We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,600
Open access books available

177,000
International authors and editors

195M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Implementation of MRSA Infection Prevention and Control Measures – What Works in Practice?

Jobke Wentzel, Nienke de Jong, Joyce Karreman and Lisette van Gemert-Pijnen
Center for eHealth Research and Disease Management
University of Twente
The Netherlands

1. Introduction

There have been increasing numbers of media reports about careless behaviour by healthcare workers, mainly involving insufficient cleaning practices and the absence of hand hygiene measures (Boyce, 2009). Although adherence to infection prevention and control measures has received a lot of attention in the media and in scientific literature, surprisingly little attention has been given to the implementation of the infection prevention and control strategies in healthcare practices. In the medical literature the focus is on the availability of national or regional MRSA surveillance data and guidelines for prevention and control. To date hardly any data has been made available about the kinds of interventions that have been successful in implementing infection prevention and control.

Research has shown that an intensive infection prevention programme could prevent about one-quarter to one-third of all hospital infections (Sengers et al., 2000). An example of such a successful policy is the ‘search-and-destroy’ strategy that has been introduced in the Netherlands, to prevent the spread and outbreak of infections caused by multi-resistant bacteria such as Methicillin Resistant Staphylococcus Aureus (MRSA). However, adherence to this policy still remains a problem. It is known from prior research (van Gemert et al., 2005; Verhoeven et al., 2009) that healthcare workers are insufficiently aware of infection control measures; they do not understand the rationale behind these measures and think that infection control is not their problem, that it is mainly an issue for hygiene experts.

Research in the social sciences has shown that improving safety in hospitals requires a tailored strategy to persuade people to change their attitudes and behaviours (Fogg, 2003). Furthermore, changing routines and habits in healthcare is not easy: it requires an integral approach, with activities addressing human behaviour, culture, incentives and other managerial reinforcement activities, and of course adequate information about safety regulations (Foy et al., 2001; Van Gemert et al., 2005; Verhoeven et al., 2009). A multifaceted implementation strategy might be a solution (Foy et al., 2001, Pittet et al.,...
Infection Control – Updates

2000). Such a strategy should include interventions aimed at different levels: the management of healthcare institutions, the behaviour of healthcare workers and the quality of the infection control guidelines. However, what empirical evidence exists for a multi-faceted implementation strategy? And how successful are these strategies? To investigate this, we conducted a systematic literature review. This review will be used to develop an implementation strategy that fits the habits and culture of hospital-based healthcare workers (HCWs) in hospital care settings. In this review, we searched for empirical studies to investigate and identify effective implementation strategies for improving adherence to MRSA prevention and control measures. The following questions guided our review of the literature:

- What implementation strategies are used?
- What is the foundation of these strategies (theories, experience, etc.)?
- What research designs were used to measure the effects of the implementation strategies?
- What effects are reported?
 - On adherence to the measures?
 - On the reduction of costs?
 - On the reduction of MRSA?

2. Method of the systematic review

The York protocol for systematic reviews (Centre for Reviews and Dissemination, 2001) was used to guide the review process. Literature searches were carried out in the online databases Scopus, ISI Web of Knowledge and the Cochrane Library. In addition, we hand-searched the indexes of the *Journal of Hospital Infection* (JHI), the *American Journal of Infection Control* (AJIC) and *Clinical Microbiology and Infection* (CMI) for relevant publications. We searched for studies describing the implementation of MRSA prevention or control measures. The publications were included in the review if they met the inclusion criteria listed in Table 1. Most important was that the publications described an implementation strategy and implementation outcomes. Two independent reviewers (NdJ, JW) applied the inclusion criteria to the publications in a title screening round, followed by an abstract and a full-text screening round. After each round, the reviewers compared their judgments and resolved discrepancies through discussion. The included studies are summarized in a data table, and the study features and results are summarized and compared. Due to the heterogeneity of the data and the limited number of included studies, no meta-analysis was performed.

3. Results of the systematic review

3.1 Article screening

The search strategy resulted in 661 potentially relevant publications (after duplicates were removed). The screening process and outcomes are shown in Figure 1; 29 publications were included in the review. The characteristics of these publications are summarized in Table 2. The characteristics and outcomes of the included studies are discussed in the following sections. The numbers we cite correspond to the publications summarized in Table 2.
Inclusion Criteria

Publication Type
(Scientific) Journal article, published between 2005-2010

Scope of Studies
Implementation of an evidence-based MRSA prevention or control measure. The implementation strategy must be described.

