We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,800
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chemotherapy for Large Cell Neuroendocrine Carcinoma of the Lung: Should It Be Treated with the Same Strategy as Small Cell Lung Carcinoma?

Katsuhiko Naoki, Kenzo Soejima, Takashi Sato, Shinnosuke Ikemura, Hideki Terai, Ryosuke Satomi, Sohei Nakayama, Satoshi Yoda and Koichiro Asano
Keio Cancer Center / Division of Respiratory Medicine, Department of Internal Medicine, School of Medicine, Keio University, Tokyo / Yuai Clinic, Yokohama Japan

1. Introduction

Lung cancer is leading cause of cancer death in many advanced countries and one of the challenging malignancies because of poor prognosis. Lung cancer is traditionally divided into two major categories, so called small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC) because of distinctive prognostic and treatment strategies between them. On the other hand, there is a spectrum of tumors called pulmonary neuroendocrine (NE) tumors that are thought to originate from neuroendocrine cells in the pulmonary and bronchial epithelium. Until recently, pulmonary NE tumors were classified into three categories, i.e., typical carcinoid (TC), atypical carcinoid (AC), and SCLC. Large cell neuroendocrine carcinoma (LCNEC) of the lung was officially identified by Travis et al. in 1991 as a fourth category, a unique higher grade NSCLC existing between TC and SCLC (Travis et al., 1991). It is often difficult to diagnose LCNEC with small biopsy specimens because accurate diagnosis needs morphological and immunohistochemical information. Although earlier reports mainly focused on prognosis after surgical procedures, several recent studies reported on the efficacy of chemotherapy for advanced LCNEC. Because of the limited numbers of cases (in surgical series, LCNEC represents ~3% of lung cancers), large scale prospective studies have not been reported. Standard treatment for LCNEC, especially if advanced, is not established although LCNEC is included in NSCLC in the treatment algorithm in many guidelines. However, accumulating data including recent retrospective studies have suggested that there is similarity in the prognosis and treatment response between LCNEC and SCLC.

In this review, we will focus on the treatment of advanced LCNEC for the better selection of chemotherapeutic regimens for the patients with this relatively rare lung cancer.
2. Large cell neuroendocrine carcinoma of the lung

LCNEC is classified as a variant of large cell carcinoma in NSCLC whilst LCNEC has neuroendocrine characteristics similar to SCLC such as morphology and the immunohistochemical staining pattern. This discrepancy raises the question as to what the best therapeutic modality is, that is, should we treat LCNEC as NSCLC or SCLC?

Abbreviations: LCNEC, large cell neuroendocrine carcinoma; HPF, high power field; NSCLC, non-small cell lung carcinoma; N/C, nuclear-cytoplasmic ratio; NE, neuroendocrine

Table 1. Tumors with neuroendocrine morphology (Travis 2010, Gollard et al., 2010)

<table>
<thead>
<tr>
<th>Morphology</th>
<th>Typical Carcinoid</th>
<th>Atypical Carcinoid</th>
<th>LCNEC</th>
<th>Small cell carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitosis</td>
<td>carcinoid</td>
<td>carcinoid</td>
<td>neuroendocrine</td>
<td>neuroendocrine</td>
</tr>
<tr>
<td>Cytologic features</td>
<td>absent</td>
<td>present (focal punctate)</td>
<td>high >1 / 2mm2 (10HPF)</td>
<td>high >1 / 2mm2 (10HPF)</td>
</tr>
<tr>
<td>Immunohistochemistry</td>
<td>NSCLC (large cell low N/C)</td>
<td>small cell, scant cytoplasm</td>
<td>positive for NE markers</td>
<td>positive for NE markers</td>
</tr>
</tbody>
</table>

Recently, Varlotto et al. reported survival analysis of resected cases with LCNEC and SCLC (Varlotto et al., 2011). They compared overall survival (OS) and lung cancer-specific survival (LCSS) of patients with LCNEC and SCLC or other large cell lung carcinomas (OLCs) using the US National Cancer Institute database (SEER program). Although, the survival rates tended to be better in LCNEC and OLCs compared to SCLC, multivariate analysis showed no statistical differences (4-year OS rates are 41 % in LCNEC, 42% in OLC, and 32% in SCLC; 4-year LCSS rates are 57 % in LCNEC, 54% in OLC, and 42% in SCLC). The SEER database does not include chemotherapy information, so that we do not know the impact of chemotherapy on survival. Other reports also noted that survival in the early stage LCNEC is similar to SCLC (Asamura et al., 2006, Sun et al., 2009) and not better than NSCLC (Iyoda et al., 2007).

