cohesin, condensin also seems to play a role in ensuring proper 
biorientation of sisters. In C. elegans, condensin depletion results in disorganized 
centromeres, and merotelic attachment (Hagstrom et al., 2002; Stear and Roth, 2002). In 
condensin depleted vertebrate cells, sister kinetochores move closer to each other and 
they do not face opposite poles anymore (Ono et al., 2004). It is likely that if the 
underlying chromosome structure is disrupted, especially at the centromeric regions, 
kinetochore function is perturbed as well. 

3. Chromosomes are restructured extensively in preparation for meiosis 

During meiosis I, sister chromatids orient toward the same pole and paired homologs 

(called bivalents) held together by the chiasma, become bioriented at metaphase instead (See 

Fig. 1). Differences in chromosome orientation during mitosis and meiosis could, in 

principle, be due to differences in the structure of the chromosomes themselves, or 

differences in the spindle. Micromanipulation experiments support the former possibility 

(Paliulis and Nicklas, 2000). Meiotic chromosomes placed on a mitotic spindle orient like 

meiotic chromosomes, and vice versa. 

In both monocentric and holocentric organisms, chromosomes are extensively restructured 
during prophase of meiosis I to facilitate their proper segregation (reviewed in (Page and 
Hawley, 2003; Schvarzstein et al., 2010). Homologous chromosomes first pair, synapse (form 
a structure called the synaptonemal complex (SC) along the entire length of the homolog 
interface), and undergo crossing over, leading to the formation of bivalents. Metaphase 
chromosome alignment faces two challenges. First, sister kinetochores must be held together 
and orient toward the same pole. Second, homologs must be oriented away from each. As in 
mitosis, tension must be established. This tension is mediated by the pulling forces of the 
spindle microtubules exerted on kinetochores of homologs. Unlike in mitosis, the pulling 
forces of spindle microtubules are not counterbalanced by cohesion between sister 
kinetochores, but by the physical linkage of homologs mediated by the chiasma (see Fig. 2). 
Although research thus far has primarily focused on the importance of the CPC for sister 
chromatid biorientation in mitosis, recent evidence suggests that its role in destabilizing 
improper kinetochore-microtubule attachments may be conserved in meiosis as well (see 
below).  

To deal with the special challenges of meiosis, the distribution and/or composition of 
chromosomal proteins can be different on meiotic chromosomes, as compared to mitosis. In 
mouse oocytes at metaphase I, condensin II concentrates within the core of individual sister 
chromatids, while condensin I is enriched at the centromere (Lee et al., 2011). This is in 
contrast to the mitotic distribution of these complexes. During mitosis in HeLa cells, the two 
condensin complexes alternate along chromosome axes, with condensin II being enriched at 
the centromere (Ono et al., 2004) (See Fig. 4). An additional difference between mitosis and 
meiosis is the subunit composition of cohesin. In meiosis, Rec8 (and other Rec8 paralogs) 
replace the mitotic paralog Scc1 (Watanabe and Nurse, 1999).  
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Fig. 4. The distribution of condensin I, condensin II, and cohesin on monocentric and 
holocentric chromosomes during mitosis and meiosis I. 

In monocentric organisms, during prophase I of meiosis, cohesin molecules surrounding the 

site of crossover hold homologous chromosomes together until initiation of anaphase I. 

Homolog separation in meiosis I requires the resolution of sister chromatid cohesion distal 

to the chiasma. At the same time, sister chromatids must be held together until anaphase II 

by sister chromatid cohesion at the centromere. To achieve sequential loss of cohesin, in 

meiosis I arm cohesion is released, but centric cohesion is protected from degradation by 

Shugoshin/MEI-S322 (Kitajima et al., 2004; Resnick et al, 2006; Sakuno and Watanabe, 2009). 

This ensures that homologous chromosomes are no longer tethered, and can migrate to 

opposite poles, but sister chromatids travel together (Fig. 4) At anaphase II, centromeric 

cohesion is lost, and sister chromatids separate (Petronczki et al., 2003).  

Holocentric organisms do not have a localized centromere, and phrases such as arm cohesion 

and centromeric cohesion do not apply. During C. elegans meiosis, the kinetochores form cup-

like structures surrounding the entire volume of each homolog (Dumont et al., 2010) (See Fig. 

