We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,600
Open access books available

177,000
International authors and editors

195M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
The Therapeutic Benefits of Essential Oils

Abdelouaheb Djilani and Amadou Dicko

1. LSBO, BADJI MOKHTAR-Annaba University, Algeria
2. LCME, Metz University, France

1. Introduction

Since ancient times, essential oils are recognized for their medicinal value and they are very interesting and powerful natural plant products. They continue to be of paramount importance until the present day. Essential oils have been used as perfumes, flavors for foods and beverages, or to heal both body and mind for thousands of years (Baris et al., 2006; Margaris et al., 1982; Tisserand, 1997; Wei & Shibamoto 2010). Record findings in Mesopotamia, China, India, Persia and ancient Egypt show their uses for many treatments in various forms. For example, in the ancient Egypt, the population extracted oils by infusion. Later; Greeks and Romans used distillation and thus gave aromatic plants an additional value. With the advent of Islamic civilization, extraction techniques have been further refined. In the era of the Renaissance, Europeans have taken over the task and with the development of science the composition and the nature of essential oils have been well established and studied (Burt, 2004; Peeyush et al., 2011; Steven, 2010; Suaib et al., 2007). Nowadays, peppermint, lavender, geranium, eucalyptus, rose, bergamot, sandalwood and chamomile essential oils are the most frequently traded ones.

2. Definition and localization of essential oils

Essential oils (also called volatile or ethereal oils, because they evaporate when exposed to heat in contrast to fixed oils) are odorous and volatile compounds found only in 10% of the plant kingdom and are stored in plants in special brittle secretory structures, such as glands, secretory hairs, secretory ducts, secretory cavities or resin ducts (Ahmadi et al., 2002; Bezić et al., 2009; Ciccarelli et al., 2008; Gershenzon et al., 1994; Liolios et al., 2010; Morone-Fortunato et al., 2010; Sangwan et al., 2001; Wagner et al., 1996). The total essential oil content of plants is generally very low and rarely exceeds 1% (Bowles, 2003), but in some cases, for example clove (Syzygium aromaticum) and nutmeg (Myristica fragrans), it reaches more than 10%. Essential oils are hydrophobic, are soluble in alcohol, non polar or weakly polar solvents, waxes and oils, but only slightly soluble in water and most are colourless or pale yellow, with exception of the blue essential oil of chamomile (Matricaria chamomilla) and most are liquid and of lower density than water (sassafras, vetiver, cinnamon and clove essential oils being exceptions) (Gupta et al., 2010; Martín et al., 2010). Due to their
molecular structures (presence of olefinic double bonds and functional groups such as hydroxyl, aldehyde, ester); essential oils are readily oxidizable by light, heat and air (Skold et al., 2006; Skold et al., 2008). Some examples of oxidations are illustrated in figure 1.

![Diagram of β-caryophyllene oxidation](image)

Fig. 1.a. Oxidation (ox.) of β-caryophyllene by air at room temperature.

![Diagram of linalyl acetate and linalool oxidation](image)

Fig. 1.b. Oxidation (ox.) of linalyl acetate and linalool by air at room temperature.

3. Extraction of essential oils

Oils contained within plant cells are liberated through heat and pressure from various parts of the plant matter; for example, the leaves, flowers, fruit, grass, roots, wood, bark, gums and blossom. The extraction of essential oils from plant material can be achieved by various methods, of which hydro-distillation, steam and steam/water distillation are the most common method of extraction (Bowles, 2003; Margaris et al., 1982; Surburg & Panten, 2006). Other methods include solvent extraction, aqueous infusion, cold or hot pressing, effleurage,
supercritical fluid extraction and phytonic process (Da Porto et al., 2009; Hunter, 2009; Lahlou, 2004; Martínez, 2008; Pourmortazavi & Hajimirsadeghi, 2007; Surburg & Panten, 2006). This later process has been newly developed; it uses refrigerant hydrofluorocarbons solvents at low temperatures (below room temperature), resulting in good quality of the extracted oils. Thus, the chemical composition of the oil, both quantitative and qualitative, differs according to the extraction technique. For example, hydro-distillation and steam-distillation methods yield oils rich in terpene hydrocarbons. In contrast, the super-critical extracted oils contained a higher percentage of oxygenated compounds (Donelian et al., 2009; Eikani et al., 2007; Reverchon, 1997; Wenqiang et al., 2007).