3. Chemotherapy for advanced LCNEC

LCNEC is classified in the category of NSCLC pathologically (Brambilla et al., 2001), so that the guideline recommended treatment of advanced LCNEC as NSCLC (NCCN guideline™ 2011), and many trials have included this disease as a NSCLC. However, recent accumulating data have brought new insights regarding possibly better results with SCLC regimens.

From the published literature, we found four major studies showing the treatment results with chemotherapy for advanced LCNEC (Igawa et al., 2010, Fujiwara et al., 2007, Yamazaki et al., 2005, Rossi et al., 2005) (Table 2). All studies were retrospective and a total of 83 patients were treated with first line systemic chemotherapy. Chemotherapy regimens can be classified into two groups: SCLC-based regimens (total n=44; platinum and etoposide n=27, platinum and irinotecan (CPT-11) n=16, CPT-11 only n=1) and NSCLC-based regimens (total n=39; platinum and paclitaxel (PTX) n=11, platinum and gemcitabine n=10, cisplatin with vindesine and mitomycin n=6, cisplatin and vindesine n=4, other platinum doublet n=2, other single agent n=6).
Table 2. Previous report regarding 1st line chemotherapy for advanced large cell neuroendocrine cell carcinoma (LCNEC)

The response rate (RR) was 47.7% (21/44) for SCLC-based regimens and 35.9% (14/39) for NSCLC-based regimens (Table 3). In particular, a platinum doublet yielded a RR of 56.3% (9/16) with platinum and CPT-11, 44.4% (12/27) with platinum and etoposide, 54.5% (6/11) with platinum and PTX, 16.7% (2/12) with platinum and other third generation agents.
Rossi et al. (2005) showed a significant survival benefit with a SCLC-based regimen compared with a NSCLC regimen (OS of 51 months (M) vs 21M). This result is far better than other reports (OS 7.9M-10.3M, 1-year survival rate 35-47.6%), suggesting that the result was from combined effects of surgery and chemotherapy.

<table>
<thead>
<tr>
<th>Chemotherapy</th>
<th>Pt</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCLC based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>n=44</td>
<td>48%</td>
</tr>
<tr>
<td>Platinum+VP16</td>
<td>n=27</td>
<td>44%</td>
</tr>
<tr>
<td>Platinum+CPT11</td>
<td>n=16</td>
<td>56%</td>
</tr>
<tr>
<td>CPT11</td>
<td>n=1</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NSCLC based</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>n=39</td>
<td>36%</td>
</tr>
<tr>
<td>Platinum+PTX</td>
<td>n=11</td>
<td>55%</td>
</tr>
<tr>
<td>PTX</td>
<td>n=1</td>
<td>100%</td>
</tr>
<tr>
<td>CDDP+VNR</td>
<td>n=1</td>
<td>100%</td>
</tr>
<tr>
<td>VNR</td>
<td>n=1</td>
<td>0%</td>
</tr>
<tr>
<td>CDDP+DTX</td>
<td>n=1</td>
<td>100%</td>
</tr>
<tr>
<td>DTX</td>
<td>n=1</td>
<td>0%</td>
</tr>
<tr>
<td>CDDP+GEM</td>
<td>n=10</td>
<td>0%</td>
</tr>
<tr>
<td>GEM</td>
<td>n=2</td>
<td>0%</td>
</tr>
<tr>
<td>MVP</td>
<td>n=6</td>
<td>33%</td>
</tr>
<tr>
<td>CDDP+VDS</td>
<td>n=4</td>
<td>75%</td>
</tr>
<tr>
<td>CDDP</td>
<td>n=1</td>
<td>0%</td>
</tr>
</tbody>
</table>

(Abbreviations are the same as in Table 1)

Table 3. Summary of previous reports regarding 1st line chemotherapy for advanced large cell neuroendocrine cell carcinoma (LCNEC)

As for second line treatment, there is no report other than a recent publication with amrubicin treatment (Yoshida et al., 2011). Amrubicin has efficacy for both SCLC and NSCLC, and has been used commonly in Japan in a second line setting with SCLC. Promising results for SCLC have also been recently reported from the USA (Ettinger et al., 2010, Jotte et al., 2011).

Currently there are a few prospective clinical trials for LCNEC in the 1st line settings (ClinicalTrials.gov and UMIN-CTR Clinical Trial, accessed 2nd Aug, 2011). One is not yet open but is an interesting phase II study with RAD001 + carboplatin/paclitaxel for advanced LCNEC. The other is an ongoing phase II study with cisplatin + irinotecan for advanced LCNEC.

The former study with RAD001 is an interesting study utilizing an mTOR inhibitor which inhibits one of the signaling pathways, i.e. the PI3K-mTOR pathway, that lies downstream of receptor tyrosine kinases (RTKs) such as EGFR and c-MET. EGFR is one of the most
Chemotherapy for Large Cell Neuroendocrine Carcinoma of the Lung: Should It Be Treated with the Same Strategy as Small Cell Lung Carcinoma?