2). Differentiation of domains within bivalents must therefore be coordinated in a different 

manner. Research in the last decade revealed that the formation of the crossover provides the 

primary clue for bivalent differentiation (Chan et al., 2004; Nabeshima et al., 2005). In C. 

elegans, each pair of homologs typically undergoes one crossover event in the terminal one-

third of the chromosome. Toward the end of prophase I, bivalents are restructured into cross-
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shaped structures, in which the short arm is formed from the domain between the crossover 

and the closer chromosome end, and the long arm is formed from the domain between the 

crossover and the more distant chromosome end. Cohesin along the short arm is released in 

meiosis I to separate homologs, while cohesin along the long arm must be protected until 

anaphase II (reviewed in (Schvarzstein et al., 2010). Cohesion protection in C. elegans appears 

to be independent of Shugoshin, and instead is regulated by the HORMA domain containing 

protein HTP-1 and worm specific PP1 phosphatase interacting protein LAB-1 (de Carvalho et 

al., 2008; Martinez-Perez et al,. 2008). Note that while cohesion protection in meiosis I in 

monocentric organisms is performed at the centromere, in C. elegans cohesion is protected 

along the long arms of bivalents (Fig. 4). 

As in monocentric organisms, distribution of chromosomal proteins differs between mitosis 

and meiosis in holocentric organisms as well. Our laboratory recently described the distinct 

distribution of condensin complexes in C. elegans, and compared their distributions in 

mitosis and meiosis (Collette et al., 2011). As in mouse oocytes, C. elegans condensin II 

occupies the core domain within each sister chromatid (Chan et al., 2004). Condensin I, on 

the other hand, is found at the midbivalent at the interface between homologs (Csankovszki 

et al., 2009; Collette et al., 2011) (Fig. 4). 

4. Holding sister together: Monopolin and Rec8 

Sisters are usually monooriented in meiosis I, even if homologs are not connected due to 

lack of chiasma formation. In most genetic backgrounds with defective crossover formation, 

homologs are not held together, but sister chromatids still segregate together toward the 

same pole (or are lost) during the first meiotic division. This finding implies that holding 

sisters together is not simply a consequence of keeping homologs apart. In budding yeast, a 

pair of sister kinetochores appears to be captured by a single microtubule (Winey et al., 

2005). In higher eukaryotes, multiple microtubule attachments are made and both sister 

kinetochores are captured but they are connected to the same pole (Goldstein, 1981; Lee et 

al., 2000; Moore and Orr-Weaver, 1998; Parra et al., 2004.) Two possible mechanisms have 

been suggested to explain these findings: either sister kinetochores are fused into a single 

entity or one of the sisters is inactivated (Monje-Casas et al., 2007). Indeed, electron 

microscopy studies indicate that in meiosis I sister kinetochores are arranged side-by-side, 

as opposed to the back-to-back orientation seen in mitosis or meiosis II (Goldstein, 1981; Lee 

et al., 2000; Parra et al., 2004). 

Studies of sister chromatid monoorientation in different model organisms have uncovered 

some interesting similarities and differences. Budding yeast makes use of a complex called 

monopolin to monoorient sisters. Monopolin is made up of Mam1, Csm1, Lrs4 and Hrr25 

(Petronczki et al., 2003, 2006; Rabitsch et al., 2003; Toth et al., 2000). While in other model 

organisms the meiosis specific cohesin subunit Rec8 plays an important role in the process 

(see below), in budding yeast the function of Rec8 is not required for monoorientation (Toth 

et al., 2000, Yokobayashi et al., 2003), and monopolin appears to glue sisters together 

independent of cohesin function (Monje-Casas et al., 2007) On the other hand, condensin 

function is important for proper chromosome orientation, perhaps via correct localization of 

monopolin. In condensin depleted cells, monopolin association with kinetochores is reduced 

and a portion of sister kinetochores biorient (Brito et al., 2010). 
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Monocentric organisms other than budding yeast do not use Monopolin for sister 
chromatid monoorienation, and instead make use of cohesin and other meiosis specific 
factors. Rec8 seems to play an especially important role. Rec8 deficiency in fission yeast 
and plants leads to biorientation of sister chromatids, resulting in equational rather than 
reductional division in meiosis I (Chelysheva et al., 2005; d’Erfurth et al., 2009; Watanabe 
and Nurse, 1999, Yu and Dawe, 2000). Replacement of Rec8 with its mitotic paralog also 
results in biorientation, indicating that Rec8 function is specifically required (Yokobayashi 
et al., 2003). While Rec8 is necessary for sister monoorientation, it is not sufficient 
(Watanabe and Nurse, 1999; Yokobayashi et al., 2003). In fission yeast at least one other 
meiosis specific factor, Moa1, assists Rec8 in the process (Yokobayashi and Watanabe, 
2005). In fission yeast, Rec8 has a distinct localization pattern, and is also found at the 
central core region of the centromere, in addition to chromosome arms and pericentric 
regions (Yokobayashi et al., 2003). This is different from the localization pattern of mitotic 
cohesin, which is specifically reduced at the centromere core (see above). According to 
current models, cohesion at the core centromere induces sister kinetochore 
monorientation, and cohesion at pericentric regions (as in mitosis and meiosis II) allows 
kinetochores to move away from each other promoting biorientation (Sakuno et al., 2009; 
Sakuno and Watanabe, 2009). 

Since holocentric organisms do not have a localized centromere, they must use a different 

method to hold sister chromatids together during meiosis I. Recent studies suggest that 

despite the difference in chromosomal organization, REC-8 plays an important role in sister 

monoorientation in C. elegans as well (Severson et al., 2009). In rec-8 mutant oocytes, 

homologs are not held together by a chiasma at metaphase due to an earlier defect in 

meiosis. However, rec-8 mutant univalents (a pair of sister chromatids) become bioriented 

and separate from each other in meiosis I. Therefore C. elegans uses the same factor as 

monocentric organisms (REC-8), but this protein is functioning to promote sister 

monoorientation at different chromosomal domains: at the centromere in monocentric 

organisms and at the long arm of bivalents in C. elegans. 

5. Regulating kinetochore-microtubule attachments: Aurora B function 
promotes homolog biorientation 

As discussed above, in meiosis I homologous chromosomes become bioriented at the 

metaphase plate, as opposed to the biorientation of sister chromatids seen in mitosis and 

meiosis II. In principle, the problem to be solved is similar: tension must be established 

between two kinetochore entities that are connected. The difference is that this connection is 

centric cohesin in mitosis and chiasma between homologs during meiosis. During mitosis, 

Aurora B plays a crucial role in biorienting sister chromatids. During meiosis in fission 

yeast, budding yeast and mouse, Aurora B also localizes to the centromeric regions (Monje 

Casas et al., 2007; Parra et al., 2003, Petersen et al., 2001), therefore the protein is present at 

the right place and at the right time to regulate kinetochore-microtubule attachments in 

meiosis as well. 

The first indication that Aurora B homologs are functioning in meiotic chromosome 

orientation came from studies in yeast. In budding yeast, Ipl1/Aurora B is needed for 

biorientation of homologs (Monje-Casas et al., 2007, Yu and Koshland, 2007). The results 
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obtained in this system are consistent with the primary role of Aurora B to regulate turnover 

of kinetochore-microtubule attachments, similar to its role in mitosis. The fission yeast 

Aurora B homolog, Ark1, is also crucial for homolog biorientation during the first meiotic 

division (Hauf et al., 2007). Ark1 can promote biorientation of homologs, but it is also 

needed for biorientation of Rec8-deficient univalents (Hauf et al., 2007). In fact, Aurora B can 

promote biorientation even on kinetochores that are only loosely connected by a DNA 

thread (Dewar et al., 2004). These findings led to the suggestion that Aurora B can promote 

biorientation of any two kinetochores that are connected, further supporting the hypothesis 

that the molecular function of Aurora B is the same in mitosis and meiosis: correcting faulty 

kinetochore-microtubule attachments (Hauf et al., 2007). 

Fission yeast Ark1 kinase appears to promote not only homolog biorientation, but also sister 

monoorientation. Ark1 can correct attachment of a unified pair of sister chromatids to both 

poles (merotelic attachment). While corrections of these merotelic attachments ultimately 

promote sister monoorientation, this mechanism is fundamentally different from the 

mechanism used by Rec8 and Moa1 to alter kinetochore geometry discussed above (Hauf et 

al., 2007). 

On the holocentric chromosomes of C. elegans, Aurora B/AIR-2 is also located in an ideal 

position for regulating chromosome orientation, although this role has not been formally 

demonstrated yet. When bivalents orient at the metaphase plate, their long arms are parallel 

to spindle microtubules, and the midbivalent domains line up at the metaphase plate. 

Surprisingly, microtubule density on the poleward end of bivalents is low. Instead 

chromosomes are ensheathed by lateral microtubule bundles (Wignall and Willeneuve, 

2009) (See Fig. 4). This ensheathment by lateral microtubules naturally promotes the 

orientation of homologs away from each other (Schwarzstein et al., 2010). Importantly, 

Aurora B/AIR-2 is found at the midbivalent domain, at the homolog interface (Kaitna et al., 

2002; Rogers et al., 2002). Aurora B is perfectly situated here to promote homolog 

biorientation by performing its usual function: destabilizing incorrectly attached 

microtubules. Ensuring that microtubules do not attach at the zone of high Aurora B 

activity, coupled with ensheathment of bivalents by lateral microtubules provides an 

attractive model for biorientation of holocentric homologs. 

6. Regulating chromosome orientation: a role for condensin? 

Condensin I during mouse (Lee et al., 2011) and C. elegans meiosis (Collette et al., 2011) 

colocalizes with Aurora B. In the mouse, both condensin I and Aurora B are enriched at the 

centromere during metaphase I—at the domain important for regulating chromosome 

orientation. We recently demonstrated that in C. elegans AIR-2/Aurora B and condensin I 

colocalize at metaphase and anaphase of both meiotic divisions. Interestingly, condensin I 

occupies the same domain as AIR-2 not just on chromosomes at metaphase I and II, but also 

on the spindle between separating chromosomes at anaphase (Fig. 5). In addition, we also 

showed that correct targeting of condensin I to the midbivalent in meiosis I is dependent on 

AIR-2 (Collette et al., 2011). These results raise the interesting possibility that condensin I 

may aid Aurora B in performing its functions in regulating chromosome orientation in 

meiosis. 
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Fig. 5. Fluorescence microscopy images of condensin I distribution during C. elegans meiosis. 
During metaphase I, condensin I associates with the midbivalent domain, and during 
anaphase it is found on spindle microtubules between separating chromosomes. 
Microtubules are shown in red, condensin I in green, and chromosomes in blue.  

Condensin depletion experiments support a role for condensin in regulating chromosome 
orientation. In budding yeast, condensin depletion leads to reduced localization of 
Monopolin subunit Mam1 to kinetochores and increased incidence of sister chromatid 
biorientation (Brito et al., 2010). In mouse oocytes, injections of SMC2 antibodies (which 
interfere with the function of both condensin complexes) led to a portion of sister 
chromatids assuming back-to-back, rather than side-by-side orientation. Anti–CAP-H 
injection (which interferes with condensin I only) caused disorganized centromeres and 
chromosome alignment problems (Lee et al., 2011). Condensin function may influence 
kinetochore structure, or may affect the underlying structure of centromeric chromatin 
(Bernad et al., 2011; Lee et al., 2011; Ono et al., 2004). Whether similar defects will be seen 
upon condensin I depletion in holocentric organisms as well remains to be demonstrated. 
However, given the colocalization of Aurora B and condensin I in mouse and C. elegans 
meiosis, the role for Aurora B in chromosome orientation in yeast and mouse meiosis, and 
the apparently conserved function of Aurora B in different organisms, we would like to 
propose that condensin I may aid chromosome orientation in C. elegans meiosis as well. 

7. Conclusion 

During meiosis in monocentric organisms, the centromere is used as a site where 
kinetochore-microtubule attachments, and therefore chromosome orientation, are regulated. 
In organisms other than budding yeast, enrichment of meiotic Rec8-containing cohesin at 
core centromeric regions promote monoorientation of sister chromatids. Aurora B at 
centromeric region appears to function to correct aberrant kinetochore-microtubule 
attachments to promote biorientation of homologs and prevent merotelic attachment of 
unified sister kinetochores.  During meiosis in C. elegans, the site of the crossover, and not a 
localized centromere, ultimately determines the plane of chromosome orientation. During 
metaphase, the short arms of bivalents are lined up along the metaphase plate and the long 
arms point toward opposite poles. The kinetochore “cups” the entire volume of sister 
chromatids along the long arms. The activities that monoorient sisters and biorient 
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homologs are concentrated at opposite domains of the bivalents. REC-8 promotes sister 
chromatid monoorientation along the long arms. By contrast, Aurora B is restricted to the 
short arm, where by preventing microtubules from “crossing the plane” of the bivalent short 
arm, it can ensure that sisters stay together, and homologs stay apart.  

One way to conceptualize the differences between holocentric and monocentric 
chromosome orientation in meiosis is to think of holocentric bivalents as one large 
centromere without extended chromosome arms. The entire holocentric chromosome is 
cupped by the kinetochore. One domain within the kinetochore-bound domain (the long 
arm) contains REC-8, and according to this analogy, is comparable to core centromeric 
regions of monocentric chromosomes. Another domain (the short arm) is comparable to 
regions of Aurora B enrichment at centromeres. The organization of holocentric 
chromosomes magnifies the distinction between the various specialized chromosomal 
domains and makes it an ideal setting in which to examine these differences. 
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