We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,600 Open access books available
177,000 International authors and editors
195M Downloads

154 Countries delivered to
TOP 1% Our authors are among the most cited scientists
12.2% Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
1. Introduction

At the end of the 19th century, it was discovered that certain species of insects, other arthropods and fresh water snails were responsible for the transmission of some diseases of public health importance. Since effective vaccines or drugs were not always available for the prevention or treatment of these diseases, control of transmission then had to rely mainly on control of vectors. The control programmes included among others, use of mosquito nets, drainage of gutters, filling of potholes and other water bodies used by insects for breeding. The 1940s sawed the discovery of DDT insecticide (dichlorodiphenyl trichloroethene) which was a major breakthrough in the control of vector-borne diseases. DDT also appeared to be effective and economical in the control of other biting flies (tsetse fly, simulium, and sand fly) and midges and of infestations with fleas, lice, bedbugs and triatomine bugs.

The initial large scale success achieved in the control programme was short-lived as the vectors developed resistance to the insecticides in use, thereby creating a need for new more expensive chemicals. Interest in alternatives to the use of insecticides such as environmental management (source reduction) and biological control, has been revived because of increasing resistance to the commonly used insecticides among important vector species e.g. (malaria) and also because of concerns about the effects of DDT and certain other insecticides on the environment. For many vector species, environmental sanitation through source reduction and health education is the fundamental means of control; other methods should serve as a supplement, not as a substitute. Thus, in recent years, the practices of vector control have evolved, and environmental management and modification have come to the fore, both for disease control and for agricultural and other economic purposes; this is a complex and multi-disciplinary field. Effective application of any control measure must be based on a fundamental understanding of the ecology, bionomics and behaviour of the target vector species and its relation to its host and the environment. Effective vector control also requires careful training and supervision of pest control operations and periodic evaluation of the impacts of the control measures.

In more recent years, less reliance has been placed on the use of a single method of chemical control; there is a shift towards more integrated vector control involving several types of environmental management supplemented by more than one method of chemical control and the use of drugs. More attention has been paid to community participation (a key component of primary health care (PHC) in eliminating breeding sites of vectors (including clearing of weeds/bushes near residential houses) and reducing vector densities.
Finally, there is also need to provide on continuous basis information on single, effective and acceptable methods for vector source reduction and personal protection to individuals and families in the community at a reasonable cost.

In a chapter of this nature only a few, but more important species of vectors could be discussed and even such a discussion could only be brief, emphasizing only the important features of the arthropod which serve to illustrate how the arthropod affects public health.

2. Malaria and its vectors

Human malaria is a number one public enemy and an illness caused by the bite of an infective female anopheles mosquito which transfers parasites called plasmodium from person to person. Four plasmodium parasites exists (P. falciparum, P. ovale, P. malariae and P. vivax) but only one (P. falciparum) is of vital importance in disease transmission in Nigeria. The important vectors in Nigeria are anopheles gambiae and A. funestus. These mosquitoes breed readily in ditches and collections of water in empty receptacles around the houses. The disease is endemic in Nigeria and over 90% of the population is at risk. Fifty percent of the population will have at least one attack per year, 300,000 children and 11% of pregnant women die of malaria each year respectively and millions of dollars is lost each year in treatment of malaria.

The table below shows some of these vectors and diseases transmitted by them.

<table>
<thead>
<tr>
<th>Type</th>
<th>Designation</th>
<th>Disease</th>
<th>Vectors</th>
<th>Mode of transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td>Plasmodium spp</td>
<td>Malaria</td>
<td>Mosquitoes</td>
<td>Bite (sg)</td>
</tr>
<tr>
<td>Trypanosome spp</td>
<td></td>
<td>African sleeping sickness</td>
<td>Tsetse fly</td>
<td>Bite (sg)</td>
</tr>
<tr>
<td>Filarial nematodes</td>
<td>Wucheria</td>
<td>Filariasis</td>
<td>Mosquitoes</td>
<td>Bite</td>
</tr>
<tr>
<td></td>
<td>Bancrofti</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Onchocerca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volvula</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viruses</td>
<td>YF</td>
<td>Onchocerciasis</td>
<td>Black flies</td>
<td>Bite</td>
</tr>
<tr>
<td></td>
<td>Cholera/diarrhea</td>
<td>Yellow Fever</td>
<td>Aedes</td>
<td>Bite (sg)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Typhoid fever</td>
<td>Typhoid fever</td>
<td>Cockroaches</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bacillary dysentery</td>
<td>Dysentery</td>
<td></td>
<td>Mechanical carriers</td>
</tr>
</tbody>
</table>