Table 4. Efficacy of Amrubicin in the 2nd line treatment for LCNEC and SCLC

<table>
<thead>
<tr>
<th>Disease</th>
<th>Report</th>
<th>Study</th>
<th>Pt</th>
<th>RR</th>
<th>PFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCNEC</td>
<td>Yoshida, 2011</td>
<td>retrospective</td>
<td>n=18</td>
<td>27.7%</td>
<td>3.1M</td>
<td>5.1M</td>
</tr>
<tr>
<td>SCLC (sensitive)</td>
<td>Jotte, 2011</td>
<td>prospective</td>
<td>n=50</td>
<td>44%</td>
<td>4.5M</td>
<td>9.2M</td>
</tr>
<tr>
<td>SCLC (refractory)</td>
<td>Ettinger, 2010</td>
<td>prospective</td>
<td>n=75</td>
<td>21.3%</td>
<td>3.2M</td>
<td>6.0M</td>
</tr>
<tr>
<td>SCLC (sensitive)</td>
<td>Inoue, 2008</td>
<td>prospective</td>
<td>n=9</td>
<td>53%</td>
<td>3.9M</td>
<td>9.9M</td>
</tr>
<tr>
<td>SCLC (refractory)</td>
<td></td>
<td></td>
<td>n=2</td>
<td>17%</td>
<td>2.6M</td>
<td>5.3M</td>
</tr>
<tr>
<td>SCLC (sensitive)</td>
<td>Onoda, 2006</td>
<td>prospective</td>
<td>n=44</td>
<td>52%</td>
<td>10.3M</td>
<td>11.6M</td>
</tr>
<tr>
<td>SCLC (refractory)</td>
<td></td>
<td></td>
<td>n=16</td>
<td>50%</td>
<td>2.6M</td>
<td>4.4M</td>
</tr>
</tbody>
</table>

Table 4. Efficacy of Amrubicin in the 2nd line treatment for LCNEC and SCLC

important RTKs in NSCLC (Paez et al., 2004), and moreover c-MET is reported to be an important RTK in SCLC as well as NSCLC (Nakachi et al., 2010, Rossi et al., 2005, Schmid et al., 2010). RAD001 has limited but apparent antitumor activity against pretreated SCLC as a single agent (Tarhini et al., 2010). According to these results, targeting signaling pathways with cytotoxic agent might be the next challenge for SCLC and LCNEC. Because many of the current effort in NSCLC is searching for driver mutations (Paez et al., 2004, Naoki et al., 2002), such an effort is also important in SCLC and LCNEC.

4. Conclusion

Although there is an issue regarding accurate diagnosis with small biopsy specimens, accumulating retrospective data suggest that patients with advanced LCNEC will benefit from systemic chemotherapy.

The current recommendation for the treatment of advanced LCNEC is similar to that of SCLC, i.e. platinum based combination chemotherapy, mainly with etoposide or CPT-11 and possibly with PTX. Further prospective data is needed to elucidate the best combination therapy.

5. References

www.intechopen.com
Clinical Trials.gov, 2011 Aug,
http://clinicaltrials.gov/

Non-Small Cell Lung Cancer, NCCN Guidelines™, 2011 Aug,

www.intechopen.com
Chemotherapy for Large Cell Neuroendocrine Carcinoma of the Lung: Should It Be Treated with the Same Strategy as Small Cell Lung Carcinoma?

Varlotto JM, Medford-Davis LN, Recht A, Flickinger JC, Schaefer E, Zander DS, & DeCamp MM. Should large cell neuroendocrine lung carcinoma be classified and treated as a small cell lung cancer or with other large cell carcinomas? J Thorac Oncol 2011 Jun;6(6):1050-8, ISSN 1556-0864

www.intechopen.com
The developments in molecular medicine are transforming respiratory medicine. Leading clinicians and scientists in the world have brought their knowledge and experience in their contributions to this book. Clinicians and researchers will learn about the most recent advances in a variety of lung diseases that will better enable them to understand respiratory disorders. This treatise presents state of the art essays on airways disease, neoplastic diseases, and pediatric respiratory conditions. Additionally, aspects of immune regulation, respiratory infections, acute lung injury/ARDS, pulmonary edema, functional evaluation in respiratory disorders, and a variety of other conditions are also discussed. The book will be invaluable to clinicians who keep up with the current concepts, improve their diagnostic skills, and understand potential new therapeutic applications in lung diseases, while scientists can contemplate a plethora of new research avenues for exploration.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:
