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1. Introduction 

The nudiviruses (NVs) are a diverse group of arthropod-specific large DNA viruses. They 
form rod-shaped, enveloped virions, and replicate in the nucleus of infected cells. Nudivirus 
genomes are covalently closed circles of double stranded DNA molecules. Some nudiviruses 
have been used as potential bio-control agent for management of economically important 
arthropod pests (Burand 1998, Huger 1966). A variety of non-occluded rod-shaped dsDNA 
viruses replicating in the host nucleus have been observed in various host species, belonging 
to Lepidoptera, Trichoptera, Diptera, Siphonaptera, Hymenoptera, Neuroptera, Coleoptera, 
Homoptera, Thysanura, Orthoptera, Acarina, Araneina, and Crustacea. They had been 
considered as “non-occluded baculoviruses” (Huger and Krieg 1991) or more recently as 
nudiviruses (Burand, 1998). Most of these viruses were identified solely based on 
morphological features and very limited biological data. Accordingly, it remains unclear 
whether they are evolutionarily monophyletic or polyphyletic lineages, and whether they 
are genetically related to each other, to the well-investigated baculoviruses, or to other large 
dsDNA viruses. 

Thus far, only a few nudiviruses have somehow been studied in detail. The Oryctes 

rhinoceros nudivirus (OrNV), formerly known as the rhinoceros beetle virus or Oryctes 

baculovirus, was discovered in the 1960s and has been widely used to control rhinoceros 

beetle (O. rhinoceros) in coconut and oil palm in Southeast Asia and the Pacific (Huger 1966, 

Jackson et al. 2005). It has an enveloped rod-shaped virion and replicates in the nucleus of 

infected midgut and fat body cells (Huger 1966, Payne 1974, Payne et al. 1977). Heliothis zea 

nudivirus 1 (HzNV-1), formerly known as Hz-1 virus or the non-occluded baculovirus Hz-1, 

was originally described as a persistent viral infection in the IMC-Hz-1 cell line isolated 
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from the adult ovarian tissues of the corn earworm Heliothis zea (Granados et al. 1978). It can 

also persistently infect several other lepidopterous cell lines, e.g. IPLB-1075 (H. zea), IPLB-

SF-21 (Spodoptera frugiperda), IPLB-65Z (Lymantria dispar) and TN-368 (Trichoplusia ni) 

(Granados et al. 1978, Kelly et al. 1981, Lu and Burand 2001). In contrast, clear infections 

have not been observed when the virus was inoculated into larvae of H. zea, H. armigera, 

Estigmene acrea, S. frugiperda, and S. littoralis (Granados et al. 1978, Kelly et al. 1981). The 

potential molecular mechanisms associated with this defective host infection of HzNV-1 

need to be explored, which will shed light on the viral evolution. Gryllus bimaculatus 

nudivirus (GbNV) infects nymphs and adults of several field crickets G. bimaculatus, G. 

campestris, Teleogryllus oceanicus and T. commodus, and replicates in the nuclei of the infected 

fat body cells (Huger 1985). Heliothis zea nudivirus 2 (HzNV-2), previously known as gonad-

specific virus, H. zea reproductive virus or Hz-2V, was first observed in the gonads of adult 

corn earworm H. zea. Its infection brings about deformities of the reproductive organs of 

insect hosts, which in turn lead to sterility in both female and male moths (Burand and 

Rallis 2004, Raina et al. 2000). HzNV-2 is also able to infect other Noctuid species and to 

replicate in two lepidopteran insect cell lines of TN-368 and Ld652Y, derived from ovarian 

tissues (Burand and Lu 1997, Lu and Burand 2001, Raina and Lupiani 2006). 

1.1 Infection cycles and gene expression 

Only very limited data on the infection cycle of nudiviruses are available. Their life cycle in 
either cell culture or natural hosts is still poorly understood. HzNV-1 has a bi-phasic 
infection process of latency and productivity in its life cycle. In the latent phase of infection, 
viruses either exist as episomes or insert their DNA into the host genome (Lin et al. 1999), 
and keep latency for many passages in the infected insect cells (Chao et al. 1992, Lin et al. 
1999, Wood and Burand 1986); virus particles are undetectable in most of these latently 
infected cells. Sometimes virions are released from as few as 0.2% of latently infected cells, 
resulting in the presence of low viral titers (around 103 PFU/ml) in the culture medium 
(Chao et al. 1998, Lin et al. 1999). During the productive infection cycle, in contrast, high 
titers of virus progeny are produced, resulting in the death of most cells. Often, however, a 
small proportion of the cells, usually less than 5%, are latently infected, and viruses stay in 
these cells for a prolonged period of time (Chao et al. 1992, Wood and Burand 1986). Upon 
in vitro infection, OrNV appears to attach to and subsequently internalizes into cultured 
cells by pinocytosis (Crawford and Sheehan 1985), a mechanism involving the formation of 
invaginations by the cell membrane, which close and break off to generate virus-containing 
vacuoles in the cytoplasm. While it remains unknown how the viral DNA is released into 
the cytoplasm and eventually enters the nucleus. During the later stage of replication, along 
with the cytopathic changes to the nucleus, the virogenic stroma is developed, where the 
viral envelopes and nucleocapsid shells are produced and subsequently packaged with viral 
DNA. At last, the matured virions enter the cytoplasm followed by budding through the cell 
membrane (Crawford and Sheehan 1985) . 