Table 1. Pathogens and vectors of some human diseases (sg) indicates definite involvement of salivary gland.

The results of several surveys showed that the most prevalent species of malaria parasites is p. falciparum with a prevalent rate of between 80% and 100% of all positive blood films. P. vivax is conspicuously absent in West Africans who because of their Duffy negative erythrocyte membrane are immune to P. vivax.²³

It is estimated that there are more than 400 species of anopheles in the world, but only 40 of these are important vectors (as transmitters or carriers) of malaria. Only the female anopheles mosquito transmits malaria to humans. Some anopheles mosquitoes can also carry other human diseases like Filariasis and some viruses. There are two other genera of mosquitoes which are important carriers of other mosquito-borne diseases: Aedes is a vector of viral diseases- Yellow fever and Dengue while culex mosquito is the vector of Filariasis.
and Japanese encephalitis. For practical purposes and entomologically, it is useful to be able to differentiate between these three types of mosquitoes; so the main distinguishing features in each stage of the life cycle are shown below in the diagram.

<table>
<thead>
<tr>
<th>Anopheles</th>
<th>Aedes</th>
<th>Culex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs</td>
<td>Laid singly</td>
<td>Laid singly</td>
</tr>
<tr>
<td></td>
<td>Has floats</td>
<td>No floats</td>
</tr>
<tr>
<td>Larvae</td>
<td>Rest parallel to water surface</td>
<td>Rest at an angle to the water surface</td>
</tr>
<tr>
<td></td>
<td>Rudimentary breathing tube</td>
<td>Air tube</td>
</tr>
<tr>
<td>Pupae (differ only slightly)</td>
<td></td>
<td>Short, stout breathing tube with one pair of hair tufts</td>
</tr>
<tr>
<td>Adult</td>
<td>Probes and body in same straight line</td>
<td>Probes and body at an angle to one another</td>
</tr>
<tr>
<td></td>
<td>Maxillary palps as long as proboscis</td>
<td>Maxillary palps shorter than proboscis</td>
</tr>
<tr>
<td></td>
<td>Wings spotted</td>
<td>Wings generally uniform</td>
</tr>
<tr>
<td></td>
<td>Tip of female abdomen usually stunted</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Life cycles of different mosquito genera (online, 2011).
Basically, the mosquito has four stages in its life cycle: eggs → larva → pupa → adult. It is useful to understand the life cycle and natural history of the anopheles mosquito not only for epidemiological reasons but most importantly for the fact that all the four stages are targets to control mosquito vector. There are several features of the behaviour of anopheles mosquitoes which are important in understanding malaria epidemiology and also for planning mosquito control.

Malaria is holo-endemic in most regions of Nigeria; ideal climatic conditions for the propagation and transmission of the infection are a temperature between 26°C – 30°C and relative humidity of over 60 percent.

3. Disease control

The general methods of malaria control can be grouped into three measures directed against the parasite in man, measures directed against the vector and measures designed to prevent mosquito-man contact, these are summarized in table 2.