Essential oils are highly complex mixtures of volatile compounds, and many contain about 20 to 60 individual compounds, albeit some may contain more than 100 different components (Miguel, 2010; Sell, 2006; Skaltsa et al., 2003; Thormar, 2011), such as jasmine, lemon and cinnamon essential oils.

The major volatile constituents are hydrocarbons (e.g. pinene, limonene, bisabolene), alcohols (e.g. linalol, santalol), acids (e.g. benzoic acid, geranic acid), aldehydes (e.g. citral), cyclic aldehydes (e.g. cuminal), ketones (e.g. camphor), lactones (e.g. bergaptene), phenols (e.g. eugenol), phenolic ethers (e.g. anethole), oxides (e.g. 1,8 cineole) and esters (e.g. geranyl acetate) (Deans, 1992). All these compounds may be classified into two main categories: terpenoids and phenylpropanoids (Andrade et al., 2011; De Sousa, 2011; Griffin et al., 1999; Lis-Balchin, 1997; Sangwan et al., 2001) or also into hydrocarbons and oxygenated compounds (Akhila, 2006; Halm, 2008; Hunter, 2009; Margaris et al. 1982; Pourmortazavi and Hajimirsadeghi, 2007; Shibamoto, 2010). This latter classification seems less complex, and for the current book chapter, we have adopted it. The fragrance and chemical composition of essential oils can vary according to the geo-climatic location and growing conditions (soil type, climate, altitude and amount of water available), season (for example before or after flowering), and time of day when harvesting is achieved, etc (Andrade et al., 2011; Deans et al., 1992; Margaris et al., 1982; Pengelly, 2004; Sangwan et al., 2001). In addition, there is another important factor that influences the chemical composition of essential oils, namely the genetic composition of the plant. Therefore, all these biotope factors (genetic and epigenetic) influence the biochemical synthesis of essential oils in a given plant. Thus, the same species of plant can produce a similar essential oil, however with different chemical composition, resulting in different therapeutic activities. These variations in chemical composition led to the notion of chemotypes. The chemotype is generally defined as a distinct population within the same species (plant or microorganism) that produces different chemical profiles for a particular class of secondary metabolites. Some examples of various chemotypes are given in Table 1:

<table>
<thead>
<tr>
<th>Plant</th>
<th>Chemotype 1</th>
<th>Chemotype 2</th>
<th>Chemotype 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyme (Thymus vulgaris L.)</td>
<td>Thymol</td>
<td>Thujanol</td>
<td>Linalool</td>
</tr>
<tr>
<td>Peppermint (Mentha piperita L.)</td>
<td>Menthol</td>
<td>Carvone</td>
<td>Limonene</td>
</tr>
<tr>
<td>Rosemary (Rosmarinus officinalis L.)</td>
<td>Camphor</td>
<td>1,8 cineole</td>
<td>Verbenone</td>
</tr>
<tr>
<td>Dill (Anethum graveolens L.)</td>
<td>Carvone</td>
<td>Limonene</td>
<td>Phellandrene</td>
</tr>
<tr>
<td>Lavender (Lavandula angustifolia Mill.)</td>
<td>Linalool</td>
<td>Linalyl acetate</td>
<td>β-Caryophyllene</td>
</tr>
</tbody>
</table>

Table 1. Main chemotypes of some aromatic plants
4. Trade of essential oils

The knowledge of composition of essential oils and their therapeutic properties have contributed to the development of their cultivation and markets. Although only 100 species are well known for their essential oils, there are over 2000 plant species distributed over 60 families such as Lamiaceae, Umbelliferae and Compositae which can biosynthesize essential oils. They are about 3,000 essential oils, out of which approximately 300 are commercially important and are traded in the world market (Baylac and Racine, 2003; Burt, 2004; Delamare et al., 2007; Sivropoulou et al., 1995; 1996; 1997).