In vitro sequential expression of viral genes encoding structural and intracellular proteins 
has been divided into early, intermediate and late stage in the replication cycle of OrNV 
(Crawford and Sheehan 1985). The temporal gene expression profiles of HzNV-1 during 
productive infection are divided into three stages: (i) the early stage, 0 to 2 h p.i.; (ii) the 
intermediate stage, 2 to 6 h p.i.; and (iii) the late stage, which includes all virus-specific 

www.intechopen.com



 
Nudivirus Genomics and Phylogeny 35 

events appearing after 6 h p.i. (Chao et al. 1992). Persistency-associated transcript 1 (PAT1), 
expressed by persistency-associated gene 1 (pag1), is the only detectable transcript during 
latent infection of HzNV-1 (Chao et al. 1998). 

1.2 Taxonomy and nomenclature 

Given that they share similar structural and replication aspects with baculoviruses of 
insects, nudiviruses were previously classified as the so-called “non-occluded 
baculoviruses” (NOBs) (Huger and Krieg 1991). NOBs were later removed from the family 
Baculoviridae because no genetic data were available which would have supported their 
relationship (Mayo 1995). Nudiviruses have been also referred to as intranuclear bacilliform 
viruses (IBVs). Notably, unlike baculoviruses, nudiviruses generally lack occlusion bodies 
(OBs). The genus name Nudivirus has been proposed to accommodate this group. Based on 
the currently available morphological and molecular data, the following demarcation 
criteria were proposed for classification of a candidate virus into the genus Nudivirus: (i) 
Viral genome is consist of large circular dsDNA molecule; (ii) A set of conserved core genes 
are shared among members and viruses propagate in the nuclei of infected host cells; (iii) 
Morphology of virion is rod-shaped and enveloped; (iv) Viruses are transmitted per oral 
and/or per parenteral route, and infect larvae and/or adults with diverse tissue and cell 
tropisms (Wang et al. 2007a). Obviously, these demarcation criteria need to be 
complemented with more biological properties, such as virion properties, infection and 
replication strategies, as well as host range and virus ecology, becoming available. To name 
a nudivirus species, it was suggested to follow the nomenclature for other large eukaryotic 
dsDNA viruses, host name with the suffix name of nudivirus (Wang et al. 2007c). 

Presently, nudiviruses comprise five tentative species, OrNV, GbNV, HzNV-1, HzNV-2, and 
Penaeus monodon nudivirus (PmNV) (Wang and Jehle 2009). Considering their similarities to 
baculoviruses and, on the other hand, taking their distinct biological, ecological features and 
virion properties into account, the establishment of an independent family ‘‘Nudiviridae” 
within a new order ‘‘Baculovirales” along with the Baculoviridae seems most appropriate. 
The establishment of an order “Baculovirales” would allow subsequent flexible integration 
of other ‘‘baculovirus-related” but highly diverged viruses, such as the proposed 
‘‘Hytrosaviridae” (Abd-Alla et al. 2009) or the Nimaviridae, without taxonomic re-definition 
of the family Baculoviridae.  

2. Genome structure 

2.1 Genome size 

HzNV-1 was the first completely sequenced nudivirus (Cheng et al. 2002). Its genome is 
228,089 bp in size, has a G+C content of 42%, and encodes 154 ORFs (Table 1). HzNV-1 
ORFs are randomly distributed on both DNA strands with 45% clockwise orientation and 
55% counterclockwise orientation. HzNV-2, the close relative to HzNV-1, has a genome of 
231,621 bp, only slightly longer than that of HzNV-1, with a G+C content of 42% identical to 
HzNV-1 (Wang et al. 2007a). Later on, the genome of OrNV, the first discovered nudivirus, 
was partially sequenced (Wang et al. 2007c). Recently, the complete genome of OrNV was 
successfully achieved using DNA generated with multiple displacement amplification 
(MDA) (Wang et al. 2008). The OrNV genome is 127,615 bp in size with a G+C content of 
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42% and contains 139 ORFs (Table 1, Fig. 1) (Wang et al. 2008, Wang et al. 2011). Thus far, 
the smallest nudivirus genome sequenced is GbNV, which is 96,944 bp in length with a G+C 
content of 28% and contains 98 ORFs. Among them, 58% are in clockwise distribution and 
42% are in reverse direction (Table 1, Fig. 2) (Wang et al. 2007b). Genome sequencing of 
other nudiviruses such as the Tipula oleracea nudivirus (ToNV) (E. Herniou, personal 
communication) is ongoing. Partial nucleotide sequences of the shrimp PmNP genome are 
already accessible in GenBank. 

 

Virus 
Size in 

bp 

GC 
content 
(mol %) 

No. 
of 

ORFs 

Clockwise 
orientation*  

(No. of ORF / 
ORF%) 

Gene density 
(kbp per ORF) 

No. of 
Rsr 

HzNV-1 228,089 41.8 154 69/45 1.47 3 
GbNV 96,944 28.0 98 57/58 0.93 17 
OrNV 127,615 42.0 139 64/46 0.82 20 

Table 1. Characteristics of nudivirus genomes. *Clockwise orientation means in the same 

orientation as the DNA polymerase B ORF. Rsr = Repetitive sequence regions. 

 

 

Fig. 1. The genome map of OrNV. ORFs and their transcriptional directions are indicated in 

arrows. Black color, clockwise coding; blue color, counterclockwise coding; pink color, the 

20 baculovirus core gene homologues. 
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Fig. 2. Circular map of the GbNV genome. ORFs and their transcriptional directions are 

indicated in boxes and arrows, respectively. Red color, baculovirus and HzNV-1 

homologues; black color, GbNV specific ORFs; blue color, HzNV-1 homologues; green color, 

baculovirus, HzNV-1 and OrNV homologues; pink color, OrNV homologues; yellow color, 

HzNV-1 and OrNV homologues; blue color, HzNV-1 homologues; light blue, cellular 

homologues; grey color, baculovirus homologues. Taken from Wang et al. (2007b) with 

permission from the American Society for Microbiology.  

2.2 Gene order 

Similar to what is observed in other viral families (e.g., the Baculoviridae), gene order is 

poorly conserved in nudivirus genomes as well. OrNV and GbNV share a number of gene 

clusters, comprising 2–7 collinearly arranged genes, distributed throughout their genomes 

(Wang and Jehle 2009). In contrast, only two gene clusters were detected between OrNV and 

HzNV-1 (Wang and Jehle 2009, Wang et al. 2011). However, a gene cluster of helicase, pif-

4/19 kda, and/or lef-5 is present in all three nudivirus genomes (Fig. 3), which is similar to 

the conserved core gene cluster of four genes of helicase, pif-4/19 kda, 38K and lef-5 in all 

sequenced baculoviruses (Herniou et al. 2003, Jehle and Backhaus 1994). Hence, core gene 

clustering strongly supports the hypothesis of a common ancestor of nudiviruses and 

baculoviruses. 

GbNV 

96,944 bp 
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Fig. 3. Conserved gene cluster of helicase, pif-4, and/or lef-5 on the genomes of HzNV-1, 
GbNV and OrNV. ORF is indicated by boxed arrows; number above and below the boxed 
arrows represents the sequential ordering of ORFs on the viral genomes; line in bold 
represents the viral genomes; dashed bold line indicates the omitted genomic ranges. 

2.3 Repetitive regions 

Repetitive sequence regions (Rsr) were detected in all three sequenced nudivirus genomes. 
They are variable in length and numbers and are distributed throughout the genome. They 
are homologous neither to each other within and between genomes, nor to those of other 
large dsDNA viruses, such as baculoviruses, hytrosaviruses and white spot syndrome virus 
(WSSV). Rsr appear to be a universal feature of all large dsDNA viruses. 

3. Nudivirus gene structure 

3.1 Promoter motifs 

A promoter motif of TTATAGTAT was identified at the upstream regulatory regions of 

HzNV-1 late gene p34 (ORF79) and p51 (ORF64) (Guttieri and Burand 1996, Guttieri and 

Burand 2001). It was also found within 200 bp of the initiation codon of HzNV-1 ORF81 

based on in silica sequence analysis (Cheng et al. 2002). Although consensus early and late 

promoter motif sequences similar to those of baculoviruses were predicted in nudivirus 

ORFs, convincing experimental data remain unavailable (Cheng et al. 2002, Wang et al. 

2007c). 

3.2 Untranslated regions 

In the HzNV-1 transcripts, the early gene hhi1 (HzNV-1 HindIII fragment 1 gene) contains 

270 nucleotides (nts) of 5’ untranslated region (UTR) which, together with its upstream 62 

bps, compose hhi1 early promoter (Wu et al. 2008, Wu et al. 2010); the HzNV-1 late gene p34 

(ORF79) possesses 16 and 17 nts of 5’ UTR, respectively, differing by 1 nt, and both 5’ UTRs 

overlap with the identified 9 bp late promoter motif of the p34 (Guttieri and Burand 1996); 

as for the HzNV-1 late gene p51 (ORF64), the major late transcriptional initiation site is at 

−205 bp relative to the translational start codon and seven minor late start sites locate at 

various positions upstream of this primary site (Guttieri and Burand 2001). The putative 
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polyadenylation signals (AATAAA) downstream of the stop codon of the p34 and p51 were 

found (Guttieri and Burand 1996, Guttieri and Burand 2001). Thus far, nothing is known on 

how UTR mediate the translational efficiency of nudivirus genes.  

3.3 Open reading frames (ORFs) 

Computer-assisted ORF prediction included all sequences starting with ATG followed by 50 
or more amino acid (aa) codons and minimum overlap with other ORFs. ORFs with less 
than 50 aa are only considered as putative genes in cases of clear homology to ORFs in other 
dsDNA viruses.  

4. Gene content and conserved gene functions 

There are 66, 34, and 33 homologous genes shared by OrNV and GbNV, OrNV and HzNV-1, 
and GbNV and HzNV-1, respectively (Table 2), suggesting that OrNV and GbNV are more 
closely related to each other than to HzNV-1. OrNV, GbNV and HzNV-1 have 33 genes in 
common (Table 2). Strikingly, 20 out of them are homologues of baculovirus core genes, 
which are present in all 54 baculovirus genomes that have been deposited in GenBank as of 
July 2011. Baculovirus 31 core genes play crucial role in virus replication cycle and are the 
evolutionarily conserved marker genes in identification, classification and phylogeny of 
baculoviruses (Herniou et al. 2003, Herniou and Jehle 2007, Jehle et al. 2006a, Jehle et al. 
2006b, van Oers and Vlak 2007). Nine other ORFs are likely involved in DNA replication, 
repair and recombination, and nucleotide metabolism; one is homologous to baculovirus 
iap-3 gene; two others are nudivirus-specific ORFs of unknown function (Table 2). The 
presence of 20 baculovirus core genes in nudiviruses strongly indicates that nudiviruses and 
baculoviruses are the closest lineages among the viruses known so far.  

Besides in nudiviruses, homologues to baculovirus core genes were also detected in two 
salivary gland hypertrophy viruses (SGHVs) MdSGHV infecting the house fly Musca 
domestica and GpSGHV infecting the tsetse fly Glossina pallidipes (Abd-Alla et al. 2008, 
Garcia-Maruniak et al. 2008). GpSGHV and MdSGHV share 37 homologous ORFs and are 
phylogenetically closely related (Garcia-Maruniak et al. 2009). Surprisingly, several core 
gene homologues of baculoviruses was identified in the marine WSSV as well (Wang et al. 
2011), suggesting that WSSV, as suspected since it was observed, is evolutionarily related, 
albeit distantly, to baculoviruses. Most strikingly, nudiviruses, SGHVs and WSSV have the 
homologues to the genes encoding peroral infectivity factors (p74, pif-1, pif-2 and pif-3) 
(Wang et al. 2011). These four pif genes are conserved among all sequenced baculoviruses 
and are absolutely crucial for successful peroral infection of insect hosts. As midgut 
infection is the essential first step in the invasion of baculoviruses, PIFs may be the key 
determinants of host range and virulence. Accordingly, it seems to be reasonable to 
hypothesize that a highly conserved interaction mode of viruses and hosts upon primary 
infection is present in nudiviruses, baculoviruses, SGHVs and WSSV. However, only limited 
data on the function of the PIF proteins has been delineated in baculovirues (Slack and Arif 
2007), let alone in nudiviruses, SGHVs and WSSV. Obviously, deeply exploring of the 
molecular mechanisms of the PIF proteins as well as their homologues is crucial for better 
understanding of host range, zoonotic behaviour, and epizootic or enzootic disease of these 
viruses. In addition, nudiviruses appear to share homologues of the transcription apparatus 
of baculoviruses, suggesting that a similar mode of late gene transcription is used in 
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nudiviruses as well (Wang et al. 2011). Taken together, this finding provides crucial clues to 
the origin and evolution of arthropod specific large dsDNA viruses. The biochemical and 
biological function of the genes predicted in nudiviruses remains unknown. Only the 
occlusion body protein-encoding gene of PmNV has been molecularly characterised, 
revealing no homology to any other genes deposited in Genbank (Chaivisuthangkura et al. 
2008). 

 

Function Name OrNV GbNV HzNV-1 PmNV 

DNA replication, repair, and 
recombination 

dnapol 1 12 131 N.d. 

 helicase 34 88 104 N.d. 

 helicase 2 108 46 60 N.d. 
 integrase 75 57 144 + 
 ligase 121 38 36 N.d. 
 lef-3 59 86 – N.d. 
Nucleotide metabolism rr1 51 82 95 N.d. 
 rr2 102 63 73 N.d. 
 tk 58 74 115 + 
 tk 117 34 111 + 
 tk 125 44 71 + 
 tk 137 17 51 + 
Transcription p47 20 69 75 N.d. 

 lef-4 42 96 98 N.d. 

 lef-8 64 49 90 N.d. 

 lef-9 96 24 75 + 

 lef-5 52 85 101 + 

 vlf-1 30 80 121 + 

Oral infectivity p74 126 45 11 N.d. 

 pif-1 60 52 55 N.d. 

 pif-2 17 66 123 N.d. 

 pif-3 107 3 88 N.d. 

 19 kda/pif-4 33 87 103 N.d. 

 odv-e56/pif-5 115 5 76 N.d. 
Packaging, assembly, and 
morphogenesis 

polh/gran 16 65 69 N.d. 

 ac68 72 55 74 N.d. 
 38 K 87 1 10 + 
Inhibition of apoptosis iap-3 134 98 138 N.d. 
Unknown function vp39 15 64 89 N.d. 
 vp91 106 2 46 N.d. 
 ac81 4 14 33 N.d. 
 ac92 113 7 13 N.d. 

  47 19 30 N.d. 
  76 58 143 N.d. 
  3 13 – N.d. 
  18 67 – N.d. 
  22 72 – N.d. 
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Function Name OrNV GbNV HzNV-1 PmNV 

  23 74 – N.d. 
  24 75 – N.d. 
  25 76 – N.d. 
  27 78 – N.d. 
  29 81 – N.d. 
  39 93 – N.d. 
  40 94 – N.d. 
  41 95 – N.d. 
  44 97 – N.d. 
  45 23 – N.d. 
  46 22 – N.d. 
  53 84 – N.d. 
  54 83 – N.d. 
  61 51 – N.d. 
  79 59 – N.d. 
  80 60 – N.d. 
  86 61 – N.d. 
  90 28 – N.d. 
  95 9 – N.d. 
  104 62 – N.d. 
  105 43 – N.d. 
  114 6 – N.d. 
  116 33 – N.d. 
  118 35 – N.d. 
  119 36 – N.d. 
  120 37 – N.d. 
  122 39 – N.d. 
  123 41 – N.d. 
  132 48 – N.d. 
  6 – 109 N.d. 
  – – 52 + 
  – – 64 + 
  – – 93 + 
  – – 118 + 
  – – 141 + 

Table 2. Homologous genes conserved in nudiviruses. –: Absent; +: Present; N.d.: Not 
determined. The predicted ORFs in nudiviruses are presented in number. Homologues to 
baculovirus core genes are marked in bold face. 

5. Nudivirus phylogeny 

5.1 Phylogenetic analysis 

Due to the poorness of information of other distinguishing features, single gene phylogeny 
and/or phylogenomics became the most important approach to delineate the relationship of 
concerned viruses on strain and species level. However, single gene phylogenies have fallen 
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increasingly into disfavor given the recognition that gene trees can often differ substantially 
from the underlying species tree due to a variety of evolutionary events in addition to simply 
stochastic or analytical error. This is likely to be especially true in DNA viruses with the 
substantial evolutionary dynamics intrinsic to their genomes. Thus, (i) horizontal gene transfer 
(HGT), i.e., exchange with other viruses, symbiotic bacteria and hosts; (ii) homologous or non-
homologous recombination with other viruses; (iii) gene/domain duplication and 
rearrangement; and (iv) lineage specific gene loss/expansion all impose significant 
complications on both the bioinformatic detection of orthologous genes and on the accuracy of 
the resulting gene trees with respect to the overall species tree (Shackelton and Holmes 2004).  

To overcome these problems, a set of conserved genes were analysed using both the 
supertree and supermatrix approaches. Multiple sequence alignments of individual genes 
were performed using any of T-Coffee (Notredame, Higgins and Heringa 2000), MUSCLE 
(Edgar 2004), ClustalW/X (Chenna et al. 2003), MAFFT (Katoh et al. 2002) and Kalign 
(Lassmann and Sonnhammer 2005), and were manually refined as needed. Sequence 
alignment quality was assessed by using MUMSA (Lassmann and Sonnhammer 2005). In 
particular, 20 of the 30 baculovirus core genes (Table 2) were analysed, considering that they 
are evolutionarily more conserved than other nonessential genes and that homologues to all 
or most of them are present in NVs, SGHVs, and WSSV as well as, albeit more distantly, in 
other large eukaryotic dsDNA viruses such as NCLDVs (nucleocytoplasmic large DNA 
viruses) and herpesviruses (Table 3). 

 

Table 3. Ancient core genes identified in NALDVs, WSSV, NCLDVs, and herpesviruses. 
Black squares, homologue detected in all available genomes; grey squares, in many but not 
in all available genomes; white squares, in few available genomes; –, not detected. 
Homologue definition, gene name in NALDVs / in NCLDVs. Ascovirus is considered to be 
a member of the NCLDVs because of its high sequence similarity to iridovirus. 

The supertree and supermatrix framework represent alternative strategies to the issue of 
data combination. In the supermatrix approach, all the primary character data are combined 
into a single supermatrix that is analysed using standard phylogenetic methods (de Queiroz 
and Gatesy 2007). By contrast, the supertree approach combines phylogenetic trees derived 
from individual partitions of the full data set (here the individual gene trees) to likewise 
derive a single, joint phylogenetic estimate (Bininda-Emonds 2004a). Thus, the supertree 
approach addresses conflict and congruence at the level of the source trees rather than at the 
level of the primary data (Bininda-Emonds 2004b). Although this approach has been 
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criticised because of the inherent loss of information (among others, see de Queiroz and 
Gatesy 2007), numerous simulation studies have demonstrated that this loss of information 
is not detrimental in practice (see Bininda-Emonds 2004a). Moreover, the contrasting 
approaches of the supertree and supermatrix frameworks form the basis of the global 
congruence framework (Bininda-Emonds 2004b), whereby increased confidence is placed in 
those clades common to both approaches and increased attention is demanded on 
conflicting solutions, particularly when each is strongly supported. 

For the supertree analyses, phylogenetic analyses of the individual gene trees were 
performed under a maximum likelihood (ML) framework using RAxML 7.0.4 (Stamatakis, 
Hoover and Rougemont 2008). Optimal substitution matrices for each amino acid data were 
selected initially using the Perl script ProteinModelSelector (http://icwww.epfl.ch/ 
~stamatak/index-Dateien/Page443.htm) as implemented in batchRAxML (http://www. 
molekulare systematik.uni-oldenburg.de/33997.html) and then applied for the full ML 
analysis of each gene tree. In all cases, rate heterogeneity between sites was accounted for 
using the CAT approximation of the gamma distribution (Stamatakis 2006). The former is an 
approximation of the latter that is both computationally more efficient in terms of its 
memory demands and overall speed, and provides equivalent results (Stamatakis 2006). 
However, all final likelihood values were obtained under a true gamma distribution. ML 
analysis used the new fast bootstrapping approach (Stamatakis et al. 2008) that 
simultaneously obtained the ML tree as well as estimates of nodal support based on a non-
parametric bootstrap (Felsenstein 1985). Bootstrap values were based on 1000 replicates. 
Gene trees were rooted on the herpesviruses HHV-3, HHV-4, and HHV-5 (as a 
monophyletic group) because they share the minimum number of conserved ancestral genes 
with the other viruses (Table 3); trees lacking herpesviruses were treated as unrooted. 

The supertree analysis used the method of matrix representation with parsimony (MRP) 
(Baum 1992, Ragan 1992), whereby the topology of each gene tree was then encoded using 
additive binary coding: for each node in turn, all taxa descended from that node are scored as 
“1”, all taxa otherwise present on the tree are scored as “0”, and all remaining taxa as “?”. 
Semi-rooted coding was employed in that rooted gene trees included an all-zero fictitious 
outgroup taxon to root the supertree; for unrooted gene trees, this taxon was coded using “?” 
(Bininda-Emonds, Beck and Purvis 2005). The matrix representations of all source trees were 
then combined into a single matrix that was analyzed using maximum parsimony (MP). 
Individual pseudocharacters in the matrix were weighted according to the bootstrap support 
of their corresponding nodes, a procedure that improves the accuracy of the supertree analysis 
by helping account for differential support within the primary character matrices (Bininda-
Emonds and Sanderson 2001). MP searches in PAUP* v4.0b10 (Swofford 2002) used a heuristic 
search strategy based on a random addition sequence (10000 replicates), TBR branch 
swapping, and with up to 50000 equally most parsimonious trees (MPTs) being saved. The 
supertree was taken to be the 50% majority-rule consensus of all MPTs. Support for the nodes 
in the supertree was estimated using the rQS index (Bininda-Emonds et al. 2003, Price, 
Bininda-Emonds and Gittleman 2005) restricted to informative gene trees only; analyses used 
the Perl script QualiTree (http://www.molekularesystematik.uni-oldenburg.de/33997.html).  

The rQS index measures the number of gene trees that explicitly support or conflict with a 

given node on the supertree. Values of 1 and -1 indicate universal support or conflict, 

respectively, among the set of gene trees (Fig. 4). 
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Fig. 4. Combined data trees based on the 20 conserved baculovirus core gene sequences: (A) 
ML supermatrix tree derived from a simultaneous analysis of the concatenated sequences 
and (B) weighted MRP supertree of the 20 gene trees in Wang et al, 2011. The latter 
represents the 50% majority-rule consensus of 71 equally most parsimonious solutions. 
Nodal support is given as non-parametric bootstrap frequencies (n = 1000) determined from 
the supermatrix data set / degree of support among the informative source trees for a given 
node as measured by the rQS index. Branch lengths in (A) are proportional to the average 
number of substitutions per site per unit time. GenBank accession numbers for these viral 
genomes and virus full names are listed as follows: NC_001623 (Autographa californica NPV, 
AcMNPV), NC_002816 (Cydia pomonella GV, CpGV), NC_005906 (Neodiprion lecontei NPV, 
NeleNPV), NC_003084 (Culex nigripalpus NPV, CuniNPV), NC_004156 (Heliothis zea NV 1, 
HzNV-1), NC_009240 (Gryllus bimaculatus NV, GbNV), EU747721 (Oryctes rhinoceros NV, 
OrNV), NC_010356 (Glossina pallidipes SGHV, GpSGHV), NC_010671 (Musca domestica 
SGHV, MdSGHV), NC_003225 (Shrimp white spot syndrome virus, WSSV), NC_001659 
(African swine fever virus, ASFV), NC_002520 (Amsacta moorei EV, AMEV), NC_001993 
(Melanoplus sanguinipes EV, MSEV), NC_008361 (Spodoptera frugiperda AV 1a, SfAV-1a), 
NC_001824 (Lymphocystis disease virus 1, LCDV-1), NC_003494 (Infectious spleen and 
kidney necrosis virus, ISKNV), NC_006450 (Acanthamoeba polyphaga mimivirus, APMV), 
NC_000852 (Paramecium bursaria Chlorella virus 1, PBCV-1), NC_007346 (Emiliania huxleyi 
virus 86, EhV-86), NC_002687 (Ectocarpus siliculosus virus 1, EsV-1), NC_001348 (Human 
herpesvirus 3, HHV-3), NC_001347 (Human herpesvirus 5, HHV-5), and NC_007605 
(Human herpesvirus 4, HHV-4). 
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For the supermatrix analysis, all individual gene data sets were concatenated into a single, 

larger matrix that was analyzed using RAxML. Analysis used the same method as for the 

individual gene trees, except that a partitioned model was used whereby each gene partition 

was modeled individually according to the optimal model of evolution determined 

previously. Support values for each tree were also estimated using the support measure for 

the other technique. In other words, the rQS index was also applied to the supermatrix tree 

to estimate the support for its nodes across the gene trees and the bootstrap values for the 

nodes on the supertree were estimated using the 1000 bootstrap replicate trees derived from 

the supermatrix analysis (Fig. 4). 

5.2 Phylogeny and evolution 

5.2.1 Common ancestry of NVs, baculoviruses and SGHVs 

In the light of gene content analysis, an evolutionary link among NVs, baculoviruses, 

SGHVs and WSSV is most plausible. Consequently, it should be possible to analyze their 

phylogenetic relationship on the basis of their shared conserved ancestral genes. When these 

20 single gene trees were inferred, most of the nodes showed medium to high bootstrap 

values, with average values across an entire gene tree ranging from 57.6 10.9 (helicase; n = 

17 nodes) and 99.00.8 (p47; n = 4 nodes), suggesting the trees are topologically reliable on 

the whole (Wang et al. 2011). 

The supermatrix (on the basis of the 20 core genes indicated in Table 2) and the supertree 

using these 20 single core gene trees in (Wang et al. 2011) analyses were performed. Both the 

supermatrix tree and supertree were highly congruent (Fig. 4). In both cases, the monophyly 

of each of the NVs, baculoviruses, and SGHVs was strongly supported, the branching 

patterns within each of the baculovirus and NV clades were also in good agreement with the 

current picture of their phylogeny, and a common ancestor of baculoviruses and NVs was 

suggested (Fig. 4). Hence, we recognized from both the supertree and supermatrix tree that 

baculoviruses and NVs are monophyletic; they can be considered as the minimally forming 

group that we term the nuclear arthropod-specific large DNA viruses (NALDVs). Both 

methods conflict in positioning the SGHVs within (or at least as sister lineage to the 

NALDV; supermatrix tree) or outside (supertree) the NALDV group. For each tree, the 

preferred position enjoys better support than that from the other analysis based on the most 

appropriate support measure. For instance, the supertree placement of the SGHVs has an 

rQS index value of 0.455 compared to a value of 0.143 supporting the grouping of SGHVs 

with the baculoviruses and NVs. However, whereas the supermatrix placement of the 

SGHVs enjoys some rQS support (0.143 as mentioned), the supertree placement has no 

bootstrap support whatsoever (0.6 compared to 99.4). Thus, the supermatrix placement of 

the SGHVs as sister lineage to baculoviruses and NVs, and the SGHVs being members of the 

NALDVs seem to be justifiable.  

5.2.2 The “Monodon baculovirus” represents a nudivirus 

Blastp searches revealed that a number of nudivirus homologues are present in the partially 

sequenced genome of the so-called “Monodon baculovirus” of the shrimp Penaeus monodon 

(21,150 bp in total; GenBank accession no. EU246943, EU246944, EF458632, AY819785). 

www.intechopen.com



Viral Genomes – Molecular Structure,  
Diversity, Gene Expression Mechanisms and Host-Virus Interactions 46

When using the annotated shrimp MBV ORFs as query in BLAST similarity search, best hits 

were frequently found with HzNV-1 (Wang et al. 2011). Different phylogenetic analyses, 

including single gene tree inference as well as both supermatrix and supertree analyses, of 

the homologues of baculovirus core genes lef-9, vlf-1, lef-5, 38K, revealed unequivocally an 

obvious relationship between MBV and the non-occluded HzNV-1 (Fig. 4) (Wang et al. 

2011). Given that seven other MBV and HzNV-1 ORFs are also highly similar, it is strongly 

suggested to consider MBV as an occluded member of the NVs and to rename it to Penaeus 

monodon nudivirus (PmNV) (Wang et al. 2011). 

5.2.3 WSSV might be related to the NALDVs 

The position of WSSV differs between the two trees, however, being nested deep with the 

NALDVs in the supermatrix tree and as sister to the clade of NCLDVs plus NALDVs in the 

supertree (Fig. 4). Support for either position based on either the rQS index or the bootstrap 

is worse than that for other clades in the tree. The different positions for WSSV reflect how 

the two different methods used deal with the restricted, conflicting information that is 

available for this virus. Although WSSV shares six genes with the other viruses, only two of 

these (DNA polymerase and p33) are phylogenetically informative as to its potential 

placement with respect to the NALDV and NCLDV groups because homologue 

counterparts are available in both groups. The remaining four genes (p74, pif-1, pif-2, and pif-

3) are restricted to baculoviruses, NVs, SGHVs, and WSSV only. The resulting trees are 

therefore essentially unrooted and it is not possible to determine if WSSV nests within 

NALDVs (contradicting the supermatrix placement) or is sister to them (consistent with 

both placements). Of the two informative genes, only p33 has associated WSSV with the 

NALDVs; the DNA polymerase has grouped it within the NCLDVs (Wang et al. 2011). The 

supermatrix analysis is influenced largely by the relative number of amino acids (aa) 

supporting a given position. In the current context, DNA polymerase with ~3000 aa residues 

is clearly outweighing the ~1000 aa residues of p33, thereby favouring the placement of 

WSSV with the NCLDVs. By contrast, the supertree analysis is more sensitive to the number 

of trees supporting a given position and, importantly, the relative node support within those 

trees (in a weighted supertree analysis). Thus, although the DNA polymerase tree places 

WSSV within the NCLDVs, this position is very poorly supported and outweighed by its 

more robust placement within NALDVs in the p33 tree (Wang et al. 2011). As a result, WSSV 

was excluded from the NCLDV group in the supermatrix tree.  

Thus, the phylogenetic analyses are equivocal with respect to the evolutionary relationships 

of WSSV based on the current data set and more genes need to be sampled to resolve its 

placement. Nevertheless, other sources of evidence suggest that WSSV is more closely 

related to the NALDVs than to other DNA viruses. Notably, WSSV shares six conserved 

homologous genes with the NALDVs, but rarely possesses homologous genes with 

numerous other marine viruses colonising the same aquatic ecological niches. It therefore 

seems that WSSV is a very ancient virus that has undergone extremely divergent evolution, 

as witnessed by the branch lengths generally subtending this virus (Fig. 4). This fact, in turn, 

hampers identification of its gene homologues and reconstruction of its phylogenetic 

affinities using present-day alignment based methods. In contrast, when an alignment-free 

whole-proteome phylogenetic analysis was applied, WSSV clustered with SGHVs (Wu et 
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al. 2009), which coincidently is in agreement with the presented hypothesis of WSSV`s 

evolutionary link to the NALDVs. However, in the study by Wu et al. (2009) the SGHV 

and WSSV were placed within the herpesviruses, although there is no evidence of 

relationship among these viruses, when considering structural, biological and other 

genome features.  

5.2.4 A common ancestry of nudiviruses, baculoviruses, hytrosaviruses, and WSSV 

Taking together, 20 baculovirus core gene homologues were identified in nudiviruses, 12 in 

SGHVs, and six in WSSV, respectively. Consequently, this shared gene content of 

baculoviruses, nudiviruses, SGHVs, and WSSV is an important evidence for a proposed 

common ancestry of these viruses. Any other explanation, e. g., horizontal gene transfer of 

these genes, seems to be less probable. Therefore it is proposed that baculoviruses, 

nudiviruses, hytrosaviruses, and WSSV most likely shared a common ancestor and form a 

highly diverse group of nuclear arthropod-specific large DNA viruses (Wang and Jehle 

2009; Wang et al. 2011).  
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