<table>
<thead>
<tr>
<th>Principal goal</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Outpatient treatment of uncomplicated malaria</td>
</tr>
<tr>
<td></td>
<td>Inpatient treatment of severe and complicated malaria</td>
</tr>
<tr>
<td></td>
<td>Home treatment</td>
</tr>
<tr>
<td>Prevention</td>
<td></td>
</tr>
<tr>
<td>(a) Inhibit mosquito to breeding</td>
<td>i) Source reduction (drainage, filling in ditches)</td>
</tr>
<tr>
<td></td>
<td>ii) Chemical larviciding</td>
</tr>
<tr>
<td></td>
<td>iii) Management of agricultural, industrial and urban development to avoid breeding sites</td>
</tr>
<tr>
<td>(b) Kill adult mosquitoes</td>
<td>i) IRS (indoor residual spraying)</td>
</tr>
<tr>
<td></td>
<td>ii) ITMs (insecticide treated materials – bed nets, curtains, etc)</td>
</tr>
<tr>
<td>(c) Prevent mosquito contact</td>
<td>i) ITMs</td>
</tr>
<tr>
<td></td>
<td>ii) Repellants, sprays, coils, etc</td>
</tr>
<tr>
<td>(d) Reduce malaria infection and</td>
<td>i) IPT (intermittent preventive treatment of pregnant women)</td>
</tr>
<tr>
<td>morbidity in humans</td>
<td>ii) Chemoprophylaxis</td>
</tr>
</tbody>
</table>

Table 2. Interventions to control malaria^5.

The first involves the use of appropriate anti-malarial agents to treat clinical malaria and the use of chemoprophylaxis among the vulnerable groups. The problem facing most tropical countries is serious as majority of patients with clinical malaria are either untreated or treated inadequately by self-medication. Also, their governments cannot afford to buy sufficient anti-malarial drugs for their needs and most people cannot afford to purchase effective treatments^7. The annual per capita expenditure on anti-malarial drugs in most of sub-Saharan Africa is still <US$10. An adult (60kg) course of Chloroquine costs US$0.08 but the new artemisinin based combinations (ACTs) cost more than five times as shown in table 3.

www.intechopen.com
Table 3. Average cost of a full course of adult outpatient treatment.

<table>
<thead>
<tr>
<th>Drug</th>
<th>US$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroquine</td>
<td>0.13</td>
</tr>
<tr>
<td>SP</td>
<td>0.14</td>
</tr>
<tr>
<td>Amodiaquine</td>
<td>0.20</td>
</tr>
<tr>
<td>Artemisinin-based combinations (ACTs)</td>
<td>1-3</td>
</tr>
</tbody>
</table>

This is currently unaffordable to most patients surviving barely on less than a US$1 per day. The treatment of malaria has become quite challenging, and the emergence of resistant strains of the parasite. In Nigeria where at least 80% of the people live in rural areas and are superstitious illiterates, early recognition and the right treatment are not adhered to. This encourages drug resistance.

The Abuja declaration on Roll Back Malaria on 25 April 2000 and agreed to by African Heads of State sets an ambitious goals to reduce the burden of malaria (insecticide-treated nets, prompt access to treatment and prevention of malaria in pregnancy) by the year 2010. Achieving high coverage in both IPT and use of ITNs among the vulnerable groups and the general population has remained elusive for many countries in sub-Saharan Africa. A major barrier to net ownership is poverty as the price of a net represents a large proportion of the income of a poor household, this has been reported in various studies.

Environmental control (source reduction) offers the best practical and easy measure to control disease vector as it eliminates the breeding places. The filling of mosquito breeding sites with soil, ash or rubbish and is most suitable for reducing breeding in small depressions, water holes or pools, which does not require much filling material. On the other hand, drainage of water can be achieved by constructing open ditches; however, the drainage systems used in agriculture or for the transportation of sewage and rainwater in cities often promote breeding because of poor design and maintenance.

4. The use of insecticides

The first house-spraying campaigns after the Second World War, showed the capacity of this interventions to produce profound reductions in malaria transmission in a wide variety of circumstances. In Africa, the intervention was used in 1960s and 1970s but later abandoned except in some countries in southern and eastern Africa where residual insecticide spraying (IRS) remained the cornerstone of malaria control strategy. Since 2005, however, there has been renewed interest in large scale IRS programmes. To date, 25 out of the 42 malaria endemic countries in the WHO Africa region have included IRS in their control strategy for malaria control. Of these, 17 countries routinely implement IRS as a major malaria control intervention, six including Nigeria are piloting the IRS in a few districts while 2 are planning to pilot. At the end of 2006, the National Malaria Control Programme (NMCP) and its partners initiated a pilot IRS project in 3 local government areas/districts in 3 states (Lagos, Plateau, Borno states) using the WHOPES approved insecticides:

a. Lambdacyhalothrin CS 10% (0.030g/m²)
b. Alphacypermethrin WP 10% (0.030g/m²)
c. Bifenthrin WP 10% (0.050g/m²)

The evaluation of the local context of the 3 chemicals confirmed that residual effectiveness of the insecticides lasted for at least 4 months.
Residual spraying of houses involves the treating of interior walls and ceilings using a handheld compression spraying and is effective against mosquitoes that favour indoor resting before or after feeding. For a more detailed discourse of notable insecticide formulations, spray pumps, spraying techniques and maintenance of equipment, see Jan A. Rozendaal.

The figure 2, below summarizes and describes the IRS management principles;

Mosquito nets are an old technology and most people in sub-Saharan Africa are aware of the existence of nets. In some countries such as Nigeria and the Gambia nets have been in regular use for over hundred years. Similarly, in some parts of Africa, net ownership is a well established social norm and nets are widely available. For instance, recently, it was found that 70% of households (HHs) in Dar es Salaam (Tanzania) owned a mosquito net and around 35% of HHs were found to own a net in urban Burkina Faso.

Insecticide treated mosquito nets have had significant impact in reducing morbidity and mortality among children under-five years old and pregnant women where ITNs have been appropriately and extensively used in malaria endemic areas. The potential epidemiological advantages and public health benefits of treating nets with insecticide for protection against malaria were recognized in the mid-1980s. Specifically, the efficacy of insecticide treated nets (ITNs) for the control of malaria in children under-5 years of age has recently been demonstrated by several large scale studies which find reductions in all cause – mortality, ranging from 16% to 63%. These insecticides which have been approved by WHO/PE (World Health Organization Pesticides Evaluation Scheme) are safe. They have the following properties; provide personal protection from mosquito bites, effective against...
other insects: bedbugs, flies and cockroaches, community and household mass effective
which may be more important in some contexts22 and mosquito nuisance effect. There have
been reports also of dead insects on the nets and on the floor, less mosquito noise and that
ITNs providing a better night’s sleep than a net alone16.
Most nets (and other materials) need to be treated and retreated with insecticides to increase
their effectiveness. There are several insecticides that can be used which have proved to be
safe. The insecticides recommended by the National Malaria and Vector Control Programme
for treatment/retreatment of nets are those approved by WHOPES and registered by
NAFDAC (National Foods and Drugs Administration Commission) are shown in table 4
below:

<table>
<thead>
<tr>
<th>Generic name</th>
<th>Trade name</th>
<th>Dose per 1 net</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphacypermethrin 10% SCa</td>
<td>Fendona 6ml</td>
<td>BASF</td>
<td></td>
</tr>
<tr>
<td>Deltamethrin 1% SC</td>
<td>K-Othrine, Ko-Tab</td>
<td>40ml</td>
<td>Aventis</td>
</tr>
<tr>
<td>Etofenprox 10%.EWb</td>
<td>Vectron 30ml</td>
<td>Mitsui</td>
<td></td>
</tr>
<tr>
<td>Permethrin 10%.ECc</td>
<td>Peripel, Imperator 75ml</td>
<td>Aventis</td>
<td></td>
</tr>
<tr>
<td>Cyfluthrin 5% EW</td>
<td>Solfac EW 15ml</td>
<td>Bayer</td>
<td></td>
</tr>
<tr>
<td>Lambdacyhalothrin 2.5% CSd</td>
<td>Icon 10ml</td>
<td>Syngenta</td>
<td></td>
</tr>
</tbody>
</table>

Key:
a SC = Suspension concentrate
b EW = Emulsion oil in water
c EC = Emulsifiable concentrate
d CS = Capsule suspension

Table 4.

For a detailed description of preparation of insecticide mixtures and treatment methods,
the reader should consult guidelines on the use of insecticide-treated mosquito
nets23.
A single impregnation of a cotton or nylon mosquito net will provide protection for 1
year24,25. Nylon tends to retain permethrin and deltamethrin better than cotton. The
impregnated nets can be washed and can tolerate small tears/holes without markedly
reducing the protective effect. Recently, long lasting nets (LLNs) have been developed
and have the advantage of retaining insecticidal activity for years (so the nets will not lose
its potency with repeated washings). Despite various government policies, cost of the nets
remains a significant barrier and a long obstacle to the Roll Back Malaria goal of universal
coverage - defined as one long lasting insecticide-treated nets for every two people in the
household with 80% usage. ITN development is a public good. The development of
insecticide resistance in the 1950s and recently by vectors has been a cause for concern.
There have been reports of resistance to DDT in a wide range of sub-Saharan African
countries26, but this has not reached an operationally significant level. With the exception
of the Gezira region of Sudan27, widespread loss of vector susceptibility is not yet a big
problem in Nigeria. A worrying new development is the emergence of knockdown
resistance to pyrethroid insecticides in natural populations of anopheles mosquitoes in
Cote d’Ivoire and Burkina Faso28, 29, 30 where insecticides are widely used in cotton
production.
Currently, pyrethroids are the only insecticides used for net treatment and are also increasingly used for spraying, so there is threat that if widespread resistance develops, the interventions will gradually become less cost-effective over time.

Finally, there is need to describe importantly the WHO integrated vector management (IVM) concept. Vector control is well suited for integrated approaches because vectors are responsible for multiple diseases and since interventions are effective against several vectors (use of insecticides) the concept of IVM was developed as a result of lessons learnt from integrated pest management which was used in Agriculture.

Integrated vector management (IVM) is a major component of the global campaign against malaria. The revised strategic plan for RBM recommended that from 2006 – 2010, 80% of the population at risk need to be protected using effective vector control measures. IVM creates synergies between various vector-borne disease control programmes. Utilization of single method could be optimized to control more than one vector-borne disease, eg ITNs can control malaria, lymphatic filariasis and to some extend leishmaniasis. IVM operates in the context of inter-sectoral collaboration. The application of IVM principles to vector control will contribute to the judicious use of insecticides and extend their useful life.

5. References

[22] Nevill CG, Same ES, Mung’ala VO et al. Insecticide-treated bed nets reduce mortality and severe morbidity from malaria among children on the Kenyan Coast. Tropical Medicine and International Health 1996; 1(2) 139-46

www.intechopen.com

This book is compiled of 24 Chapters divided into 4 Sections. Section A focuses on toxicity of organic and inorganic insecticides, organophosphorus insecticides, toxicity of fenitrothion and permethrin, and dichlorodiphenyltrichloroethane (DDT). Section B is dedicated to vector control using insecticides, biological control of mosquito larvae by Bacillus thuringiensis, metabolism of pyrethroids by mosquito cytochrome P40 susceptibility status of Aedes aegypti, etc. Section C describes bioactive natural products from sapindacea, management of potato pests, flower thrips, mango mealy bug, pear psylla, grapes pests, small fruit production, boil weevil and tsetse fly using insecticides. Section D provides information on insecticide resistance in natural population of malaria vector, role of Anopheles gambiae P450 cytochrome, genetic toxicological profile of carbofuran and pirimicarp carbamic insecticides, etc. The subject matter in this book should attract the reader’s concern to support rational decisions regarding the use of pesticides.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China
中国上海市延安西路65号上海国际贵都大饭店办公楼405单元
Phone: +86-21-62489820
Fax: +86-21-62489821
© 2012 The Author(s). Licensee IntechOpen. This is an open access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.