Essential oils constitute a major group of agro-based industrial products and they find applications in various types of industries, such as food products, drinks, perfumes, pharmaceuticals and cosmetics (Anwar et al., 2009a; 2009b; Burt, 2004; Celiktas et al., 2007; Hammer et al., 2008; Hay & Svoboda, 1993; Hussain et al., 2008; Teixeira da Silva, 2004).

The world production and consumption of essential oils is increasing very fast (Lawless, 1995). Despite their high costs (due to the large quantity of plant material required), essential oil production has been increasing. The estimates of world production of essential oils vary from 40,000 to 60,000 tonnes per annum and represent a market of approximately 700 million US$ (Verlet, 1994).

The predominately produced essential oils for industry purposes are from orange, cornmint, eucalyptus, citronella, peppermint, and lemon (Hunter, 2009) but the more commonly domestically used ones include lavender, chamomile, peppermint, tea tree oil, eucalyptus, geranium, jasmine, rose, lemon, orange, rosemary, frankincense, and sandalwood. The countries that dominate the essential oils market worldwide are Brazil, China, USA, Indonesia, India and Mexico. The major consumers are the USA, EU (especially Germany, United Kingdom and France) and Japan.

5. Bioavailability of essential oils

The term bioavailability, one of the principal pharmacokinetic properties of drugs, is used to describe the fraction of an administered dose of unchanged drug that reaches the systemic circulation and can be used for a specific function and/or stored. By definition, when a drug is administered intravenously, its bioavailability is 100%. However, when a drug is administered via other routes (such as oral), it has to pass absorption and metabolic barriers, before it reaches the general circulation system, and its bioavailability is prone to decrease (due to gastro-intestinal metabolism, incomplete absorption or first-pass metabolism). Bioavailability is measured by pharmacokinetic analysis of blood samples taken from the systemic circulation and reflects the fraction of the drug reaching the systemic circulation. If a compound is poorly absorbed or extensively metabolised beforehand, only a limited fraction of the dose administered will reach the systemic circulation. Thus, in order to achieve a high bioavailability, the compound must be of sufficiently high absorption and of low renal clearance (measurement of the renal or other organ excretion ability).

Various factors can affect bioavailability such as biochemical, physiological, physicochemical interactions; habitual mix of the diet; individual characteristics (life-stage and life-style) as well as the genotype. In the case of essential oils, the comprehension of their bioavailability by studying their absorption, distribution, metabolism and excretion in
the human body is necessary. Unfortunately, there exists only limited data on the bioavailability of essential oils, and most studies are based on animal models.

All findings confirm that most essential oils are rapidly absorbed after dermal, oral, or pulmonary administration and cross the blood-brain barrier and interact with receptors in the central nervous system, and then affect relevant biological functions such as relaxation, sleep, digestion etc. ...

Most essential oil components are metabolized and either eliminated by the kidneys in the form of polar compounds following limited phase I enzyme metabolism by conjugation with glucuronate or sulfate, or exhaled via the lungs as CO$_2$. For example, after oral administration of (-)-menthol, 35% of the original menthol content was excreted renally as menthol glucuronide (Bronaugh et al., 1990; Buchbauer, 1993; Hotchkiss et al., 1990; Jirovetz et al., 1992; Kohlert et al., 2000).

The same happens with thymol, carvacrol, limonene and eugenol. After their oral administration, sulphate and glucuronide forms have been detected in urine and in plasma, respectively (Buchbauer et al., 1993; Guénette et al., 2007; Michiels et al., 2008). The fast metabolism and short half-life of active compounds has led to the belief that there is a minimum risk of accumulation in body tissues (Kohlert et al., 2002).

6. Therapeutic benefits of essential oils

The feeding with aromatic herbs, spices and some dietary supplements can supply the body with essential oils. There are a lot of specific dietary sources of essential oils, such as example orange and citrus peel, caraway, dill; cherry, spearmint, caraway, spearmint, black pepper and lemongrass. Thus, human exposure to essential oils through the diet or environment is widespread. However, only little information is available on the estimation of essential oil intake. In most cases, essential oils can be absorbed from the food matrix or as pure products and cross the blood brain barrier easily. This later property is due to the lipophilic character of volatile compounds and their small size.

The action of essential oils begins by entering the human body via three possible different ways including direct absorption through inhalation, ingestion or diffusion through the skin tissue.

6.1 Absorption through the skin

Essential oil compounds are fat soluble, and thus they have the ability to permeate the membranes of the skin before being captured by the micro-circulation and drained into the systemic circulation, which reaches all targets organs (Adorjan & Buchbauer, 2010; Baser & Buchbauer, 2010).

6.2 Inhalation

Another way by which essential oils enter the body is inhalation. Due to their volatility, they can be inhaled easily through the respiratory tract and lungs, which can distribute them into the bloodstream (Margaris et al., 1982; Moss et al, 2003). In general, the respiratory tract offers the most rapid way of entry followed by the dermal pathway.
6.3 Ingestion

Oral ingestion of essential oils needs attention due to the potential toxicity of some oils. Ingested essential oil compounds and/or their metabolites may then be absorbed and delivered to the rest of the body by the bloodstream and then distributed to parts of the body. Once essential oil molecules are in body, they interrelate with physiological functions by three distinct modes of action:

- Biochemical (pharmacological): Interacting in the bloodstream and interacting chemically with hormones and enzymes such as farnesene.
- Physiological: By acting (for example phytohormones) on specific physiological function. For example, the essential oil of fennel contains a form of estrogen-like compounds that may be effective for female problems such as lactation and menstruation.
- Psychological: by inhalation, the olfactory area of the brain (limbic system) undergoes an action triggered by the essential oil molecules and then, chemical and neurotransmitter messengers provide changes in the mental and emotional behavior of the person (Buchbauer, 1993; Johnson, 2011; Shibamoto et al, 2010). Lavender and lemon essential oils are examples for their sedative and relaxant properties.

Biological activity of essential oils may be due to one of the compounds or due to the entire mixture. In the following, we present effects of different classes of compounds present in essential oils together with their major properties and we give some examples of essential oils and their potential therapeutic activities.

7. Classes of essential oil compounds and their biological activities

7.1 Hydrocarbons

The majority of essential oils fall into this category; these contain molecules of hydrogen and carbon only and are classified into terpenes (monoterpens: C10, sesquiterpenes: C15, and diterpenes: C20). These hydrocarbons may be acyclic, alicyclic (monocyclic, bicyclic or tricyclic) or aromatic. Limonene, myrcene, p-menthane, α-pinene, β-pinene, α-sabinene, p-cymene, myrcene, α-phellandrene, thujane, fenchane, farnesene, azulene, cadinene and sabinene are some examples of this family of products. These compounds have been associated with various therapeutic activities (Table 2). Some structures of these compounds are given in figure 2.

7.2 Esters

Esters are sweet smelling and give a pleasant smell to the oils and are very commonly found in a large number of essential oils. They include for example, linalyl acetate, geraniol acetate, eugenol acetate and bornyl acetate (Figure 3). Esters are anti-inflammatory, spasmolytic, sedative, and antifungal (Table 2).

7.3 Oxides

Oxides or cyclic ethers are the strongest odorants, and by far the most known oxide is 1,8-cineole, as it is the most omnipresent one in essential oils. Other examples of oxides are bisabolone oxide, linalool oxide, sclareol oxide and ascaridole (Figure 4). Their therapeutic benefits are expectorant and stimulant of nervous system (Table 2).
Fig. 2. Structures of some hydrocarbons commonly found in essential oils.

Fig. 3. Structures of some esters commonly found in essential oils.

Fig. 4. Structures of some oxides commonly found in essential oils.
<table>
<thead>
<tr>
<th>Class of compounds</th>
<th>Example</th>
<th>Bioactivities</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbons</td>
<td>Limonene, myrcene, pinene, pinene, sabinene, cymene, myrcene, phellandrene.</td>
<td>Stimulant, antiviral, antitumour, decongestant, antibacterial, hepatoprotective</td>
<td>Ozbek, 2003; Pengelly, 2004; Bowles, 2003; Svoboda & Hampson, 1999; Deans et al., 1992; Griffin et al., 1999; Edris, 2007; Baser & Buchbauer, 2010</td>
</tr>
<tr>
<td>Esters</td>
<td>linalyl acetate, geraniol acetate, eugenol acetate, bornyl acetate</td>
<td>spasmolytic, sedative, antifungal, anaesthetic, anti-inflammatory</td>
<td>Pengelly, 2004; De Sousa et al., 2011; Sugawara et al., 1998; Peana et al., 2002; Ghelardini et al., 1999; De Sousa, 2011.</td>
</tr>
<tr>
<td>Lactones</td>
<td>nepetalactone, bergaptene, costuslactone, dihydronepetalactone, alantrolactone.</td>
<td>Antimicrobial; antiviral; Antipyretic, sedative, hypotensive; analgesic</td>
<td>Pengelly, 2004; De Sousa, 2011; Miceli et al., 2005; Gomes et al., 2009.</td>
</tr>
<tr>
<td>Alcohols</td>
<td>linalol, menthol, borneol, santalol, nerol, citronellol, geraniol</td>
<td>Antimicrobial, antiseptic, tonifying, balancing, spasmolytic, anaesthetic; anti-inflammatory.</td>
<td>Pengelly, 2004; Sugawara et al., 1998; De Sousa, 2011; Ghelardini et al., 1999; Peana et al., 2002.</td>
</tr>
<tr>
<td>Phenols</td>
<td>thymol, eugenol, carvacrol, chavicol</td>
<td>antimicrobial, spasmolytic, anaesthetic, irritant, immune stimulating</td>
<td>Pengelly, 2004; Ghelardini et al., 1999; De Sousa, 2011.</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>citral, myrtenal, cuminaldehyde, citronellal, cinnamaldehyde, benzaldehyde</td>
<td>Antiviral, antimicrobial, tonic, vasodilators, hypotensive, calming, antipyretic, sedative, spasmolytic</td>
<td>Dorman & Deans, 2000; Pengelly, 2004;</td>
</tr>
<tr>
<td>Ketones</td>
<td>carvone, menthone, pulegone, fenchone, camphor, thujone, verbenone</td>
<td>mucolytic, cell regenerating, sedative, antiviral, neurotoxic, analgesic, digestive, spasmolytic</td>
<td>Pengelly, 2004; De Sousa et al. 2008; De Sousa, 2011; Gali-Muhtassib et al., 2000</td>
</tr>
</tbody>
</table>

Table 2. Different classes of essential oils compounds and their bioactivities.
7.4 Lactones
Lactones are of relatively high molecular weight and are usually found in pressed oils. Some examples of lactones are nepetalactone, bergaptene, costuslactone, dihydronepetalactone, alantrolactone, epinepetalactone, aesculatine, citroptene, and psoralen (Figure 5). They may be used for antipyretic, sedative and hypotensive purposes, but their contraindication is allergy, especially such involving the skin (Table 2).

![Fig. 5. Structures of some lactones commonly found in essential oils.](image)

7.5 Alcohols
In addition to their pleasant fragrance, alcohols are the most therapeutically beneficial of essential oil components with no reported contraindications. They are antimicrobial, antiseptic, tonifying, balancing and spasmolytic (Table 2). Examples of essential oil alcohols are linalol, menthol, borneol, santalol, nerol, citronellol and geraniol (Figure 6).

7.6 Phenols
These aromatic components are among the most reactive, potentially toxic and irritant, especially for the skin and the mucous membranes. Their properties are similar to alcohols but more pronounced. They possess antimicrobial, rubefacient properties, stimulate the immune and nervous systems and may reduce cholesterol (Table 2). Phenols are often found as crystals at room temperature, and the most common ones are thymol, eugenol, carvacrol and carvicol (Figure 7).

7.7 Aldehydes
Aldehydes are common essential oil components that are unstable and oxidize easily. Many aldehydes are mucous membrane irritants and are skin sensitziers. They have characteristically sweet, pleasant fruity odors and are found in some of our most well known culinary herbs such as cumin and cinnamon. Therapeutically, certain aldehydes have been described as: antiviral, antimicrobial, tonic, vasodilators, hypotensive, calming, antipyretic and spasmolytic (Table 2). Common examples of aldehydes in essential oils include citral (geranial and neral), myrtenal, cuminaldehyde, citronellal, cinnaldehyde and benzaldehyde (Figure 8).
Fig. 6. Structures of some alcohols commonly found in essential oils.

Fig. 7. Structures of some phenols commonly found in essential oils.

Fig. 8. Structures of some aldehydes commonly found in essential oils.
7.8 Ketones

Ketones are not very common in the majority of essential oils; they are relatively stable molecules and are not particularly important as fragrances or flavor substances. In some cases, ketones are neurotoxic and abortifacients such as camphor and thujone (Gali-Muhtassib et al., 2000) but have some therapeutic effects. They may be mucolytic, cell regenerating; sedative, antiviral, analgesic and digestive (Table 2). Due to their stability, ketones are not easily metabolized by the liver. Common examples of ketones found in essential oils include carvone, menthone, pulegone, fenchone, camphor, thujone and verbenone (Figure 9).

![Ketone structures](image)

Fig. 9. Structures of some ketones commonly encountered in essential oils.

In Table 2; the different classes of these compounds are summarized with their bioactivities based on various biological studies cited in literature.

8. Mechanism of the biological activities of essential oils

So far, there is no study that can give us a clear idea and be accurate on the mode of action of the essential oils. Given the complexity of their chemical composition, everything suggests that this mode of action is complex, and it is difficult to identify the molecular pathway of action. It is very likely that each of the constituents of the essential oils has its own mechanism of action.

8.1 Antibacterial and antifungal action

Because of the variability of amounts and profiles of the components of essential oils, it is likely that their antimicrobial activity is not due to a single mechanism, but to several sites of action at the cellular level. Then, different modes of action are involved in the antimicrobial activity of essential oils.
One of the possibilities for action is the generation of irreversible damage to the membrane of bacterial cells, that induce material losses (cytoplasmic), leakage of ions, loss of energy substrate (glucose, ATP), leading directly to the lysis of bacteria (cytolysis) and therefore to its death. Another possibility of action is inhibition of production of amylase and protease which stop the toxin production, electron flow and result in coagulation of the cell content (Bakkali et al., 2008; Burt 2004; Di Pasqua et al., 2007; Hammer et al., 2008).

Antifungal actions are quite similar to those described for bacteria. However, two additional phenomena inhibiting the action of yeast are worth mentioning: the establishment of a pH gradient across the cytoplasmic membrane and the blocking of energy production of yeasts which involve the disruption of the bacterial membrane.

8.2 Antiviral activity

The complex mixture of essential oils usually shows a higher antiviral activity than individual compounds (due probably to synergism phenomena); with exception of β-caryophyllene which is the most famous antiviral compounds found in many different essential oils from different plant families. Different mechanisms of antiviral activity of different essential oils and their constituents seem to be present. The antiviral activity of the essential oil is principally due to direct virucidal effects (by denaturing viral structural proteins or glycoproteins). Proposed mechanisms suggest that essential oils interfere with the virus envelope by inhibiting specific processes in the viral replication cycle or by masking viral components, which are necessary for adsorption or entry into host cells, thus, they prevent the cell-to-cell virus diffusion (Saddi et al., 2007).

9. Therapeutic properties of some essential Oils

9.1 Chamomille essential oil (Matricaria chamomilla):

9.1.1 Main active compounds: Bisabolol and chamazulene (Cemek et al.; 2008; Kamatou & Viljoen, 2010).

9.1.2 Properties: anti-inflammatory, anti-allergic, anti-pruritic, healing, decongestive (decongest the skin) and antispasmodic (Bnouham, 2010; Tolouee et al., 2010, Alves et al., 2010; Mckay & Blumberg, 2006).

9.2 Anise essential oil (Pimpinella anisum):

9.2.1 Main active compound: Anethole (Andrade et al., 2011; Mata et al., 2007;)

9.2.2 Properties: antispasmodic, emmenagogue, stomachic, carminative, diuretic, general cardiac stimulant. (Jaiswal et al., 2009; Muchtaridi et al., 2010; Nerio et al., 2010; Tabanca et al., 2006).

9.3 Nutmeg essential oil (Myristica fragrans):

9.3.1 Main active compounds: Sabinene, 4-terpineol and myristicin (Muchtaridi et al., 2010).

9.3.2 Properties: Antimicrobial, pesticidal activity, general tonic, brain and circulatory, hepatoprotective, aphrodisiac, Stimulating the digestive, carminative and digestive systems Analgesic, Emmenagogue, Antiseptic, anti-parasitic (Sankarikutty & Narayanan, 1993; Spricigo et al., 1999; Tomaino et al., 2005).
9.4 Cedar essential oil (Cedrus libani):
9.4.1 Main active compound: Limonene (Cetin et al., 2009).
9.4.2 Properties: Larvicidal, Lymphotonic, draining powerful diuretic, Regenerative blood, Healing, astringent, Scalp Tonic, Antifungal, Anti-mosquito and anti-moth Decongestant and antiseptic respiratory Relaxing and comforting (Dharmagadda et al., 2005; Kizil et al., 2002; Loizzo et al., 2008; Svoboda et al., 1999)

9.5 Dill essential oil (Anethum graveolens):
9.5.1 Main active compound: Carvone (Lazutka et al., 2001; Kishore et al., 1993)
9.5.2 Properties: Antispasmodic in gastrointestinal disorders, fluidity of bronchial secretions. (Bakkali et al., 2008; Edris, 2007; Jirovetz et al., 2003; Sridhar et al., 2003.)

9.6 Garlic essential oil (Allium sativum):
9.6.2 Properties: Protects and maintains the cardiovascular system, hypoglycemic, Regulates blood pressure vermifuge, antimicrobial, antiviral, anti-fungal and anti-parasitic, insecticidal and larvicidal, antioxidant (Klevenhusen et al., 2011; Lazarević et al., 2011; Lau et al., 1983; Park & Shin, 2005)

9.7 Clove essential oil (Syzygium aromaticus):
9.7.1 Main active compound: Eugenol and eugenyle acetate (Silva & Fernandes, 2010; Fichi et al., 2007)
9.7.2 Properties: Antiviral, antimicrobial, antifungal, general stimulating, hypertensive aphrodisiac, light stomachic, carminative, anesthetic. (de Paoli et al., 2007; Koba et al., 2011; Machado et al., 2011; Politeo et al., 2010).

9.8 Cinnamon essential oil (Cinnamomum cassia):
9.8.1 Main active compound: Cinnamaldehyde (Hseini & Khouadhji, 2007; Vyawahare et al., 2009).
9.8.2 Properties: Powerful, antibacterial, antiviral, antifungal and parasiticide, uterine tonic, anticoagulant, insecticide. (Cheng et al., 2004; Geng et al., 2011; Unlu et al., 2010).

9.9 Sweet orange essential oil (Citrus sinensis):
9.9.1. Main active compound: Limonene (Hosni et al., 2010; Viudamartos et al., 2008)
9.9.2. Properties: Antiseptic, sedative, stomachic, carminative, tonic, excellent food flavoring (Anagnostopoulou et al., 2006; Ezeonu et al., 2001; Singh et al., 2010).

9.10. Eucalyptus essential oil (Eucalyptus globulus):
9.10.1. Main active compound: 1,8-cineole (Nerio et al., 2009; Vilela et al., 2009)
9.10.2. Properties: Anticatarrhal, expectorant and mucolytic, antimicrobial, Antiviral (Ben-Arye et al., 2011; Ben Hadj et al., 2011; Caballero-Gallardo et al., 2011; Gende et al., 2010).
9.11. Peppermint essential oil (*Mentha piperita*):

9.11.1. **Main active compound:** menthol and menthone (Sala, 2011; Alexopoulos et al., 2011).

9.11.2. **Properties:** Tonic and stimulant, decongestant, anesthetic and analgesic antipruritic, refreshing, antimicrobial, anti-inflammatory, expectorant, mucolytic, emmenagogue (De Sousa, 2011; Kumar et al., 2011; Sabzghabaee et al., 2011; Singh et al., 2011).

9.12. Lavender essential oil (*Lavandula officinalis*):

9.12.1. **Main active compound:** Linalol and linalyle acétate (Hajhashemi et al., 2003; Lee et al., 2011).

9.12.2. **Properties:** antispasmodic, sedative, relaxing, analgesic, anti-inflammatory, antimicrobial (Kloucek et al., 2011; Pohlit et al., 2011; Woronuk et al., 2011; Zuzarte et al., 2011).

9.13. Tea tree essential oil (*Melaleuca alternifolia*):

9.13.1. **Main active compound:** Terpinène-1-ol-4. (Van Vuuren et al., 2009; Hammer et al., 2008)

9.13.2. **Properties:** Antimicrobial, antiviral, antiasthenic, neurotonic, lymphatic, decongestant, radioprotective, antispasmodic (Garozzo et al., 2009; Lobo et al., 2011; Mickienė et al., 2011).

9.14.1. **Main active compound:** limonene (Fisher & Phillips, 2008; Kim et al., 2003)

9.14.2. **Properties:** Strengthen natural immunity, metabolism regulator, tonic nervous system, antimicrobial, antiviral, digestive tonic carminative and purgative (Koul et al., 2008; Pavela et al., 2005; Pavela et al., 2008; Ponce et al., 2004).

10. Conclusion

According to literature, we can say that the essential oils and their components have many uses, both in pharmacology and in food. In addition, they are endowed with interesting biological activities and have a therapeutic potential. For example, essential oils exhibit antimicrobial activities, antiviral activities with broad spectrum, and may be useful as natural remedies and it seems that essential oils can be used as a suitable therapy for many pathologies. In the cosmetic and in the food industry, essential oils uses are an integral part, as they may play different roles. Therefore, economic importance of essential oils is indisputable. It appears therefore imperative to preserve our natural, diverse flora and support its protection in order to keep this inexhaustible source of molecules destined for multiple targets.

11. References

The Therapeutic Benefits of Essential Oils

The Therapeutic Benefits of Essential Oils

www.intechopen.com

The Therapeutic Benefits of Essential Oils

www.intechopen.com
Nutrition, Well-Being and Health

In our modern society, expectations are high, also with respect to our daily diet. In addition to being merely "nutritious", i.e. supplying a variety of essential nutrients, including macro-nutrients such as proteins or micro-nutrients such as minerals and vitamins, it is almost expected that a good diet offers further advantages - especially well-being and health and the prevention of chronic diseases, which are, as we generally tend to grow older and older, becoming a burden to enjoying private life and to the entire society. These additional qualities are often sought in diets rich also in non-nutritive components, such as phytochemicals. In contrast to drugs, which are taken especially to cure or ameliorate diseases, it is expected that a healthy diet acts in particular on the side of prevention, allowing us to become old without feeling old. In the present book, rather then trying to give an exhaustive overview on nutritional aspects and their link to well-being and health, selected topics have been chosen, intended to address presently discussed key issues of nutrition for health, presenting a reasonable selection of the manifold topics around diet, well-being, and health: from the antioxidants polyphenols and carotenoids, aroma-active terpenoids, to calcium for bone health, back to traditional Chinese Medicine.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