Study Settings
Primary-/secondary-care facilities, long-term care facilities, nursing homes

Outcome measure
Implementation outcomes (mostly behavioural) must be given.
- Behavioural (e.g. adherence to implemented measure, knowledge)
- Clinical (e.g. prevalence rates, infection rates, deaths)
- Organizational (e.g. changes in Length of Stay (LoS), expenditures, costs)

Table 1. Inclusion Criteria

<table>
<thead>
<tr>
<th>Reason</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>45</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
</tr>
</tbody>
</table>

Database and journal index search results: publications entered in title screening

Publications entered in abstract screening (n=315)

Publications entered in full text screening (n=126)

Publications excluded in title screening (n=346)

Publications excluded in abstract screening (n=189)

Publications excluded in full text screening (n=97)

Relevant publications included in review (n=29)

A: Insufficient implementation strategy information. B: No Compliance rates; no implementation results described. C: Article is a Viewpoint/Review. D: Article was not written in English. E: Article is a report of Conference Proceedings. F: Other.

Fig. 1. Results of the screening process
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Implementation strategy</th>
<th>Reported Findings (behavioural, clinical, financial)</th>
</tr>
</thead>
</table>
| 1: Baldwin, et al., 2010, Ireland | Educational meetings, Local opinion leaders, Audit and feedback, Technology supported, Implementation foundation | Behavioural
In-person observations
Mean audit score was higher in the intervention than in the control setting at 3 months, 6 months, and 12 months. |
| | Theoretical: absence of IC research in nursing home setting | Clinical
MRSA positive screenings were similar in intervention and control homes at 12 months. |
| | Infection control measure, Hand hygiene, Environmental hygiene, Personal protective equipment, Design, RCT | Financial
MRSA prevalence rates among staff were similar in intervention and control homes at 3 months and 12 months. |

... continue...

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Implementation strategy</th>
<th>Reported Findings (behavioural, clinical, financial)</th>
</tr>
</thead>
</table>
| 2: Bassetti, et al., 2009, Italy | Audit and feedback, AB permission, Formulary restrictions, Clinical multidisciplinary teams, Infection control measure, Medication, Design, Time series design | Behavioural
Significant reduction in cephalosporin use. Significant increase in ciprofloxacin use. |
| | | Clinical
Significant reduction in MRSA due to intervention. Increase in susceptibility to ciprofloxacin in K. pneumoniae isolates and K. oxytoca isolates, although an abrupt change in the percentage of susceptible isolates occurred after the intervention. |
| | | Financial
Increase in susceptibility to ciprofloxacin in K. pneumoniae isolates during the surveillance period, with no significant changes due to intervention. |

... continue...

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Implementation strategy</th>
<th>Reported Findings (behavioural, clinical, financial)</th>
</tr>
</thead>
</table>
| 3: Burkitt, et al., 2010, United States | Educational meetings, Reminders, Mass media, Technology-supported, Implementation foundation | Behavioural
Questionnaires
Significant increase in proportion of respondents who reported hand hygiene using hand rubs or soap and water. |
| | Theoretical: lack of measurement of actual changes in knowledge due to education, Infection control measure, Hand hygiene, Personal protective equipment, Patient screening, Patient isolation, Design, Before and after design | Behavioural
Significant increase in mean number of knowledge questions answered correctly. |
| | | Clinical
Significant increase in proportion of respondents who agreed with the need for better hand hygiene practices in their unit. |
| | | Financial
Significant increase in proportion of respondents who reported using prevention practices for hand hygiene, primarily because they feared that hand rubs or soap and water were not effective. Significant decrease in job satisfaction. Significant increase in proportion of respondents who forgot to perform hand hygiene. |
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Implementation strategy</th>
<th>Reported Findings (behavioural, clinical, financial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4: Camins & Fraser, 2005, United States</td>
<td>Distribution of educational materials
 Educational meetings
 Local opinion leaders
 Audit and feedback
 Reminders
 Implementation foundation: Rewards
 Theoretical: CDC Hand Hygiene Task Force recommendations
 Infection control measure: Hand hygiene
 Design
 Before and after design</td>
<td>Behavioural: Observations in person
 Hand hygiene compliance increased from 1st to 4th quarter of 2004 (observed compliance not given).</td>
</tr>
<tr>
<td>5: Carboneau, et al., 2010, United States</td>
<td>Distribution of educational materials
 Educational meetings
 Local opinion leaders
 Audit and feedback
 Reminders
 Mass media
 Implementation foundation: Changes in physical structure, facilities and equipment
 Theoretical: prior research solutions, including scientific articles and at other hospital
 Infection control measure: Hand hygiene
 Design
 Before and after design</td>
<td>Behavioural: Observations in person
 Hand hygiene compliance increased from 17-months pre-intervention to 7 months post-intervention.</td>
</tr>
<tr>
<td>6: Cheng et al., 2009, China</td>
<td>Educational meetings
 Educational outreach
 Audit and feedback (trained auditors)
 Reminders
 Mass media
 Clinical multidisciplinary teams
 Changes in physical structure, facilities and equipment
 Infection control measure: Hand hygiene
 Patient isolation
 Design
 Before and after design Time series design</td>
<td>Behavioural: Observations in person
 Increased hand hygiene adherence.
 Increased use of alcohol-based hand rub. Clinical: Decreased MRSA infection rates
 Change in ICU onset MRSA infections between phase 1 and 3 (hand hygiene campaign).</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>7: Davis, 2010, United Kingdom</td>
<td>Reminders, Mass media, Duration 6 months, Infection control measure, Hand hygiene, Design</td>
<td>Behavioural: Video observations. Significant increase in hand hygiene compliance of HCWs but no significant increase for patients. Clinical: Decrease in MRSA incidence (from 2 to 0 cases during 6-month periods).</td>
</tr>
<tr>
<td>8: Eveillard, et al., 2006, France</td>
<td>Educational meetings, Educational outreach, Audit and feedback, Reminders, Mass media, Changes in physical structure, facilities and equipment, Implementation foundation, Empirical: existing programme to limit the spread of MRSA was not effective Infection control measure, Hand hygiene, Patient screening, Design</td>
<td>Behavioural: Increase in use of waterless alcohol-based hand disinfectants. In 2004, the use of alcohol-based hand disinfectants was twice as high on high-risk wards. Questionnaire: 46% of 450 employees declared they had attended at least one educational session. Clinical: Decrease in the incidence of newly acquired MRSA infections. Decrease in the incidence of risk of acquisition. Decrease in proportion of acquired MRSA. Number of MRSA carriage on admission did not increase. Proportion of MRSA/total S. aureus within the first 48 hours did not change.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>10: Gagné, et al., 2010, Canada</td>
<td>Distribution of educational materials, Educational outreach, Patient-mediated interventions, Mass media, Implementation foundation, Empirical: own observation that MRSA kept spreading despite staff decontamination, Infection control measure, Hand hygiene, Design</td>
<td>Behavioural: Observations in person, Increase in overall staff hand hygiene compliance. Clinical: Decrease in MRSA infections vs. positive screenings. Decrease in MRSA infections. Financial: Based on comparative year, 51 cases of infection were prevented, savings of CAN$688,843.</td>
</tr>
<tr>
<td>11: Gillespie, et al., 2007, Australia</td>
<td>Audit and feedback, Reminders, Mass media, Changes in physical structure, facilities and equipment, Implementation foundation, Infection control measure, Hand hygiene, Patient screening, Design</td>
<td>Behavioural: Exact compliance rate unclear, but all staff/family entering was send back of non-compliance; compliance is assumed to be close to 100%. Clinical: MRSA acquisition rate decreased. Resistance increased, due to a clonal outbreak of rifampicin-resistant MRSA.</td>
</tr>
<tr>
<td>12: Goodman, et al., 2008, United States</td>
<td>Educational meetings, Audit and feedback, Changes in physical structure, facilities and equipment, Implementation foundation, Other: development of a novel and nontoxic tracking marker that is visible only under UV lamp, Infection control measure, Environmental hygiene, Design</td>
<td>Behavioural: Observations in person, Mark removal was more frequent during the intervention period. Additional predictors of mark removal included type of ICU. No difference in the effect of the intervention between surgical and medical ICU patients. Type of ICU was predictive of positive surface-culture result. Multivariate models showed significant intervention effect, with reduced environmental MRSA and VRE contamination when cultures were used as the unit of analysis and the surface culture would yield MRSA or vancomycin-resistant enterococci (VRE). No direct association between the removal of the mark from the surface of a specific room and the proportion of positive cultures for every 10% increase in the proportion of marks removed.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>13: Grayson, et al., 2008, Australia</td>
<td>Distribution of educational materials, Educational meetings, Audit and feedback, Mass media, Technology-supported</td>
<td>Behavioural
Observations in person
Pilot programme: significant increase in hand hygiene compliance of participants and sites showed some transient declines in compliance (related to resource limitations).
Hand hygiene.
Clinical
Pilot programme: alcohol-based hand rubs (ABHRS) increased, but correlated only roughly with number of compliance events.
State-wide: significant increase in hand hygiene compliance.
Material use
State-wide: ABHRS increased, but correlated only roughly with number of new products used.
Design
Empirical: prior success of a single-site HHCCP
Infection control measure
Hand hygiene
Design
Before and after design, Time series design
Behavioural
State-wide: significant increase in hand hygiene compliance.
Clinical
Pilot group: significant decrease of patients with MRSA bacteremia.
State-wide: decrease in patients with MRSA bacteremia.
Material use
State-wide: decrease in number of clinical MRSA isolates.
Design
HHCCP.</td>
</tr>
<tr>
<td>14: Harrington, et al., 2007, Australia</td>
<td>Educational meetings, Audit and feedback, Duration</td>
<td>Behavioural
Observations in person
Overall rate of usage of the standard of all products increased.
Clinical
New patients with MRSA in the ICU decreased.
Hospital-wide rate of new patients with MRSA decreased.
MRSA central line-associated bloodstream infection (CLABSI) rates in the ICU decreased.
Decrease in hospital-wide rate of episodes of MRSA bacteremia.
Material use
State-wide: decrease in patients with MRSA bacteremia.
Design
Time series design
Behavioural
State-wide: significant increase in hand hygiene compliance.
Clinical
Pilot group: significant decrease of patients with MRSA bacteremia.
State-wide: decrease in patients with MRSA bacteremia.
Material use
State-wide: decrease in number of clinical MRSA isolates.
Design
HHCCP.</td>
</tr>
<tr>
<td>15: Holder & Zellinger, 2009, United States</td>
<td>Educational meetings, Educational outreach, Local opinion leaders, Audit and feedback, Duration</td>
<td>Behavioural
Patient documentation
Compliance with bathing procedure increased.
Clinical
Bloodstream infection (BSI) rates decreased after implementation procedure.
Rate of MRSA/VRE colonization decreased after implementation procedure.
Financial
75% reduction in BSIs over 6 months and increased costs per year if chlorhexidine baths were used in all hospitals.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>16: Huang, et al., 2006, United States</td>
<td>Educational meetings, Audit and feedback, Reminders, Rewards, Changes in physical structure, facilities and equipment</td>
<td>Behavioural Observations in person ABHR institution and hand hygiene campaign increased compliance, decreased thereafter. Lab statistics (PD) Routine MRSA surveillance caused increase in compliance at admission and weekly nares cultures. Clinical Campaign to promote sterile CVC precautions caused substantial decrease in associated bacteremia in ICUs. Among the interventions, only routine ICU MRSA surveillance caused a decrease in the incidence density of MRSA bacteremia. After 16 months, routine screening was associated with a decrease in density in ICUs, in non-ICUs, and hospital-wide. Routine screening was associated with a decrease in hospital-wide. Routine surveillance caused significant reduction in MRSA admission rates in the first and last halves of the intervention period, exclusive of the stable MRSA importation rate into ICUs. No significant secular trend and no impact of any infection control intervention on methicillin-susceptible S. aureus (MSSA) bacteremia.</td>
</tr>
<tr>
<td>17: Johnson, et al., 2005, Australia</td>
<td>Distribution of educational materials, Audit and feedback, Reminders, Technology-supported, Theoretical: scientific articles</td>
<td>Behavioural Observations in person Overall hand hygiene compliance improved at 4 months, and was maintained at the same level at 36 months. In individual sentinel areas, compliance rates improved significantly at 12 months post-intervention in all areas. Use of ABHRS products increased in all sentinel areas. Clinical MRSA colonization rates did not change in any of the sentinel areas. Worker MRSA colonization did not decrease in sentinel areas. Environmental contamination did not change significantly during the intervention period. For patient episodes of MRSA bacteremia, the monthly rate during the first and last halves of the intervention period was static, but fell significantly in the post-intervention period. The monthly rate of MRSA bacteremia had decreased. Total clinical isolates per month of ESBLs increased during the first and last halves of the intervention period, and had fallen by more than 90% by the 36th month of OCS.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>18: Kho, et al., 2008, United States</td>
<td>Reminders Technology-supported Implementation foundation Theoretical: low compliance (delay) associated with manual/paper-based information systems; computerized reminders appear promising</td>
<td>Behavioural Computer logs Significant increase in proportion of correct contact isolation orders with a mean time between ward arrival and isolation order decreased Acceptance of the reminder increased. Questionnaire: 19/20 survey respondents reported that the reminder either helped or saved them time. 25/27 agreed with automatic contact isolation, and half of those surveyed used surveillance swabs. Clinical Lab statistics: During the intervention period, the number of patients with known MRSA or VRE reflected an increased ability of the IC service to both identify and trend of MRSA/VRE increased during the study (no significant difference pre- and post-intervention). Financial: Annual isolation gown expenditures increased 23% from the start (US$167,000 to US$205,000). No calculations of cost savings in prevented nosocomial infections.</td>
</tr>
<tr>
<td>19: Kurup, et al., 2010, Singapore</td>
<td>Educational meetings Audit and feedback Reminders Mass media Duration 12 months Infection control measure Hand hygiene Patient screening: Active Surveillance Testing (AST) Patient isolation Design Before and after design</td>
<td>Behavioural: Between groups: compliance in performing all study-related surveillance swabs in surgical ICU (SICU), but the difference between the ICUs was not significant. Clinical: AST detected MRSA in at least 137 of the 653 patients (21.0%); only 12 patients (1.8%) were positive for MRSA during the study period. No improvement in detection rate in patients admitted to Medical ICU (MICU) or SICU. Inclusion of axilla and groin sites did not affect the MRSA detection rate, which was higher in SICU than MICU. Between groups: the rate of MRSA colonization detected by AST during hospital discharge was higher in SICU than MICU. No significant difference in MRSA infection rate pre- and post-intervention when analysed individually. Septic shock at ICU admission was more common in MRSA-colonized patients. Financial: Detection of MRSA at any point was associated with longer pre- and post-antibiotic therapy, and longer ICU length of stay.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 20: Lederer, et al., 2009, United States | Distribution of educational materials
Audit and feedback
Reminders
Clinical multidisciplinary teams | Behavioural
Increased hand hygiene compliance with sustained rates greater than 90%.
Clinical
MRSA healthcare-associated rate decreased, representing a 54% reduction. |
| 21: Lee, et al., 2009, Canada | Educational meetings
Technology-supported
Implementation foundation
Empirical: SARS outbreak in Toronto in 2003, the Ontario Ministry of Labour mandated an IC education programme for all Mount Sinai Hospital staff | Behavioural
Non-significant increase in hand hygiene compliance on inpatient units.
Clinical
Significant decrease in nosocomial MRSA acquisition rate per 100 unprotected MRSA exposure days.
Significant decrease in nosocomial MRSA acquisition rate per 100 unprotected MRSA exposure days. |
| 22: Liebowitz & Blunt, 2008, United Kingdom | Educational meetings
Audit and feedback
Clinical multidisciplinary teams
Implementation foundation
Theoretical: prior research, no studies have been published in which the use of both classes of antibiotics has been discouraged. No foundation for content educational activity. | Behavioural
Hospital-wide decrease in level of dispensing of intervention drugs.
Clinical
Decrease in level of MRSA-positive screenings (no statistical significance).
ICU-specific decrease in level of dispensing of intervention drugs.
Decrease in level of MRSA-positive screenings (no statistical significance). |
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Implementation strategy</th>
<th>Reported Findings (behavioural, clinical, financial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madaras-Kelly, et al., 2006, United States</td>
<td>Reminders, Technology-supported Implementation foundation Theoretical: The Society for Healthcare Epidemiology of America (SHEA) recommendations</td>
<td>Behavioural Non-significant decrease of overall AB use. Significant decreases in the use of several antibiotics. Significant differences between non-antibiotic variables: purchase of alcohol for patients increased; the number of ventilator days, purchase of alcohol for patients increased. Total fluoroquinolone and levofloxacin use decreased significantly.</td>
</tr>
<tr>
<td></td>
<td>Duration 12 months</td>
<td>Clinical Decrease in nosocomial MRSA infections (not statistically tested)</td>
</tr>
<tr>
<td>Miyachi, et al., 2007, Japan</td>
<td>Local opinion leaders Audit and feedback Mass media Implementation foundation Theoretical: prior research on link nurses in large hospitals</td>
<td>Behavioural Significant increase in arithmetic mean of monthly consumption of ABs. Clinical Percentage of MRSA in Staphylococcus Aureus increased. Monthly counts of new MRSA cases dropped in 15 of 25 wards. Significant decrease in the monthly number of inpatient admissions.</td>
</tr>
<tr>
<td>O’Brien, et al., 2008, United States</td>
<td>Educational meetings Reminders Technology-supported Implementation foundation Theoretical: SHEA recommendations</td>
<td>Behavioural Post-IT admission culture rate in the telemetry unit was >91% Intermediate Care unit. Employee satisfaction with the MRSA surveillance protocol was high, with 98% of the respondents being “fully satisfied”, the remaining 12% were satisfied. Increased efficiency of staff time use. Clinical Overall decrease in the rate of MRSA acquisition in the pre-IT period was statistically significant. Significant decrease in 2 of 3 unit specific comparisons before and after implementation.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Peterson, et al., 2010, United States</td>
<td>Distribution of educational materials, Educational meetings, Educational outreach, Local opinion leaders, Audit and feedback, Reminders, Changes in physical structure, facilities and equipment, Technology-supported Implementation foundation, Theoretical: Institute for Healthcare Improvement’s (IHI) five components to MRSA control</td>
<td>Behavioural: Screening compliance increased to >90%, and sustained >90% after programme. Clinical: Decrease in MRSA transmission (from colonization to infection). Financial: Decrease in overall MRSA BSIs by the end of the first year. Programme cost represented a net expense of $15-$16 per admission, with a reduction of nearly $1,200,000 in medical expenditures, with a return on investment of 7.8:1.</td>
</tr>
<tr>
<td>Robert, et al., 2006, France</td>
<td>Distribution of educational materials, Reminders, Mass media, Implementation foundation, Theoretical: observational studies indicated that isolation precautions were poorly implemented outside ICUs</td>
<td>Behavioural: Within groups: medical and nursing staff reported that they had improved compliance in >87% of cases in the control period, and in >96% of cases in the intervention period. Medical and nursing records were flagged significantly more often in the control period. The set of four organizational measures was implemented more frequently in the intervention period than in the control period. The same observation was made separately. When considering only ICUs and rehabilitation units, i.e. the units with the highest MRSA prevalence, there was a significant increase in the implementation of isolation precautions, use of gowns increased, use of dedicated materials increased, and proportion of MRSA patients in private rooms increased, and proportion offlagged records. There was no significant increase in the proportion of health status of patients or in the proportion offlagged records.</td>
</tr>
<tr>
<td>Thomas, et al., 2005, United States</td>
<td>Reminders, Mass media, Implementation foundation, Theoretical: research on hand hygiene posters</td>
<td>Behavioural: Increase in hand hygiene compliance over all units. Participants agreed that, overall, posters had a positive influence on hand hygiene compliance. More so when poster displayed ‘human qualities’ or promoted a human face.</td>
</tr>
</tbody>
</table>
3.2 Study design

Among the included studies, there was one randomized controlled trial (RCT) (1). In eight studies, a time series design was used (2, 9, 14, 15, 17, 22, 23, 25), and in fourteen studies a before and after design was used (3, 4, 5, 7, 10-12, 18, 19, 21, 26-29). Five studies applied a combination of time series and before and after design (6, 8, 13, 16, 20).

3.3 MRSA prevention and control measures

Different measures were implemented to prevent or control MRSA. In some studies a single MRSA prevention or control measure was implemented, in others a bundle of measures was implemented. **Hand hygiene** was implemented as a stand-alone measure in seven studies (4, 5, 7, 10, 13, 20, 29) and as part of a bundle of measures in eleven studies (1, 3, 6, 8, 11, 14, 16, 17, 19, 21, 24). **Environmental hygiene** was implemented as a stand-alone measure in one study (12) and as part of a bundle of measures in two studies (1, 17). The use of **personal protective equipment** such as gloves or gowns was implemented as part of a bundle of measures in four studies (1, 3, 16, 21); it was implemented as a stand-alone measure in none of the included studies. **Medication**, or the correct use of antibiotics, was implemented as a stand-alone measure in six studies (2, 9, 15, 22, 23, 25); it was implemented as a stand-alone measure in none of the included studies. **Patient screening** was implemented as a stand-alone measure, and in six studies (3, 8, 11, 16, 17, 19) it formed part of a bundle of measures that was implemented. **HCW screening** was implemented only as part of a bundle of measures, in one study (17). **Patient isolation** was implemented as stand-alone measure in one study (28), and was part of a bundle of measures in five studies (3, 6, 16, 18, 19).

3.4 Implementation strategies and their foundation

Various strategies were used to implement the MRSA prevention and control measures. Most implementation strategies are set up because of the empirical observation of non-adherence to clinical guidelines, thus creating an impediment to successful MRSA control. The theoretical foundation of the chosen strategies is often unclear, or not specified.

Most studies, 24 out of 29, combined different elements (1-17, 19, 20, 22, 24, 25, 26, 27). In five studies the implementation strategy consisted of one component (18, 21, 23, 28, 29). The strategies used are summarized below:

- **Audit and feedback** was performed and given by trained nurses or auditors, infection control specialists, or multidisciplinary teams (nineteen studies: 1, 2, 4-6, 8, 9, 11-17, 19, 20, 22, 24, 27).
- **Reminders** were used in eighteen studies (3-9, 11, 16-20, 23, 26, 27, 28, 29), for example pop-ups, fluorescent tape drawing attention to hand-cleaning facilities, posters or messages clipped to patient charts.
- **Educational meetings** were held, for example to inform HCWs about the measure or to demonstrate new working methods or hygienic practices (seventeen studies: 1, 3-6, 8, 12-16, 19, 21, 22, 26, 27).
- **Mass media** were used in fourteen studies (3, 5-8, 10, 11, 13, 17, 19, 20, 24, 28, 29); posters, and to a lesser extent brochures or flyers, were used to remind or instruct HCWs about the implemented measures. Role models (hospital management or
leaders) were sometimes depicted, or HCWs were involved in the creation of the poster (11, 17, 29).

- Technology was used in ten studies (1, 3, 5, 13, 17, 18, 21, 23, 26, 27), in the context of education (PowerPoint presentations, training via DVD), electronic order forms, pop-ups assisting medication choice or screening of patients.

- Changes in physical structure, facilities and equipment were applied in eight studies (4, 5, 6, 8, 11, 12, 16, 27). These changes included strategically placed hand disinfectant dispensers, equipping HCWs with pocket bottles of hand disinfectant, or new cleaning materials (cloths), the bundling of protective gear and the availability of a test kit for screening.

- Educational materials were distributed in eight studies (4, 5, 8, 10, 13, 17, 20, 27). Brochures, newsletters or instructional pocket cards were given to HCWs, often focused on applying correct (hand) hygiene.

- Local opinion leaders guided the implementation process in six studies (1, 4, 5, 15, 24, 27), sometimes by reinforcing good infection control, or acting as a link worker between the professions and management.

- Clinical multidisciplinary teams were used in five studies (2, 6, 20, 22, 25) to guide the implementation of a MRSA control measure. Via cooperation or consultation these teams supported the measures taken, for example by approving antibiotic prescriptions.

- Educational outreach was carried out in five studies (6, 10, 15, 25, 27) to teach HCWs on-site and sometimes on demand how to apply the implemented measure.

- Rewards for correctly performing the implemented measures were given in two studies (4, 16), either to individuals directly after observing correct behaviour, or to groups based on periodic adherence results.

- A patient-mediated intervention was implemented in one study (10); patients and visitors were actively addressed to perform the desired hand hygiene behaviour and motivate adherence among staff.

- AB permission/formulary was applied in one study (2) where permission to use a certain antibiotic was required.

3.5 Outcomes

We classified the reported effects into three categories: adherence to the measures, reduction of costs and reduction of MRSA.

In twelve studies (1-3, 7, 9, 12, 13, 17, 18, 24, 28) significant improvements (e.g. fewer prescriptions for antibiotics, more correctly executed hand hygiene, reduced expenditure on materials) in adherence to the MRSA control measures were observed. Similar positive results were observed in fourteen studies (4-6, 8, 10, 14-16, 20, 22, 23, 25, 27, 29), although these results were not statistically tested. In one of the studies (16), negative effects were observed: adherence to the measures increased in the first year but decreased thereafter.

Acquiring a hospital-associated infection (HAI) results in a longer length of stay for the patient and poses many additional costs. Therefore, reductions in length of stay are an important outcome associated with decreased MRSA infection rates. Cost savings, or at least cost-neutral intervention effects, were observed in four studies (5, 10, 15, 27). On the other hand, increased isolation and increased expenditure also posed costs, as described in one
study (18). However, in this study, these increased costs were not compared to possible savings due to prevented infections. In another study (19), improved screening led to increased lengths of stay (pre-ICU and ICU), because MRSA detection increased.

In nine studies (8, 12-14, 16, 17, 21, 25, 26), significant clinical improvements were reported, including MRSA prevalence, MRSA infection rates and susceptibility rates. Positive effects were also observed in eleven other studies (2, 5, 7, 10, 11, 15, 20, 22-24, 27), although these results were not statistically tested.

4. Conclusion and discussion

The results of our review show that in most cases hygiene experts or an infection control team (nurse, infectologist, microbiologist) are the developers of implementation strategies. These strategies are driven by empirical observations and audits. The theoretical foundation of the chosen strategies is often unclear. No references to theories and models of human behaviour are made. However, some articles indicated that a literature search was carried out.

When looking at the implementation strategies, we can conclude that in most cases a multi-faceted strategy was carried out. This strategy entails a combination of several activities:

- Education or training modules for HCWs, sometimes mandatory, taking various forms (DVDs, PowerPoint presentations, posters, meetings, brochures) to improve hand hygiene and compliance with protocols.
- Inspections of the adherence to the safety programme and of hand washing behaviour via audits, on-site instructions, and observations by hygiene experts or trained auditors. Results were communicated to management and demonstrated via feedback meetings.
- Environmental interventions (red lines at the entrance to high-risk wards, talking walls) to remind HCWs to behave safely in that particular area and to provide antibiotic policy support via guidelines and cards.

The implementation pathway consists of education-inspection-feedback rounds; unfortunately it is unclear who is responsible for the management of the intervention strategies and who invests in these activities. No business model seems to underpin the entire implementation strategy.

To answer the research question about the effect of the implementation strategies, we reviewed the research designs that were used to measure their effects. In general, quasi-experimental designs (before and after and time series designs) underpin the research activities. Implementation outcomes are usually measured in a before-and-after design, where they do not concern antibiotic use, and therefore provide little insight into temporal changes in implementation results or adherence. HCWs are the main target group in the research designs. It is unclear who these designs seek to manage (researchers, HCWs, management) in their execution or whether a project manager is responsible for this. Trained nurses or infection control teams are sometimes used. In most cases quantitative instruments are used to measure the effects on knowledge and behaviour (questionnaires, self-reporting of behaviour, material use, and hand hygiene) and on a reduction in MRSA and antibiotic doses (lab statistics). The effects on cost/benefits were sometimes measured, addressing utilizations such as reduced length of stay. In general the outcomes are
promising. However, the extent to which the outcomes are related to the implementation strategies is not clear, except for the routine screenings and reduced MRSA rates. The outcomes on cost-savings are especially hard to analyse. It remains unclear what is measured, how it is measured and to what purpose. Long-term effects are almost never addressed.

Due to several shortcomings in research designs, the overall impact of the implementation strategies could not be measured sufficiently. Shortcomings in the research designs include, for example, the one-sided focus on HCWs. We know from prior research (Verhoeven et al., 2009) and from behaviour change models that not only is a multifaceted strategy needed to change safety behaviour, but that a multi-perspective stakeholder view (HCWs, infection experts, patients, the safety policy of the management of the organization) is necessary to obtain insight into the cost/benefits of the implementation strategy and to discuss the long-term implications of the strategy for the organization and workflow (Kukafka et al., 2003). This requires a theory or innovation-driven approach that grounds the implementation strategy, enabling an assessment of which activities are successful for whom (patient, HCWs, management) and what the interaction effects of the different components of the strategy are.

Another shortcoming concerns the chosen study designs. Authors of the included studies refer to the difficulties in matching control and intervention groups, the high rates of drop-outs and the low volume of included respondents, and confounding factors that cannot be excluded. These shortcomings are well-known impediments related to RCTs and the self-reported behaviours. In fact, these shortcomings cannot be avoided due to the study of real-time behaviours and contextual factors that influence these behaviours. Therefore, these factors should not be regarded as nuisances, as the authors do; they are the key issues that are important in implementation studies aimed at changing culture and behaviour. For example, some authors reported problems in implementing the activities due to a lack of resources (a result of the economic downturn) to manage the implementation and problems with measuring the effects of each component of the implementation strategy due to financial constraints. A lack of transparent funding models and lack of management support made the participation of different institutes or wards in the research projects problematic, resulting in only small pilot projects being carried out. These financial barriers should not be reported as shortcomings; rather, these factors should be determined by the key stakeholders and considered as critical factors for changing behaviour and the culture of safety in hospitals or other institutions.

In addition, some authors reported a lack of commitment on the part of nursing personnel to participate in the implementation projects. It appeared that some personnel were uncertain about the implications of several measures. For example, they were concerned that patients would not feel as clean after being washed with wipes instead of soap and water. The level of commitment of HCWs and management is one of the main conditions for success in programmes for innovation or change. The impediments indicate that the implementation strategies are expert-driven rather than stakeholder-centred. Changing safety behaviour in hospitals is first and foremost a cultural problem of management and staff, which requires that implementation strategies should address that level.

How to improve the implementation strategies? Given the fact that the implementation strategies influenced the attitude and knowledge of HCWs in a positive way, that intentions to behave safely increased, and that MRSA rates decreased in several studies, the question is
how to boost the impact of the implementation strategies. Education-inspection-feedback rounds could be one way to do this.

Based on prior experience in infection management control and on information gathered from other studies of innovation management (Cain & Mittman, 2002; Rogers, 2003), we argue that the participation of staff and management is crucial to the development and implementation of interventions, to increase applicability, accountability and ownership and to create a fit between the proposed activities and the culture of the organization (Van Gemert et al., in press). In addition, both positive and negative incentives are needed to encourage staff to do the right things at the right times. Change agents and demonstration of best practices will improve the incorporation of safety behaviour. To enhance the transparency of the implementation programme and strategies, communication of results or key factors for success should be available to staff. Communication should include insights into results related to infection management (prevalence and incidence rates of MRSA, identification of increasing/decreasing trends), the business model underpinning the programme (resources, investments, additional costs) and benchmarking (how are we doing and what are others doing?). It is also important to demonstrate to the management and staff that the investment costs of the intervention can be less than the costs of not adopting an MRSA-infection control programme.

Another point of attention is the use of media to implement the strategies. Even though evidence of the usefulness and effectiveness of computerized decision support or reminders exists (Grimshaw et al., 2004), it is not often used. We found that in ten studies DVDs, PowerPoint presentations, educational programmes available online or on CD-ROM, and electronic alerts or reminders were used. This is rather remarkable in our Internet-driven world. Web-based communications systems in particular can increase staff knowledge and provide access to accurate, adequate and easy to understand information (Kreps & Neuhauser, 2010). In prior and on-going research projects aimed at cross-border infection control (MRSA-net; EurSafety Health-net) we developed stakeholder-driven, web-based communication systems, based on national infection control standards, to support staff and patient behaviours (see for example Verhoeven et al., 2009). This resulted in fewer errors, time savings and also appropriate behaviour by HCWs.

5. References

triphosphate bioluminescence assay. *Infection Control and Hospital Epidemiology*, 30 (7), pp. 678-684.

Health care associated infection is coupled with significant morbidity and mortality. Prevention and control of infection is indispensable part of health care delivery system. Knowledge of Preventing HAI can help health care providers to make informed and therapeutic decisions thereby prevent or reduce these infections. Infection control is continuously evolving science that is constantly being updated and enhanced. The book will be very useful for all health care professionals to combat with health care associated infections.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:
