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1. Introduction 

It is well established, that the appearance of chronic lymphocytic leukemia (CLL), the most 
frequent form of leukemia in adults, in the developed countries, is mainly due to the gradual 
accumulation of malignant clone originated from CD5/CD19/CD23 positive lymphocytes. 
This accumulation results from a dysregulation between proliferation and apoptosis of 
neoplastic cells. In normal lymphocytes these processes are in equilibrium, so that total 
number of these cells in the organism remains stable. It has been known for two decades that 
the accumulation of leukemic lymphocytes in CLL is a consequence of defects of programmed 
cell death, but also, to some extent, of their dysregulated proliferative activity, as shown by the 
blockade of certain CLL lymphocytes in G1 cell cycle phase (Decker et al., 2002). The aim of this 
chapter is to discuss essential abnormalities of CLL cells apoptosis and proliferation which 
contribute to the development of the disease and may determine its clinical course. However it 
must be remembered, that significant majority of experimental data concerning survival and 
apoptosis of CLL cells, especially regarding cytokines, come from in vitro studies, thus it is 
difficult to apply them directly to in vivo situation. 

Numerous studies allowed to establish, that leukemic cells both circulating in the blood and 
residing in lymphoid organs survive in vivo for a very long time, counted in months, due to 
inhibition of their programmed death, but they undergo rapid, spontaneous apoptosis in  
a few days when cultured in in vitro conditions (Collins et al., 1989). It is then plausible that 
the prolonged in vivo lifespan is due to the prosurvival influence of microenvironmental 
factors, in particular to the interactions of malignant lymphocytes with stromal cells (Munk-
Pedersen & Reed, 2004; Deaglio & Malavasi, 2009), and probably to the B cell receptor 
engagement by antigens (Ghia et al., 2008; Burger et al., 2009a). The removal of CLL cells 
from microenvironment to in vitro culture deprives them of indispensable stimuli and leads 
to their rapid apoptosis. Several subpopulations of accessory stromal cells have been 
individualized in the connective tissue. Monocyte-derived CD68+ nurse-like cells, 
mesenchymal stromal cells and follicular dendritic cells seem to play a particularly 
important role in this process (Burger et al., 2009b). 

1.1 Trafficking and homing of CLL cells in microenvironment 

Interaction between chemokine receptor CXCR4 and its ligand CXCL12, formerly known as 
stromal cell-derived factor-1 (SDF-1), plays a crucial role in the homing of malignant 
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lymphocytes within host niches of the microenvironment (Burger & Kipps, 2006). Stromal cells 
and nurse-like cells constitutively secrete CXCL12, what is essential for retention of 
hematopoietic stem cells, physiologically expressing CXCR4, inside bone marrow. CLL cells, 
which usually strongly express CXCR4 independently from the type of the disease, make use 
of CXCR4/CXCL12 axis to remain in a favourable environment (Broxmeyer et al., 2005). 
Analogous mechanism acts through receptor CXCR5, present in high density on leukemic 
lymphocytes and ligand CXCL13 synthesized by nurse-like cells in lymphatic nodes and  
a spleen (Burkle et al., 2007). CLL cells also overexpress CCR7, a receptor interacting with 
chemokines CCL19 and CCL21. The intensity of this ligation is additionally regulated by 
atypical, non-signalling receptors CRAM and CCX-CKR (Catusse et al., 2010) and correlates 
with infiltration of lymphatic nodes, a process which requires a cooperation of ǂ4 integrin (Till 
et al., 2002). Higher expression of CCR7 has been related to more advanced stage of the disease 
and the presence of lymphadenopathy (Ghobrial et al., 2004). The role of another chemokine 
receptor, CXCR3, is relatively poorly understood. Its expression on malignant lymphocytes 
considerably varies between patients but remains stable over time in individual cases, and 
surprisingly – lower level of CXCR3 is strongly associated with Rai stages III and IV, diffuse 
pattern of the bone marrow infiltration and shorter overall survival (Ocana et al., 2007). 
Another mechanism involved in the adhesion of CLL cells to components of 
microenvironment concerns integrins – glycoproteins composed of ǂ and ǃ subunits, 
mediating cell-to-cell and cell-to-matrix junction. The ǂ4ǃ1 integrin called VLA-4 or CD49d is 
variously expressed on malignant lymphocytes and acts as a receptor for fibronectin and 
vascular cell adhesion molecule-1 (VCAM-1 or CD106), cooperating with chemokine receptors 
in adhesion of these cells to stromal cells and extracellular matrix. Moreover, high expression 
of VLA-4 correlates with more advanced stage of the disease and shorter overall survival, 
revealing value as an independent negative prognostic factor (Gattei et al., 2008). 

1.2 Reversible influence of CLL cells on the microenvironment 

Malignant clone of CLL cells not only uses microenvironmental stimuli, but also influences 

neighbouring tissues in order to increase attained benefits. Communication between 

neoplastic lymphocytes and their microenvironment may be executed by microvesicles – 

detached fragments of malignant cells cytoplasm surrounded by a cell membrane, which are 

able to fuse nearby cells carrying there numerous proteins and lipids thus exerting impact 

profitable for a growth and progression of leukemia. A particular mechanism described in 

CLL concerns transmission of agents stimulating stromal cells to produce vascular endothelial 

growth factor (VEGF), what leads to enhanced angiogenesis in the bone marrow (Ghosh et al., 

2010). Malignant lymphocytes can also actively attract accessory cells, particularly T 

lymphocytes and monocytes, thus accumulating them in microenvironment, what modifies 

local immune response in favour of the neoplasm progression. Main factors secreted by CLL 

cells for this purpose are chemokines CCL3 and CCL4, synthesized after B-cell receptor 

stimulation (Sivina et al., 2011), and CCL22, produced after CD40 ligation (Ghia et al., 2002). 

2. Apoptosis 

Processes leading to a programmed cell death can be initiated by either intracellular or 
extracellular signals. Accordingly, two pathways of apoptosis are distinguished: intrinsic, 
otherwise called “mitochondrial” and extrinsic, triggered by death receptors signalling.  
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A wide range of intracellular factors, like DNA damage leading to expression of p53 protein, 
hypoxia, or growth factors deficiency activate an intrinsic pathway influencing the 
transcription of Bcl-2 family proteins what leads to an increased release of cytochrome c 
from mitochondria to cytosol. Thereafter, cytochrome c together with Apaf-1 (apoptotic 
protease activating factor 1), inactive procaspase-9 and dATP form a complex called 
apoptosome, which activates caspase-9. This enzymatic complex launches caspase cascade, 
what causes nuclear condensation, DNA fragmentation, membrane blebbing and finally 
leads to the cell death. A protein named apoptosis inducing factor (AIF), released from 
mitochondrion in the same circumstances as cytochrome c, enters the nucleus and results in 
a cell death without cooperation of caspases. An extrinsic pathway of apoptosis is initiated 
by activation of several membrane receptors including Fas and TNFǂR by their respective 
ligands. Activated receptors trigger caspase cascade via protein called Fas associated death 
domain (FADD), which contains domain activating procaspase-8, what leads to cell death. 

2.1 Intracellular pathways of apoptosis 

Human lymphocytes, as all eukaryotic cells, are equipped with a complicated machinery 
serving to execute an extracellular or intracellular suicide signal in response to various 
situations which necessitate cell its death, e.g. unrepairable DNA damage, penetration of  
a virus into a cell, or neoplastic transformation. Numerous anomalies disturbing this 
machinery were described in CLL lymphocytes. Those anomalies result in ineffective 
apoptosis of malignant cells and consequently in their gradual accumulation in blood and 
lymphoid tissue, thus influencing a clinical course of the disease. 

2.1.1 Bcl-2 protein family 

The Bcl-2 family is a very conservative class of proteins, detected in a wide range of 

eukaryotic organisms, from simple nematodes, like Caenorhabditis elegans, to mammalians. 

Its fundamental role is to control the mitochondrial pathway of apoptosis, by regulation of 

the permeability of mitochondrial membranes. Bcl-2 and Bcl-xL are principal antiapoptotic 

proteins of this family. They are located in the outer mitochondrial membrane where they 

inhibit the release of the cytochrome c from intermembrane space and the creation of the 

apoptosome, so that the activation of caspase-9 is impaired. As a result of prosurvival 

activity of Bcl-2 and Bcl-xL, caspase cascade is not activated and cells are protected from 

apoptosis. Mcl-1 is another important prosurvival protein in this group, structurally 

different from previous ones, localized predominantly in endoplasmic reticulum and 

nuclear membrane, interfering with other Bcl-2 agents and inhibiting the cytochrome c 

release. Proapoptotic members of Bcl-2 family can be divided into two subgroups, 

depending on number of repeated homological domains called “BH” in their structure: 

“multidomains” (Bax, Bak, Bok), possessing four domains called BH1, BH2, BH3, BH4, and 

“BH3-only” (Bim, Bad, Bid, Puma and Noxa). Those proteins can be activated by various 

signals, like growth factors deprivation, or p53 induced by DNA damage e.g. after radiation 

or cytotoxic therapy. They deactivate Bcl-2 and Bcl-xL, and support cytochrome c release, 

thus promoting caspase dependent programmed cells death. In some situations Bid 

undergoes activation by Fas receptor-induced cleavage and by caspase-8, then it promotes 

cytochrome c release and triggers the caspases cascade. Therefore it connects both apoptotic 

pathways: intrinsic and extrinsic one. (Packham & Stevenson, 2005) 
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Numerous abnormalities of Bcl-2 family proteins expression were observed in CLL cells and 
it is generally accepted, that shifted balance between different members of that family 
towards antiapoptotic ones plays a crucial role in prolonging of neoplastic cells in vivo 
survival. Relatively high expression of Bcl-2 probably because of hypomethylation of its 
gene were detected in cytoplasm of malignant lymphocytes (Hanada et al., 1993; Robertson 
et al., 1996). An elevated Bcl-2/Bax ratio was found to be related to chemoresistance and 
worse prognosis in this disease (Aguilar-Santelises et al., 1996; Molica et al., 1998; Thomas et 
al., 2000). Yet another observation proves an importance of high Bcl-2 and low Bax levels in 
programmed cell death inhibition: CLL cells which underwent apoptosis induced by an 
external factor, e.g. resveratrol, revealed remarkably decreased Bcl-2/Bax ratio (Podhorecka 
et al., 2011). Increased proteosomal degradation of Bax is considered as a cause of its lower 
expression (Agraval et al., 2008). Data concerning clinical significance of a decreased Bax 
level as the only disturbance are somewhat controversial, since some studies suggest its 
negative prognostic role (Bannerji et al., 2003), while some other ones do not confirm it 
(Faderl et al., 2002). Increased expression of prosurvival protein Mcl-1 was detected in 
approximately half of CLL cases, what is thought to inhibit apoptosis and hamper the 
therapeutic effect of chlorambucil as well as fludarabine (Kitada et al., 1998; Pepper et al., 
2008), and rituximab (Awan et al., 2009). Moreover, low expression of MCL-1 gene was 
correlated with prolonged overall survival in the disease (Veronese et al., 2008). Some other 
observations suggest that upregulated expression of Mcl-1 plays a crucial role in a protective 
influence of microenvironmental factors on leukemic cells (Pedersen et al., 2002). Less is 
known about other Bcl-2 family members. It was shown that simultaneous deficiency of Bax 
and Bak proteins was related to cells resistance to majority of proapoptotic signals (Wei et 
al., 2001). Noxa, a protein inducing programmed cells death, is paradoxically excessively 
expressed in CLL lymphocytes (Mackus et al., 2005). Significance of that phenomenon 
remains unclear, but it was suggested, that leukemic cells in lymphatic nodes expressed low 
levels of Noxa, due to proliferative stimuli of microenvironment. In the absence of these 
signals in circulation Noxa becomes upregulated, but not strongly enough to overcome an 
apoptosis blockade of highly expressed Bcl-2 (Smit et al., 2007). 

2.1.2 Role of p53 in activation of apoptosis 

One physiological defense mechanism, aimed at the genome integrity protection, is based 
on induction of apoptosis when cellular DNA damage becomes irreparable. A key role in 
that phenomenon is played by p53, a transcription factor which expression is induced by 
DNA damage. This factor stimulates the expression of p21Cip1/WAF1 – universal inhibitor of 
cyclin-dependent kinases – cyclin complexes, which blocks the cell cycle progression and 
allows the cell to repair the genetic material. When this repair cannot be completed, p53 
enhances the transcription of genes encoding Bax, Puma and Noxa – proapoptotic members 
of Bcl-2 family, thus initiating the mitochondrial pathway of programmed cell death 
(Vousden & Lu, 2002). In addition, recent studies suggest, that p53 acts not only as  
a transcription factor, but is also able to induce apoptosis through direct binding to Bcl-2 
protein, deactivating it, what subsequently activates Bax, Puma and triggers caspase cascade 
(Chipuk et al., 2004; Steele et al., 2008). Approximately 10% to 15% of CLL patients reveal 
structural aberrations or point mutations in locus 17p13, containing TP53 (gene encoding 
p53), what results in an improper function of this protein and defective apoptosis of 
leukemic cells in response to alkylating agents and purine analogues. Those disturbances 
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have a profound influence on the clinical picture of CLL. The presence of 17p deletion or 
TP53 mutations is associated with higher clinical stage of the disease, shorter treatment-free 
survival (Dohner et al., 2000), more aggressive clinical course, shorter progression-free and 
overall survival (Rossi et al., 2009). It should be mentioned, that double-strand DNA breaks 
activate p53 through phosphorylation and dephosphorylation of single aminoacids of its 
chain by ATM protein (Johnson et al., 2009). That is why the inactivation of ATM gene, 
located in locus 11q22.3 to 11q23.1, leads to p53 functional deficiency. Therefore ATM 
mutations, resulting mainly from 11q22 – q23 deletions and detected in about 20% of CLL 
patients, are also considered as negative prognostic factors in the disease, although of lesser 
importance than 17p aberrations and TP53 mutations (Dohner et al., 2000; Austen et al., 
2005). 

2.1.3 NF-κB signal transduction pathway 

Transcription factor called nuclear factor kappa-B (NF-κB) is a homo- or heterodimeric 

protein composed of subunits belonging to Rel family, which contains following members 

identified so far: RelA, RelB, c-Rel, p50 and p52. In the inactive state NF-κB is sequestrated 

in the cytosol by binding to one of its specific inhibitors: IκB-ǂ, IκB-ǃ, IκB-Ǆ, IκB-ε, Bcl-3, 

p100 or p105, called collectively “IκB” (Zheng et al., 2011). Activation of NF-κB pathway 

starts by the interaction of a specific ligand with a receptor activator of NF-κB (RANK), 

which belongs to a family of TNF-ǂ receptors. Numerous factors can induce NK-κB: tumor 

necrosis factor ǂ (TNF-ǂ), interleukin 1ǃ (IL-1ǃ), osteoprotegerin, ionizing radiation, 

oxidative stress, or bacterial endotoxins (Vallabhapurapu & Karin, 2009). Stimulated RANK 

activates a group of kinases called IKK, which phosphorylate IκB liberating it from NF-κB. 

RANK is also able to activate NF-κB through a specific NF-κB inducing kinase (NIK). When 

activated, NF-κB enters the nucleus, where it induces the expression of numerous important 

antiapoptotic genes encoding such proteins as: prosurvival members of Bcl-2 family (Bcl-2, 

Bcl-xL), cellular inhibitors of apoptosis (IAP family) deactivating caspases, FLICE-like 

inhibitory protein (FLIP) blocking Fas-associated death domain (FADD), or TNF receptor-

associated factor (TRAF), mediating antiapoptotic signals (Fan et al., 2008). 

CLL malignant cells show higher constitutive activation of NF-κB than normal lymphocytes 

(Furman et al., 2000). The impulses such as: CD40 ligation, induction of B-cell receptor (BCR), 

IL-4, BAFF (B-cell activating factor) or APRIL (a proliferation inducing ligand) were reported 

to stimulate NF-κB in CLL cells and to antagonize physiological pathways of a programmed 

cell death. NF-κB expression was reported to show individual variations and may correlate 

with tumor burden and lymphocytes doubling count, confirming the importance of this 

signalling pathway in the development and progression of the disease (Hewamana et al., 

2008). Currently it is generally accepted that NF-κB is one of the most important transducers of 

external stimuli, keeping CLL cells alive with blocked apoptosis (Cuni et al., 2004). 

2.1.4 PI3K/Akt survival pathway 

It is commonly acknowledged that cells need a permanent stimulation with appropriate growth 
factors to survive. A signalling cascade of the phosphatidylinositide 3’-OH kinase (PI3K) and 
Akt kinase is thought to be, at least partially, responsible for transduction of prosurvival 
extracellular stimuli. Their binding to membrane ligands results in displacement of PI3K to the 
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inner surface of a cell membrane. PI3K phosphorylates membrane phosphoinositides, which 
recruit Akt from cytosol to plasma membrane and change its conformation into more accessible 
as a substrate for specific 3-phosphoinositide-dependent protein kinases (PDK-1 and PDK-2). 
Thereafter PDKs activate Akt by phosphorylation. Five targets of Akt antiapoptotic action on 
intracellular machinery of a programmed cell death were identified. The first one is Bad – 
proapoptotic member of Bcl-2 family. Akt phosphorylates Bad inactivating it, thus preventing 
interaction between Bad and Bcl-xL. Bcl-xL liberated from Bad performs its physiological 
prosurvival role of blocking cytochrome c release from mitochondria. The second one is 
caspase-9 – an important link between apoptosome and effector caspase-3. Akt inactivates it 
and thus interrupts caspase cascade. The third site of Akt’s influence on apoptosis is its 
activating action on IKKs – kinases inducing antiapoptotic pathway of NF-κB, as described 
above in appropriate section of this chapter. The fourth target of Akt is so called Forkhead 
family of transcription factors, which regulates expression of several genes important for 
apoptosis, including Fas ligand gene. Akt inactivates Forkhead family members by 
phosphorylation, thus reducing their proapoptotic effect (Datta et al., 1999). XIAP (X-linked 
inhibitor of apoptosis protein), one of most potent inhibitors of caspases, is the fifth target of 
Akt. XIAP phosphorylated by Akt becomes more resistant to ubiquitination and proteolytic 
degradation, therefore its prosurvival influence becomes prolonged (Dan et al., 2004). 

Stimulation with microenvironmental, non-malignant, bystander cells results in a high 

activity of PI3K/Akt pathway in CLL lymphocytes. Those prosurvival signals reach 

leukemic cells through various membrane receptors, like B-cell receptor, CD40 (Cuni et al., 

2004), or, described recently, CD160 – membrane protein not present in normal B 

lymphocytes, but expressed on leukemic ones, which has the property of activating 

PI3K/Akt pathway (Liu et al., 2010). It is supposed, that enhanced activity of Bcl-xL and 

NF-κB is the most important way of Akt’s influence on cell apoptosis in CLL. Additionally, 

recent studies suggest that sustained activation of Akt results also in increased expression of 

Mcl-1 in leukemic cells, what shifts the balance between members of Bcl-2 family towards 

the prosurvival ones (Longo et al., 2008). 

2.1.5 Ambiguous role of JNK in apoptosis 

The c-Jun N-terminal protein kinase (JNK) belongs to the family of the mitogen activated 

protein kinase (MAPK) and is involved in a regulation of cellular apoptosis, responding to a 

variety of extracellular signals. Despite extensive studies published so far, the exact role of 

JNK in apoptosis remains unclear. Some studies suggested its proapoptotic function (Davis, 

2000), some other showed its antiapoptotic activity (Yu et al., 2004), and other ones did not 

prove any impact at all of this factor on the programmed cell death (Lin, 2003). Probably a 

real effect of JNK on apoptosis depends on the type of investigated cells and stimuli tested. 

FasL and TNF-ǂ may activate JNK and lead to the suppression of Bcl-2 and subsequently 

inhibition of the apoptosis. Some studies suggest that prior inhibition of NF-κB may be 

required for this antiapoptotic action of JNK (Liu & Lin, 2005). Moreover, studies performed 

on pro-B hematopoietic cells displayed a suppression of a programmed cell death via 

inactivation of Bad – proapoptotic member of Bcl-2 family – through its phosphorylation by 

JNK in response to interleukin-3 stimulation (Yu et al., 2004). As it was presented in one 

study, B-cell receptor stimulation probably did not reveal any effect on the activity of JNK 

pathway in CLL cells (Petlickovski et al., 2005). 
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2.1.6 Caspase cascade 

Majority of pathways transducing extra- and intracellular proapoptotic signals converge 
toward caspases, a family of cysteine proteases, main executors of apoptotic processes. 
These proteins localize in cytosol as inactive zymogens and after induction of apoptosis they 
form a proteolytic chain of consecutively activated enzymes, which is called a caspase 
cascade. Generally, two classes of caspases are distinguished: initiator and effector ones. 
Initiator caspases (caspase-8, 9, 10 and 12) transduce signals from apoptotic pathways, 
cleave and activate effector ones (caspase-3, 6 and 7) (Riedl & Shi, 2004). The intrinsic 
pathway of apoptosis leads to the formation of apoptosome, which is, as already mentioned, 
a complex containing Apaf-1, cytochrome c liberated from mitochondria, procaspase-9 and 
dATP. Apoptosome activates caspase-9 which subsequently activates effector caspase-3 and 
caspase-6. Induction of the extrinsic pathway results in caspase-8 and caspase-10 activation 
through FADD, thereafter both initiator caspases mentioned above activate the effector 
caspase-3. Afterwards caspase-3 activates downstream effector caspase-7. Finally, main 
effector caspase-3, in cooperation with caspase-6 and 7, cleaves a variety of proteins, like 
laminA, actin, gas2, what causes cell shrinkage and membrane blebbing. Additionally, 
caspase-3 inactivates ICAD (inhibitor of CAD), what liberates CAD (caspase activated 
DNAse) and results in DNA fragmentation and nuclear chromatin condensation. All these 
processes finally lead to cell death (Logue & Martin, 2008). 

The function of caspase cascade is controlled by a group of cysteine proteases, called IAP 

(inhibitor of apoptosis), containing XIAP, IAP1, IAP2, survivin and livin. They bind and 

potently inhibit caspase-3, 7 and 9, stopping the cascade regardless of pathway of induction 

– intrinsic or extrinsic one (Deveraux & Reed, 1999). The activity of IAP family proteins may 

increase in response to stimulation by various antiapoptotic signals which serve as effectors 

of specific pathways. For example, one of antiapoptotic activities of Akt is mediated through 

XIAP, since Akt phosphorylates XIAP, making it more resistant to proteasome-mediated 

degradation (Dan et al., 2004). FLIP (FLICE-like inhibitory protein), existing in two variants: 

c-FLIPS and c-FLIPL, represents another control point of caspases activation. It contains  

a fragment interacting with death domain motif of FADD and simultaneously prevents 

activation of caspase-8 and 10, thus blocking Fas receptor signalling pathway and inhibiting 

programmed cell death (Irmler et al., 1997). However a physiological function of c-FLIPL is 

not fully explained, since recent reports suggested its role in activation of caspase-8 

(Boatright et al., 2004). 

CLL cells do not differ significantly from normal lymphocytes regarding to the expression of 
caspase family proteins. Nevertheless, as apoptosis inhibition is thought to be principal 
mechanism of malignant lymphocytes accumulation, so efforts to induce caspase-dependent 
programmed cell death are evident therapeutic direction. Indeed, caspase activation may be 
used as a surrogate biomarker of successful induction of apoptosis in leukemic cells by 
various chemotherapeutic drugs. A choice of caspase-3 activity assessment for this purpose 
is quite obvious, in view of central effector role of this protein in execution of death signals 
deriving from variety of pathways. Starting from the oldest drugs, chlorambucil is thought 
to induce expression of caspase-3 and apoptosis in CLL cells (Brajuskovic et al., 2004). The 
same phenomenon is observed for newer chemotherapeutics, like fludarabine (Stoetzer et 
al., 1999) and a monoclonal antibody anti-CD20 – rituximab (Byrd et al., 2002). 
Alemtuzumab, a monoclonal antibody anti-CD52, another immunochemotherapeutic agent 
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used in CLL treatment, was not reported to involve caspases pathway, but induces 
apoptosis through a non-classical, caspase-independent pathway (Mone et al., 2006). The 
latter mechanism may also represent another possible mode of action of rituximab 
(Stanglmaier et al., 2004). 

2.1.7 Caspase-independent programmed cell death 

More than ten years ago an observation was published that cells were capable to undergo 

apoptosis even when caspases expression was suppressed. This finding pointed out to the 

existence of caspase-independent mechanisms leading to a programmed cell death (Susin et 

al., 2000). However regardless of numerous studies, caspase-independent cell death still 

remains poorly understood. Currently apoptosis is classified into three subtypes. Type I, 

named “classical apoptosis”, is the best explored one and covers all processes triggering 

caspase cascade, therefore it is often called “caspase-dependent”. Each signalling pathway 

described earlier in this chapter belongs to type I of apoptosis. Type II of programmed cell 

death is related to increased permeability of mitochondrial membrane, analogically to 

intrinsic pathway of classical apoptosis activation (Kim et al., 2005). Proteins released from 

mitochondrial intermembrane space activate proapoptotic factors other than caspases, like 

calpains, cathepsins and other proteases (Constantinou et al., 2009). AIF (apoptosis inducing 

factor) is the best known among them, it is released from mitochondrion, then enters 

nucleus and initiates chromatin condensation and DNA fragmentation. Morphologically 

this type of apoptosis is characterized by large vacuolization of cytoplasm due to 

appearance of autophagosomes (Tait & Green, 2008). Type III of apoptosis is less explored; it 

resembles cellular necrosis and is defined strictly morphologically, with absence of visible 

nuclear chromatin condensation (Bras et al., 2007). 

There are only single reports concerning caspase-independent apoptosis observed in CLL 

lymphocytes. The mechanism reported so far is triggered by membrane glycoprotein CD47, 

thrombospondin-1-binding member of the immunoglobulin superfamily. Activation of 

CD47 by appropriate ligand leads to activation of serpases which afterwards damage 

cytoskeletal protein called F-actin. Improper function of F-actin results in cell shrinkage 

secondary to cytoskeletal damage, and in translocation of Drp1 (dynamin related protein-1) 

from cytosol to mitochondria, where it disrupts the electron transport chain, therefore 

lowering ATP levels (Barbier et al., 2009). As a result of described mechanisms, disturbances 

in cell architecture and mitochondrial function, but no pronounced chromatin condensation 

are detected in cells undergoing the caspase-independent apoptosis. CLL lymphocytes can 

undergo the caspase-independent programmed cell death even when the classical apoptosis 

is disrupted. It raises hope for discovering new agents able to overcome chemoresistancy to 

classical drugs. Further studies on that phenomenon are thus very promising from a clinical 

point of view. 

2.2 Membrane receptors 

All metazoan cells receive numerous external stimuli determining their fate depending on 
momentary requirements of physiological balance in the organism, keeping them alive, or 
pushing onto a path of a programmed death. These signals are transmitted into cells 
through a multitude of receptors, among which a superfamily of TNF (tumor necrosis 
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factor) receptor is one of the most important. Depending on structure and signalling 
properties, members of TNF receptors family are generally classified into three large groups 
(Dempsey et al., 2003). 

The first one contains: Fas receptor (FasR or CD95), TNF-ǂ receptor 1 (TNF-R1 or CD120a), 

death receptor 3 binding to TWEAK (DR3, TRAMP or LARD), death receptors 4 and 5 

binding to TRAIL (DR4 and DR5). All these proteins possess a characteristic death domain 

in their cytoplasmic tail. After activation of receptors by external ligands their death 

domains interact with corresponding transmitter proteins – FasR, DR4 and DR5 with  

Fas-associated death domain (FADD), while TNF-R1 and DR3 with TNFR-associated death 

domain (TRADD). In the next step the caspase cascade is triggered through a caspase-8 

activation and the cell undergoes apoptosis (Kischkel et al., 2000). 

The second group of TNF receptors superfamily contains: TNF-ǂ receptor 2 (TNF-R2 or 

CD120b), CD40, CD27, CD30, B-cell activating factor receptor (BAFFR), TACI and BCMA 

(receptors recognizing both: BAFF and APRIL – a proliferation inducing ligand), 

lymphotoxin-ǃ receptor (LT-ǃR or CD18), OX40 (CD134), TNF-ǂ receptor 2 related protein 

(TNFR2-RP or TNFRIII), receptor activator of NF-κB (RANK), receptor expressed in 

lymphoid tissues (RELT), herpes virus entry mediator (HVEM), and others, not detected on 

B lymphocytes, like LIGHT receptor (LIGHTR), TROY/Taj, p75 neurotrophin receptor 

(p75NGFR), ectodysplasin-A receptor (EDAR), fibroblast growth factor inducible 14 (Fn14), 

or glucocorticoid-induced tumor necrosis factor receptor (GITR) (Darnay et al., 1999). 

Cytoplasmic tails of these receptors contain various numbers of TIM (TRAF interacting 

motifs) – protein sequences reacting with members of TRAF family (TNF receptor-

associated factor). Activated TRAFs form expanded complexes with TNF receptors, IAPs 

and RIPs (the death domain kinase receptor interacting protein) mediating antiapoptotic 

signals through induction of numerous prosurvival pathways, like NF-κB, PI3K/Akt, JNK, 

ERK (extracellular signal regulated kinase) and others (Xie et al., 2008). Therefore activation 

of TNF family receptors of the second group induces inhibition of apoptosis, what brings us 

to an interesting conclusion, that TNF-ǂ can act in two ways – not only proapoptotically, 

through TNF-R1, but also antiapoptotically, through TNF-R2 (Ihnatko & Kubes, 2008). 

A class of proteins unable to transduce stimuli into intracellular signalling pathways forms 

the third group of TNF receptor family members. Decoy receptor 1 (DcR1 or TRAIL-R3), 

decoy receptor 2 (DcR2 or TRAIL-R4), decoy receptor 3 (DcR3) and TNF receptor 

superfamily members 22 and 23 (TNFRSF22 and TNFRSF23) belong to that group. They 

probably compete with other TNF receptors for their ligands, therefore impeding their 

activation and induction of intracellular signalling pathways (Falschlehner et al., 2007). 

Available data concerning aberrations of the TNF receptors superfamily expression and 
function in CLL lymphocytes are scanty, but some interesting observations were published. 
Fas receptor is distinctly downregulated on leukemic cells (Laytragoon-Lewin et al., 1998) 
and attempts of its upregulation by various factors in vitro are not as efficient as in normal B 
cells (De Fanis et al., 2003). Nevertheless, this is unlikely to be the cause of their resistance to 
Fas-mediated apoptosis, because eliciting high FasR expression on a surface of CLL 
lymphocytes does not restore their susceptibility to that way of a programmed cell death 
(Romano et al., 2005). Moreover it seems that the expression of FasR on leukemic cells does 
not have prognostic significance to clinical course of the disease (Hjalmar et al., 2002). CD40 
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is strongly expressed both on CLL cells and normal B lymphocytes, without significant 
difference between them. Activation of CD40 on leukemic cells by its specific ligand CD40L 
(otherwise called CD154) induces expression of proapoptotic FasR, but at the same time it 
strongly activates prosurvival NF-κB pathway. As a result, antiapoptotic effect of CD40 
activation prevails in CLL cells (von Bergwelt-Baildon et al., 2004). In addition it has been 
observed that ligation of CD40 reduces the efficacy of apoptosis induction by fludarabine in 
CLL lymphocytes in vitro (Romano et al., 1998). CD27 is considered as a marker of memory 
B cells and, when activated by CD70, it leads to plasma cell differentiation (Agematsu et al., 
2000). Its expression on a surface of CLL cells does not differ significantly from normal 
lymphocytes, but serum levels of soluble CD27 are higher in CLL patients than control 
healthy subjects and correlate with some unfavourable prognostic factors, like high 
lymphocyte count, advanced clinical stage or high serum levels of ǃ2-microglobulin (Molica 
et al., 1998). Antigen CD30 is typical of Hodgkin lymphoma and hairy cell leukemia variant, 
but in contrast to normal lymphocytes, it is also detectable at low density on CLL cells.  
TNF-R1 is expressed neither on malignant nor on normal B lymphocytes, while TNF-R2 is 
detected on both, although without significant differences between them (Trentin et al., 
1997). 

Not only TNF superfamily receptors regulate the survival of malignant lymphocytes. CD38 

is a glycoprotein mediating cell to cell interactions and acting as an adhesion molecule, with 

a reliable negative prognostic value for CLL patients. In vitro observations show that 

activation of CD38 by its ligand CD31 induces proliferation and differentiation of CLL cells 

and impairs their apoptosis by influence on the expression of numerous proteins of Bcl-2 

family, like Bax, Bim, Puma or Mcl-1 (Deaglio et al., 2010). Similar effect is exerted by CD100 

activation with plexin-B1. Since nurse-like cells from lymphoid tissue produce both ligands 

– CD31 and plexin B1, this phenomenon evidences the importance of environmental factors 

for CLL cells viability (Deaglio et al., 2005). 

2.3 Influence of chemokines on the survival of CLL cells 

Trafficking and homing of leukemic cells in a favourable microenvironment gives them an 

opportunity to benefit from a set of prosurvival factors secreted there. CXCL12, belonging to 

CXC chemokines and improving leukemic lymphocytes viability through induction of 

mitogen-activated protein kinases (MAPK or ERK 1/2) is one of them (Burger et al., 2000). 

However survival of CLL cells cultured in vitro together with nurse-like cells is significantly 

longer than those cultured only with a solution of CXCL12 (Burger et al., 2000), so it is 

supposed, that other substances produced by nurse-like cells influences the viability of 

malignant lymphocytes. Currently it is thought, that this role is played by two members of 

TNF superfamily: APRIL (a proliferation inducing ligand) and BAFF (B-cell activating factor 

of a TNF family), otherwise called BLyS (B lymphocyte stimulator). They are important 

survival and maturation factors of normal B lymphocytes (Mackay et al., 2003), probably 

influencing the expression of Bcl-2 family members (Craxton et al., 2005). After secretion by 

nurse-like cells, they support CLL cells survival in a paracrine manner, independently from 

CXCL12, through activation of NF-κB pathway, inhibiting both: spontaneous and drug-

induced apoptosis (Nishio et al., 2005). Moreover, neoplastic lymphocytes also express 

BAFF and APRIL, probably enhancing their own viability in an autocrine way (Kern et al., 

2004). 
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A number of studies conducted in vitro showed an influence of interleukins on  
a programmed cell death and survival of malignant CLL cells. Interleukin 1, nonspecific 
inflammatory mediator and lymphocytes activating factor, protects leukemic lymphocytes 
from apoptosis, spontaneous as well as induced by glucocorticosteroids (Jewell et al., 1995). 
Interleukin 2, the principal growth factor for T lymphocytes, inhibits the apoptosis of CLL cells 
by enhancing Mcl-1, Bcl-xL and survivin expression. Activated lymphocytes respond to this 
interleukin stronger then resting ones. Interestingly, at the same time interleukin 2 reduces the 
expression of Bcl-2, but global result of its activity on CLL lymphocytes remains prosurvival 
(Decker et al., 2010). Interleukin 4, produced by T helper cells, activates normal B lymphocytes 
and suppresses the apoptosis of leukemic cells through upregulation of Bcl-2 expression 
(Panayiotidis et al., 1993). Interleukin 5, a growth factor involved in hematopoiesis, which 
principal function is to stimulate the eosinophils maturation, increases spontaneous apoptosis 
rate of malignant lymphocytes in vitro in an unknown way, without influence on Bcl-2 
expression (Mainou-Fowler et al., 1994). Interleukin 6 is an important factor of growth and 
differentiation of B lymphocytes. It is thought to inhibit the programmed CLL cells death by 
increasing the Bcl-2 levels. Moreover, higher expression of interleukin 6 correlates with more 
advanced stage of the disease and higher serum concentration of ǃ2-microglobulin (Lai et al., 
2002). Physiological function of interleukin 8 is the induction of chemotaxis. In malignant 
lymphocytes it upregulates expression of Bcl-2, thus preventing their apoptosis. It is produced 
mainly by macrophages, but also CLL cells release it into the serum, thus exerting regulatory 
function on their own clone in an autocrine manner. Approximately a quarter of all CLL 
patients express abnormally high levels of interleukin 8, what correlates with a higher risk of 
the disease progression independently from an initial tumor burden (Molica et al., 1999). 
Interleukin 10 is overexpressed in malignant cells of some CLL patients and correlates with an 
aggressive course of the disease and short overall survival (Fayad et al., 2001). This probably 
results from its impact on neoplastic lymphocytes cell cycle, because inhibition of interleukin 
10 transcription leads to the enhanced apoptosis of the cells of a murine CLL model (Yen 
Chong et al., 2001). Interleukin 13, another cytokine involved in B lymphocytes activation, 
impedes leukemic cells apoptosis induced by interleukin 2 in vitro (Chaouchi et al., 1996). 
Interleukin 24 triggers apoptosis in CLL cells recruited to the cell cycle, by the inactivation of 
STAT3 kinase thus stabilizing expression of p53 (Sainz-Perez et al., 2008). 

3. Cell proliferation 

As mentioned at the beginning, CLL is traditionally considered as a result of inhibition of in 
vivo apoptosis. A wide variety of disturbances in CLL lymphocytes apoptosis was a subject 
of earlier sections of this chapter. There are numerous additional evidences supporting this 
opinion through demonstration of a weak proliferative potential of CLL cells. Low DNA 
content assessed by flow cytometry, low expression of Ki-67 and PCNA (proliferating cell 
nuclear antigen) – proteins associated with a nuclear proliferation, finally low rates of BrdU 
(bromodeoxyuridine) or 3H-thymidine incorporation – assays estimating the extent of DNA 
synthesis, are similar as in quiescent lymphocytes, what suggests arrest of leukemic cells in 
G0 phase of a cell cycle (Caligaris-Cappio & Hamblin, 1999). However there have been 
several studies published in recent years, supporting the hypothesis, that malignant clone of 
CLL comprises cells which are recruited to a proliferation cycle but arrested in its G1 phase 
(Damle et al., 2010), and that a small but significant fraction of all leukemic cells proliferates 
with measurable birth rates (Chiorazzi, 2007). 
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3.1 Proliferation centers 

Numerous studies showed that proliferation rate of CLL lymphocytes is not the same in 

each organ and compartment, but cells with higher birth rate accumulate in specific 

structures of a bone marrow and lymphatic nodes called pseudofollicles or proliferation 

centers, composed of lymphocytes, prolymphocytes and paraimmunoblasts of a neoplastic 

clone, with accompanying follicular dendritic cells, mesenchymal stromal cells and CD4-

positive T lymphocytes, where CLL cells have optimal microenvironmental conditions for 

growth and dividing (Caligaris-Cappio & Ghia, 2008). Malignant cells in those areas are 

characterized by a higher expression of Ki-67, CD71, CD38, MUM1/IRF-4 and coexpression 

of survivin and Bcl-2, factors typically associated with proliferation (Soma et al., 2006). 

Features of proliferation centers have a clear influence on the course of the disease. Patients 

with larger, confluent pseudofollicles estimated histopathologically in lymphatic nodes, 

with higher mitotic index and higher Ki-67 expression measured in these areas, more often 

suffer from the aggressive form of the disease and have significantly shorter overall survival 

(Gine et al., 2010). Furthermore it is suggested, that pseudofollicles accumulate CLL cells 

with genetic alterations (Balogh et al., 2011). Estimation of proliferation centers in bone 

marrow is possible rather in early stages of the disease, because in more advanced stages 

trephine biopsy often reveals diffuse pattern of a bone marrow infiltration, another well 

known negative prognostic factor in CLL, with faded structure of pseudofollicles (Mauro et 

al., 1994).  

3.2 Cell cycle regulatory proteins 

The important evidences in favour of CLL cells recruitment to a cell cycle were obtained 
from investigations concerning family of serine-threonine kinases called cyclin dependent 
kinases (cdk). Their appearance in cytosol and activation in precisely fixed phases of a cell-
division cycle by junction with regulatory subunits called cyclins is crucial for a proper 
course of DNA replication and mitosis. In the beginning of G1 phase cdk4 and cdk6 bind to 
cyclin D and phosphorylate the retinoblastoma protein (pRb), what activates transcription 
factors of E2F family and initiates transcription of proteins participating in DNA replication. 
Thereafter the association of cdk2 with cyclin E is fundamental for beginning of S phase 
(Sanchez & Dynlacht, 2005). It is reported, that significant number of malignant 
lymphocytes express several cyclins and cdks normally present in early G1 cell cycle phase. 
The increased levels of cdk4 and cyclin E were observed in CLL cells (Wołowiec et al., 1995; 
Korz et al., 2002) and higher expression of cdk4 was associated with presence of 17p or 11q 
deletions (Winkler et al., 2010). Aberrations of cellular content of cyclin D were also reported 
in leukemic lymphocytes. There are three known subtypes of this cyclin – D1, D2 and D3. 
Cyclin D3 is definitely overexpressed in CLL cells, what is confirmed by detection of its 
mRNA (Paul et al., 2005), as well as by the detection of its protein (Wołowiec et al., 2001). 
Studies concerning cyclin D2 are more discordant, with observations confirming the 
overexpression of the protein’s mRNA (Delmer et al., 1995) and denying it (Paul et al., 2005), 
while intracellular content of cyclin D2 is elevated comparing to normal B lymphocytes 
(Wołowiec et al., 2001). Even cyclin E, appearing later in G1 phase than cyclin D, is 
detectable in a significant subset of leukemic cells derived from peripheral blood (Decker et 
al., 2004) and from lymphatic nodes (Obermann et al., 2007). Expression of minichromosome 
maintenance protein 2 (Mcm-2) is a novel marker of cycling cells since this protein is 

www.intechopen.com



 
Dysregulation of Apoptosis and Proliferation in CLL Cells 

 

49 

detectable from the beginning of G1 phase, earlier than Ki-67 expression. A significant 
subpopulation of CLL lymphocytes are Mcm-2 positive and Ki-67 negative, what brings 
additional evidence for their arrest rather in early G1, than G0 cell cycle phase (Obermann et 
al., 2007). Protein p27Kip1 is an inhibitor of the majority of known cdk – cyclin complexes, 
thus regarded as an important antiproliferative factor. CLL cells were demonstrated to 
express it in higher quantity than normal B lymphocytes and some studies suggested the 
relationship between higher p27Kip1 expression and impaired in vitro apoptosis of leukemic 
cells, although mechanism of this protein antiapoptotic activity in these cells remained 
unknown (Vrhovac et al., 1998). Other observations carried out on early and intermediate 
stage patients did not confirm this connection, nevertheless they revealed negative 
prognostic significance of high p27Kip1 expression in CLL, contrary to the majority of non-
hematological malignancies (Wołowiec et al., 2009). 

3.3 Telomeres length and DNA synthesis in vivo 

Investigations concerning telomeres brought another rationale for proliferation activity of 

CLL cells. Physiologically DNA composes long, repetitive sequences at the end of every 

chromosome: these structures are named telomeres. Their function is to protect cells from 

loss of information-coding segments of DNA during replication, when erosion of a genetic 

material on chromosomes ends takes place. After replication, an enzyme called telomerase 

restores lost fragments of telomeres, but only partially, what leads to gradual shortening of 

telomeres as a part of physiological aging. Therefore telomerase activation and shortening in 

telomeres length calculated proportionally to age are helpful markers of a cell proliferation 

(O’Sullivan & Karlseder, 2010). CLL lymphocytes are characterized by shorter telomeres and 

higher telomerase activity than normal B lymphocytes, what indicates on a greater number 

of their divisions in the past (Damle et al., 2004). Additionally, shorter telomeres are 

associated with genetic aberrations of defavourable prognostic signification, mainly 

unmutated status of the immunoglobulin heavy chain variable gene (Roos et al., 2008), and 

correlate with shorter progression-free and overall survival of CLL patients (Sellmann et al., 

2011). These observations lead to a possible conclusion, that shorter lymphocyte doubling 

time – well known marker of the aggressive course of the disease – results from higher 

proliferation rate of neoplastic cells. 

Recently designed technique measuring incorporation of deuterium (2H) from heavy water 
(2H2O), or deuterated glucose into deoxyribose molecules allows to calculate DNA synthesis 
and proliferation rate of dividing cells in vivo with much higher sensitivity than classic 
methods like Ki-67 expression or 3H-thymidine incorporation (Busch et al., 2007). Used in 
CLL, this technique also revealed that malignant cells have measurable birth rates (Messmer 
et al., 2005), and that among whole population of CLL lymphocytes, those expressing CD38 
have significantly higher proliferation rate comparing to CD38-negative cells (Calissano et 
al., 2009). 

4. Summary and therapeutic implications 

Although more and more is known about numerous anomalies of CLL cells apoptosis and 
proliferation, our knowledge still remains incomplete. Decades of research proved the 
crucial role of these disturbances in the appearance and clinical course of the disease, raising 
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hope, that their pharmaceutical corrections may evoke normal apoptosis of malignant cells, 
thus restraining CLL progression. Indeed, a lot of molecules, which influence signalling 
pathways regulating programmed cell death, are currently investigated towards their 
usefulness in a treatment of the disease (Robak, 2010). Nevertheless, a tremendous 
heterogeneity of CLL clinical course suggests significant differences of apoptosis and 
proliferation anomalies among individual patients, so probably no universal drug, efficient 
in every case, should be expected. 

5. References 

Agematsu, K.; Hokibara, S.; Nagumo, H. & Komiyama, A. (2000). CD27: a memory N-cell 

marker. Immunology Today, Vol. 21, No. 5, (May 2000), pp. 204-206, ISSN 0167-5699. 

Agraval, S.; Liu, F.; Wiseman, C.; Shirali, S.; Liu, H.; Lillington, D.; Du, M.; Syndercombe-

Coutr, D.; Newland, A.; Gribben, J. & Jia, L. (2008). Increased proteosomal 

degradation of Bax is a common feature of poor prognosis chronic lymphocytic 

leukemia. Blood, Vol. 111, No. 5, (March 2008), pp. 2790-2796, ISSN 0006-4971. 

Aguilar-Santelises, M.; Rottenberg, M.; Lewin, N.; Mellstedt, H. & Jondal, M. (1996). Bcl-2, 

Bax and p53 expression in B-CLL in relation to in vitro survival and clinical 

progression. International Journal of Cancer, Vol. 62, No. 2, (April 1996), pp. 114-119, 

ISSN 0020-7136. 

Austen, B.; Powell, J.; Alvi, A.; Edwards, I.; Hooper, L.; Starczynski, J.; Taylor, M.; Fegan, C.; 

Moss, P. & Stankovic, T. (2005). Mutations in the ATM gene lead to impaired 

overall and treatment-free survival that is independent of IGVH mutation status in 

patients with B-CLL. Blood, Vol. 106, No. 9, (November 2005), pp. 3175-3182, ISSN 

0006-4971. 

Awan, F.; Kay, N.; Davis, M.; Wu, W.; Geyer, S.; Leung, N.; Jelinek, D.; Tschumper, R.; 

Secreto, C.; Lin, T.; Grever, M.; Shanafelt, T.; Zent, C.; Call, T.; Heerema, N.; 

Lozansky, G.; Byrd, J. & Lucas, D. (2009). Mcl-1 expresion predicts progression-free 

survival in chronic lymphocytic leukemia patients treated with pentostatin, 

cyclophosphamide, and rituximab. Blood, Vo. 113, No. 3, (January 2009), pp. 535-

537, ISSN 0006-4971. 

Balogh, Z.; Reiniger, L.; Rajnai, H.; Csomor, J.; Szepesi, A.; Balogh, A.; Deak, L.; Gagyi, E.; 

Bodor, C. & Matolcsy, A. (2011). High rate of neoplastic cells with genetic 

abnormalities in proliferation centers of chronic lymphocytic leukemia. Leukemia 

and Lymphoma, Vol. 52, No. 6, (June 2011), pp. 1080-1084, ISSN 1042-8194. 

Bannerji, R.; Kitada, S.; Flinn, I.; Pearson, M.; Young, D.; Reed, J. & Byrd, J. (2003). 

Apoptotic-Regulatory and Complement-Protecting Protein Expression in Chronic 

Lymphocytic Leukemia: Relationship to In Vivo Rituximab Resistance. Journal of 

Clinical Oncology, Vol. 21, No. 8, (April 2003), pp. 1466-1471, ISSN 0732-183X. 

Barbier, S.; Chatre, L.; Bras, M.; Sancho, P.; Roue, S.; Virely, C.; Yuste, V.; Baudet, S.; Rubio, 

M.; Esquerda, J.; Sarfati, M.; Merle-Beral, H. & Susin, S. (2009). Caspase-

independent type III programmed cell death in chronic lymphocytic leukemia: the 

key role of the F-actin cytoskeleton. Haematologica, Vol. 94, No. 4, (April 2009),  

pp. 507-517, ISSN 0390-6078. 

www.intechopen.com



 
Dysregulation of Apoptosis and Proliferation in CLL Cells 

 

51 

Boatright, K.; Deis, C.; Denault, J.; Sutherlin, D. & Salvesen, G. (2004). Activation of 

caspases-8 and -10 by FLIPL. Biochemical Journal, Vol. 382, No. 2, (September 2004), 

pp. 651-657, ISSN 0264-6021. 

Brajuskovic, G.; Vukosavic-Orolicki, S.; Cerovic, S.; Knezevic-Usaj, S.; Peric, P.; Marjanovic, 

S.; Dimitrijevic, J.; Romac, S. & Skaro-Milic, A. (2004). The expression of caspase 3 

in chronic lymphocytic leukemia. Archive of Oncology, Vol. 12, Suppl. 1, (May 2004), 

p. 65, ISSN 1450-9520. 

Bras, M.; Yuste, V.; Roue, G.; Barbier, S.; Sancho, P.; Virely, C.; Rubio, M.; Baudet, S.; 

Esquerda, J.; Merle-Beral, H.; Sarfati, M. & Susin, S. (2007). Drp1 Mediates Caspase-

Independent Type III Cell Death in Normal and Leukemic Cells. Molecular and 

Cellular Biology, Vol. 27, No. 20, (October 2007), pp. 7073-7088, ISSN 0270-7306. 

Broxmeyer, H.; Orschell, C.; Clapp, D.; Hangoc, G.; Cooper, S.; Plett, P.; Liles, W.; Li, X.; 

Graham-Evans, B.; Campbell, T.; Calandra, G.; Bridger, G.; Dale, D. & Srour, E. 

(2005). Rapid mobilization of murine and human hematopoietic stem and 

progenitor cells with AMD3100, a CXCR4 antagonist. Journal of Experimental 

Medicine, Vol. 201, No. 8, (April 2005), pp. 1307-1318, ISSN 0022-1007. 

Burger, J.; Tsukada, N.; Burger, M.; Zvaifler, N.; Dell’Aquila, M. & Kipps, T. (2000). Blood-

derived nurse-like cells protect chronic lymphocytic leukemia B cells from 

spontaneous apoptosis through stromal cell-derived factor-1. Blood, Vol. 96, No. 8, 

(October 2000), pp. 2655-2663, ISSN 0006-4971. 

Burger, J. & Kipps, T. (2006). CXCR4: a key receptor in the crosstalk between tumor cells and 

their microenvironment. Blood, Vol. 107, No. 5, (March 2006), pp. 1761-1767,  

ISSN 0006-4971. 

Burger, J.; Quiroga, M.; Hartmann, E.; Burkle, A.; Wierda, W.; Keating, M. & Rosenwald, A. 

(2009a). High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic 

lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. 

Blood, Vo. 113, No. 13, (March 2009), pp. 3050-3058, ISSN 0006-4971. 

Burger, J.; Ghia, P.; Rosenwald, A. & Calligaris-Cappio, F. (2009b). The microenvironment in 

mature B-cell malignancies: a target for new treatment strategies. Blood, Vol. 114, 

No. 16, (October 2009), pp. 3367-3375, ISSN 0006-4971. 

Burkle, A.; Niedermeier, M.; Schmitt-Graff, A.; Wierda, W.; Keating, M. & Burger, J. (2007). 

Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell 

chronic lymphocytic leukemia. Blood, Vol. 110, No. 9, (November 2007), pp. 2216-

3325, ISSN 0006-4971. 

Busch, R.; Neese, R.; Awada, M.; Hayes, G. & Hellerstein, M. (2007). Measurement of cell 

proliferation by heavy water labeling. Nature Protocols, Vol. 2, No. 12, (December 

2007), pp. 3045-3057, ISSN 1754-2189. 

Byrd, J.; Kitada, S.; Flinn, I.; Aron, J.; Pearson, M.; Lucas, D. & Reed, J. (2002). The 

mechanism of tumor clearance by rituximab in vivo in patients with B-cell chronic 

lymphicytic leukemia: evidence of caspase activation and apoptosis induction. 

Blood, Vol. 99, No. 3, (February 2002), pp. 1038-1043, ISSN 0006-4971. 

Caligaris-Cappio, F. & Hamblin, T. (1999). B-cell chronic lymphocytic leukemia: a bird of a 

different feather. Journal of Clinical Oncology, Vol. 17, No. 1, (January 1999), pp. 399-

408, ISSN 0732-183X. 

www.intechopen.com



 
Chronic Lymphocytic Leukemia 

 

52

Caligaris-Cappio, F. & Ghia, P. (2008). Novel Insights in Chronic Lymphocytic Leukemia: 

Are We Getting Closer to Understanding the Pathogenesis of the Disease? Journal of 

Clinical Oncology, Vol. 26, No. 27, (September 2008), pp. 4497-4503, ISSN 0732-183X. 

Calissano, C.; Damle, R.; Hayes, G.; Murphy, E.; Hellerstein, M.; Moreno, C.; Sison, C.; 

Kaufman, M.; Kolitz, J.; Allen, S.; Rai, K. & Chiorazzi, N. (2009). In vivo intraclonal 

and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood, 

Vol. 114; No. 23, (November 2009), pp. 4832-4842, ISSN 0006-4971. 

Catusse, J.; Leick, M.; Groch, M.; Clark, D.; Buchner, M.; Zirlik, K. & Burger, M. (2010). Role 

of the atypical chemoattractant receptor CRAM in regulating CCL19 induced CCR7 

responses in B-cell chronic lymphocytic leukemia. Molecular Cancer, Vol. 9, No. 297, 

(November 2010), pp. 1-12, ISSN 1476-4598. 

Chaouchi, N.; Wallon, C.; Goujard, C.; Tertian, G.; Rudent, A.; Caput, D.; Ferrera, P.; Minty, 

A.; Vazquez, A. & Delfraissy, J. (1996). Interleukin-13 Inhibits Interleukin-2-

Induced Proliferation and Protects Chronic Lymphocytic Leukemia B Cells From In 

Vitro Apoptosis. Blood, Vol. 87, No. 3 (February 1996), pp. 1022-1029. ISSN 0006-

4971. 

Chiorazzi N. (2007). Cell proliferation and death: forgotten features of chronic lymphocytic 

leukemia B cells. Best Practice & Research: Clinical Haematology, Vol. 20, No. 3, 

(September 2007), pp. 399-413, ISSN 1521-6926. 

Chipuk, J.; Kuwana, T.; Bouchier-Hayes, L.; Droin, N.; Newmeyer, D.; Schuler, M. & Green, 

D. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane 

permeabilisation and apoptosis. Science, Vol. 303, No. 5660, (February 2004),  

pp. 1010-1014, ISSN 0036-8075. 

Collins, R.; Verschuer, L.; Harmon, B.; Prentice, R.; Pope, J. & Kerr, J. (1989). Spontaneous 

programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following 

their culture in vitro. British Journal of Haematology, Vol. 71, No. 3, (March 1989),  

pp. 343-350, ISSN 0007-1048. 

Constantinou, C.; Papas, K. & Constantinou, A. (2009). Caspase-independent pathways of 

programmed cell death: the unraveling of new targets of cancer therapy? Current 

Cancer Drug Targets, Vol. 9, No. 6, (September 2009), pp. 717-728, ISSN 1568-0096. 

Craxton, A.; Draves, K.; Gruppi, A. & Clark, E. (2005). BAFF regulates B cell survival by 

downregulating the BH3-only family member Bim via the ERK pathway. Journal of 

Experimental Medicine, Vol. 202, No. 10, (November 2005), pp. 1363-1374, ISSN 0022-

1007. 

Cuni, S.; Perez-Aciego, P.; Perez-Chacon, G.; Vargas, J.; Sanchez, A.; Martin-Saavedra, F.; 

Ballester, S.; Garcia-Marco, J.; Jorda, J. & Durantez, A. (2004). A sustained activation 

of PI3K/NF-κB pathway is critical for the survival of chronic lymphocytic leukemia 

B cells. Leukemia, Vol. 18, No. 8, (August 2004), pp. 1391-1400, ISSN 0887-6924. 

Damle, R.; Batliwalla, F.; Ghiotto, F.; Valetto, A.; Albesiano, E.; Sison, C.; Allen, S.; Kolitz, J.; 

Vinciguerra, V.; Kudalkar, P.; Wasil, T.; Rai, K.; Ferrarini, M.; Gregersen, P. & 

Chiorazzi, N. (2004). Telomere length and telomerase activity delineate distinctive 

replicative features of the B-CLL subgroups defined by immunoglobulin V gene 

mutations. Blood, Vol. 103, No. 2, (January 2004), pp. 375-382, ISSN 0006-4971. 

www.intechopen.com



 
Dysregulation of Apoptosis and Proliferation in CLL Cells 

 

53 

Damle, R.; Calissano, C. & Chiorazzi, N. (2010). Chronic lymphocytic leukemia: a disease of 

activated monoclonal B cells. Best Practice & Research Clinical Haematology, Vol. 23, 

No. 1, (March 2010), pp. 33-45, ISSN 1521-6926. 

Dan, H.; Sun, M.; Kaneko, S.; Feldman, R.; Nicosia, S.; Wang, H.; Tsang, B. & Cheng, J. 

(2004). Akt Phosphorylation and Stabilization of X-linked Inhibitor of Apoptosis 

Protein (XIAP). Journal of Biological Chemistry, Vol. 279, No. 7, (February 2004),  

pp. 5405-5412, ISSN 0021-9258. 

Darnay, B.; Ni, J.; Moore, P. & Aggarwal, B. (1999). Activation of NF-κB by RANK Requires 

Tumor Necrosis Factor Receptor-associated Factor (TRAF) 6 and NF-κB-inducing 

Kinase. Journal of Biologic Chemistry, Vol. 274, No. 12, (March 1999), pp. 7724-7731, 

ISSN 0021-9258. 

Datta, S.; Brunet, A. & Greenberg, M. (1999). Cellular survival: a play in three Akts. Genes & 

Development, Vol. 13, No. 22, (November 1999), pp. 2905-2927, ISSN 0890-9369. 

Davis, R. (2000). Signal transduction by the JNK group of MAP kinases. Cell, Vol. 103, No. 2, 

(October 2000), pp. 239-252, ISSN 0092-8674. 

De Fanis, U.; Romano, C.; Dalla Mora, L.; Sellitto, A.; Guastafierro, S.; Tirelli, A.; Bresciano, 

E.; Giunta, R. & Lucivero, G. (2003). Differences in constitutive and activation-

induced expression of CD69 and CD95 between normal and chronic lymphocytic 

leukemia B cells. Oncology Reports, Vol. 10, No. 3, (May – June 2003), pp. 653-658, 

ISSN 1021-335X. 

Deaglio, S.; Vaisitti, T.; Bergui, L.; Bonello, L.; Horenstein, A.; Tamagnone, L.; Boumsell, L. & 

Malavasi, F. (2005). CD38 and CD100 lead a network of surface receptors relaying 

positive signals for B-CLL growth and survival. Blood, Vol. 105, No. 8, (April 2005), 

pp. 3042-3050, ISSN 0006-4971. 

Deaglio, S. & Malavasi, F. (2009). Chronic lymphocytic leukemia microenvironment: shifting 

the balance from apoptosis to proliferation. Haematologica, Vol. 94, No. 6, (June 

2009), pp. 752-756, ISSN 0390-6078. 

Deaglio, S.; Aydin, S.; Grand, M.; Vaisitti, T.; Bergui, L.; D’Arena, G.; Chiorino, G. & 

Malavasi, F. (2010). CD38/CD31 Interactions Activate Genetic Pathways Leading to 

Proliferation and Migration in Chronic Lymphocytic Leukemia Cells. Molecular 

Medicine, Vol. 16, No. 3-4, (March – April 2010), pp. 87-91, ISSN 1076-1551. 

Decker, T.; Schneller, F.; Hipp, S.; Miething, C.; Jahn, T.; Duyster, J. & Peschel, C. (2002). Cell 

cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, 

cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27. Leukemia,  

Vol. 16, No. 3, (March 2002), pp. 327-334, ISSN 0887-6924. 

Decker, T.; Hipp, S.; Hahntow, I.; Schneller, F. & Peschel, C. (2004). Expression of cyclin E in 

resting and activated B-chronic lymphocytic leukaemia cells: cyclin E/cdk2 as  

a potential therapeutic target. British Journal of Haematology, Vol. 125; No. 2, (April 

2004), pp. 141-148, ISSN 0007-1048. 

Decker, T.; Bogner, C.; Oelsner, M.; Peschel, C. & Ringshausen, I. (2010). Antiapoptotic effect 

of interleukin-2 (IL-2) in B-CLL cells with low and high affinity IL-2 receptors. 

Annals of Hematology, Vol. 89, No. 11, (November 2010), pp. 1125-1132, ISSN 0939-

5555. 

www.intechopen.com



 
Chronic Lymphocytic Leukemia 

 

54

Delmer, A.; Ajchenbaum-Cymbalista, F.; Tang, R.; Ramond, S.; Faussat, A.; Marie, J. & 

Zittoun, R. (1995). Overexpression of Cyclin D2 in Chronic B-Cell Malignancies. 

Blood, Vol. 85, No. 10, (May 1995), pp. 2870-2876, ISSN 0006-4971. 

Dempsey, P.; Doyle, S.; He, J. & Cheng, G. (2003). The signalling adaptors and pathways 

activated by TNF superfamily. Cytokine & Growth Factor Reviews, Vol. 14, No. 3-4, 

(June-August 2003), pp. 193-209, ISSN 1359-6101. 

Deveraux, Q. & Reed, J. (1999). IAP family proteins – suppressors of apoptosis. Genes & 

Development, Vol. 13, No. 3, (February 1999), pp. 239-252, ISSN 0890-9369. 

Dohner, H.; Stilgenbauer, S.; Benner, A.; Leupolt, E.; Krober, A.; Bullinger, L.; Dohner, K.; 

Bentz, M. & Lichter, P. (2000). Genomic aberrations and survival in chronic 

lymphocytic leukemia. New England Journal of Medicine, Vol. 343, No. 26, (December 

2000), pp. 1910-1916, ISSN 0028-4793. 

Faderl, S.; Keating, M.; Do, K.; Liang, S.; Kantarijan, H.; O’Brien, S.; Garcia-Manero, G.; 

Manshouri, T. & Albitar, M. (2002). Expression profile of 11 proteins and their 

prognostic significance in patients with chronic lymphocytic leukemia (CLL). 

Leukemia, Vol. 16, No. 6, (June 2002), pp. 1045-1052, ISSN 0887-6924. 

Falschlehner, C.; Emmerich, C.; Gerlach, B. & Walczak, H. (2007). TRAIL signalling: 

decisions between life and death. International Journal of Biochemistry & Cell Biology, 

Vol. 39, No. 7-8, (July-August 2007), pp. 1462-1475, ISSN 1357-2725. 

Fan, Y.; Dutta, J.; Gupta, N.; Fan, G. & Gelinas, C. (2008). Regulation of programmed cell 

death by NF-kappaB and its role in tumorigenesis and therapy, In: Programmed Cell 

Death in Cancer Progression and Therapy, R. Khosravi-Far & E. White (Ed.), Vol. 615, 

pp. 223-250, Springer, ISBN 978-1-4020-6553-8, New York, NY, USA. 

Fayad, L.; Keating, M.; Reuben, J.; O’Brien, S.; Lee, B.; Lerner, S. & Kurzrock, r. (2001). 

Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation 

with phenotypic characteristics and outcome. Blood, Vol. 97, No. 1, (January 2001), 

pp. 256-263, ISSN 0006-4971. 

Furman, R.; Asgary, Z.; Mascarenhas, J.; Liou, H. & Schattner, E. (2000). Modulation of NF-

κB Activity and Apoptosis in Chronic Lymphocytic Leukemia B Cells. Journal of 

Immunology, Vol. 164, No. 4, (February 2000), pp. 2200-2206, ISSN 0022-1767. 

Gattei, V.; Bulian, P.; Del Principe, M.; Zuchetto, A.; Maurillo, L.; Buccisano, F.; Bomben, R.; 

Dal-Bo, M.; Luciano, F.; Rossi, F.; Degan, M.; Amadori, S. & Del Poeta, G. (2008). 

Relevance of CD49d protein expression as overall survival and progressive disease 

prognosticator in chronic lymphocytic leukemia. Blood, Vol. 111, No. 2, (January 

2008), pp. 865-873, ISSN 0006-4971. 

Ghia, P.; Strola, G.; Granziero, L.; Geuna, M.; Guida, G.; Sallusto, F.; Ruffing, N.; Montagna, 

L.; Piccoli, P.; Chilosi, M. & Caligaris-Caprio, F. (2002). Chronic lymphocytic 

leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by 

producing CCL22. European Journal of Immunology, Vol. 32, No. 5, (May 2002),  

pp. 1403-1413, ISSN 0014-2980. 

Ghia, P.; Chiorazzi, N. & Stamatopoulos, K. (2008). Microenvironment influences in chronic 

lymphocytic leukemia: the role of antigen stimulation. Journal of Internal Medicine, 

Vol. 264, No. 6, (December 2008), pp. 549-562, ISSN 1365-2796. 

www.intechopen.com



 
Dysregulation of Apoptosis and Proliferation in CLL Cells 

 

55 

Ghobrial, I.; Bone, N.; Stenson, M.; Novak, A.; Hedin, K.; Kay, N. & Ansell, S. (2004). 

Expression of the Chemokine Receptors CXCR4 and CCR7 and Disease Progression 

in B-Cell Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Mayo 

Clinic Proceedings, Vol. 79, No. 3, (March 2004), pp. 318-325, ISSN 0025-6196. 

Ghosh, A.; Secreto, C.; Knox, T.; Ding, W.; Mukhopadhyay, D. & Kay, N. (2010). Circulating 

microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal 

cells: implications for disease progression. Blood, Vol. 115, No. 9, (March 2010),  

pp. 1755-1764, ISSN 0006-4971. 

Gine, E.; Martinez, A.; Villamor, N.; Lopez-Guillermo, A.; Camos, M.; Martinez, D.; Esteve, 

J.; Calvo, X.; Muntanola, A.; Abrisqueta, P.; Rozman, M.; Rozman, C.; Bosch, F.; 

Campo, E. & Montserrat, E. (2010). Expanded and highly active proliferation 

centers identify a histological subtype of chronic lymphocytic leukemia 

(“accelerated” chronic lymphocytic leukemia) with aggressive clinical behavior. 

Haematologica, Vol. 95, No. 9, (September 2010), pp. 1526-1533, ISSN 0390-6078. 

Hanada, M.; Delia, D.; Aiello, A.; Stadtmauer, E. & Reed, J.C. (1993). bcl-2 Gene 

Hypomethylation and High-Level Expression in B-Cell Chronic Lymphocytic 

Leukemia. Blood, Vol. 82, No. 6, (September 1993), pp. 1820-1828, ISSN 0006-4971. 

Hewamana, S.; Alghazal, S.; Lin, T.; Clement, M.; Jenkins, C.; Guzman, M.; Jordan, C.; 

Neelakantan, S.; Crooks, P.; Burnett, A.; Pratt, G.; Fegan, C.; Rowntree, C.; Brennan, 

P. & Pepper, C. (2008). The NF-κB subunit Rel A is associated with in vitro survival 

and clinical disease progression in chronic lymphocytic leukemia and represents  

a promising therapeutic target. Blood, Vol. 111, No. 9, (May 2008), pp. 4681-4689, 

ISSN 0006-4971. 

Hjalmar, V.; Hast, R. & Kimby, E. (2002). Cell surface expression of CD25, CD54, and CD95 

on B- and T-cells in chronic lymphocytic leukemia in relation to trisomy 12, atypical 

morphology and clinical course. European Journal of Haematology, Vol. 68, No. 3, 

(March 2002), pp. 127-134, ISSN 0902-4441. 

Ihnatko, R. & Kubes, M. (2007). THF signaling: early events and phosphorylation. General 

Physiology and Biophysics, Vol. 26, No. 3, (September 2007), pp. 159-167, ISSN 0231-

5882. 

Irmler, M.; Thome, M.; Hahne, M.; Schneider, P.; Hofmann, K.; Steiner, V.; Bodmer, J.; 

Schroter, M.; Burns, K.; Mattmann, C.; Rimoldi, D.; French, L. & Tschopp, J. (1997). 

Inhibition of death receptor signals by cellular FLIP. Nature, Vol. 388, No. 6638, 

(July 1997), pp. 190-195, ISSN 0028-0836. 

Jewell, A.; Lydyard, P.; Worman, C.; Giles, F. & Goldstone, A. (1995). Growth factors can 

protect B-chronic lymphocytic leukaemia cells against programmed cell death 

without stimulating proliferation. Leukemia and Lymphoma, Vol. 18, No. 1-2, (June 

1995), pp. 159-162, ISSN 1042-8194. 

Johnson, G.; Sherrington, P.; Carter, A.; Lin, K.; Liloglou, T.; Field, J. & Pettitt, A. (2009). A 

Novel Type of p53 Pathway Dysfunction in Chronic Lymphocytic Leukemia 

Resulting from Two Interacting Single Nucleotide Polymorphism within the p21 

Gene. Cancer Research, Vol. 69, No. 12, (June 2009), pp. 5210-5217, ISSN 0008-5472. 

Kern, C.; Cornuel, J.; Billard, C.; Tang, R.; Rouillard, D.; Stenou, V.; Defrance, T.; 

Ajchenbaum-Cymbalista, F.; Simonin, P.; Feldblum, S. & Kolb, J. (2004). 

www.intechopen.com



 
Chronic Lymphocytic Leukemia 

 

56

Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through 

an autocrine pathway. Blood, Vol. 103, No. 2, (January 2004), pp. 679-688, ISSN 

0006-4971. 

Kim, R.; Emi, M. & Tanabe, K. (2005). Caspase-dependent and –independent cell death 

pathways after DNA damage (Review). Oncology Reports, Vol. 14, No. 3, (September 

2005), pp. 595-599, ISSN 1021-335X. 

Kischkel, F.; Lawrence, D.; Chuntharapai, A.; Schow, P.; Kim, K. & Ashkenazi, A. (2000). 

Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to 

death receptors 4 and 5. Immunity, Vol. 12, No. 6, (June 2000), pp. 611-620, ISSN 

1074-7613. 

Kitada, S.; Andersen, J.; Akar, S.; Zapata, J.; Takayama, S.; Krajewski, S.; Wang, H.; Zhang, 

X.; Bullrich, F.; Croce, C.; Rai, K.; Hines, J. & Reed, J. (1998). Expression of 

Apoptosis-Regulating Proteins in Chronic Lymphocytic Leukemia: Correlations 

With In Vitro and In Vivo Chemoresposes. Blood, Vol. 91, No. 9, (May 1998),  

pp. 3379-3389, ISSN 0006-4971. 

Korz, C.; Pscherer, A.; Benner, A.; Mertens, D.; Schaffner, C.; Leupolt, E.; Dohner, H.; 

Stilgenbauer, S. & Lichter, P. (2002). Evidence for distinct pathomechanisms in  

B-cell chronic lymphocytic leukemia and mantle cell lymphoma by quantitative 

expression analysis of cell cycle and apoptosis-associates genes. Blood, Vol. 99,  

No. 12, (June 2002), pp. 4554-4561, ISSN 0006-4971. 

Lai, R.; O’Brien, S.; Maushouri, T.; Rogers, A.; Kantarjian, H.; Keating, M. & Albitar, M. 

(2002). Prognostic value of plasma interleukin-6 levels in patients with chronic 

lymphocytic leukemia. Cancer, Vol. 95, No. 5, (September 2002), pp. 1071-1075,  

ISSN 1476-4598. 

Laytragoon-Lewin, N.; Duhony, E., Bai, X. & Mellstedt, H. (1998). Downregulation of the 

CD95 receptor and defect CD40-mediated signal transduction in B-chronic 

lymphocytic leukemia cells. European Journal of Haematology, Vol. 61, No. 4, 

(October 1998), pp. 266-271, ISSN 0902-4441. 

Lin, A. (2003). Activation of the JNK signaling pathway: breaking brake on apoptosis. 

BioEssays, Vol. 25, No. 1, (January 2003), pp. 17-24, ISSN 0265-9247. 

Liu, F.; Giustiniani, J.; Farren, T.; Jia, L.; Bensussan, A.; Gribben, J. & Agrawal, S. (2010). 

CD160 signaling mediates PI3K-dependent survival and growth signals in chronic 

lymphocytic leukemia. Blood, Vol. 115, No. 15, (April 2010), pp. 3079-3088,  

ISSN 0006-4971. 

Liu, J. & Lin, A. (2005). Role of JNK activation in apoptosis: A double-edged sword. Cell 

Research, Vol. 15, No. 1, (January 2005), pp. 36-42, ISSN 1001-0602. 

Logue, S. & Martin, S. (2008). Caspase activation cascades in apoptosis. Biochemical Society 

Transactions, Vol. 36, No. 1 (February 2008), pp. 1-9, ISSN 0300-5127. 

Longo, P.; Laurenti, L.; Gobessi, S.; Sica, S.; Leone, G. & Efremov, D. (2008). The Akt/Mcl-1 

pathway plays a prominent role in mediating antiapoptotic signals downstream of 

the B-cell receptor in chronic lymphocytic leukemia B cells. Blood, Vol. 111, No. 2, 

(January 2008), pp. 846-855, ISSN 0006-4971. 

www.intechopen.com



 
Dysregulation of Apoptosis and Proliferation in CLL Cells 

 

57 

Mackay, F.; Schneider, P.; Rennert, P. & Browning, J. (2003). BAFF AND APRIL: A Tutorial 

on B Cell Survival. Annual Review of Immunology, Vol. 21, No. 1, (April 2003), pp. 

231-264, ISSN 0732-0582. 

Mackus, W.; Kater, A.; Grummels, A.; Evers, L.; Hooijbrink, B.; Kramer, M.; Castro, J.; Kipps, 

T.; van Lier, R.; van Oers, M. & Eldering, E. (2005). Chronic lymphocytic leukemia 

cells display p53-dependent drug-induced Puma upregulation. Leukemia, Vol. 19, 

No. 3, (March 2005), pp. 427-434, ISSN 0887-6924. 

Mainou-Fowler, T.; Craig, V.; Copplestone, J.; Hamon, D. & Prentice, A. (1994). Interleukin-5 

(IL-5) Increases Spontaneous Apoptosis of B-Cell Chronic Lymphocytic Leukemia 

Cells In Vitro Independently of bcl-2 Expression, and Is Inhibited by IL-4. Blood, 

Vol. 84, No. 7, (October 1994), pp. 2297-2304, ISSN 0006-4971. 

Mauro, F.; De Rossi, G.; Burgio, V.; Caruso, R.; Giannarelli, D.; Monarca, B.; Romani, C.; 

Baroni, C. & Mandelli, F. (1994). Prognostic value of bone marrow histology in 

chronic lymphocytic leukaemia. A study of 335 untreated cases from a single 

institution. Haematologica, Vol. 79, No. 4, (July-August 1994), pp. 334-341, ISSN 

0390-6078. 

Messmer, B.; Messmer, D.; Allen, S.; Kolitz, J.; Kudalkar, P.; Cesar, D.; Murphy, E.; Koduru, 

P.; Ferrarini, M.; Zupo, S.; Cutrona, G.; Damle, R.; Wasil, T.; Rai, K.; Hellerstein, M. 

& Chiorazzi, N. (2005). In vivo measurements document the dynamic cellular 

kinetics of chronic lymphocytic leukemia B cells. Journal of Clinical Investigation,  

Vol. 115, No. 3, (March 2005), pp. 755-764, ISSN 0021-9738. 

Molica, S.; Vitelli, G.; Levato, D.; Crispino, G.; Dell’Olio, M.; Dattilo, A.; Matera, R.; 

Gandolfo, G. & Musto, P. (1998). CD27 in B-cell chronic lymphocytic leukemia. 

Cellular expression, serum release and correlation with other soluble molecules 

belonging to nerve factor receptors (NGFr) superfamily. Haematologica, Vol. 83,  

No. 5, (May 1998), pp. 398-402, ISSN 0390-6078. 

Molica, S.; Dattilo, A.; Giulino, C.; Levato, D. & Levato, L. Increased bcl-2/bax ratio in B-cell 

chronic lymphocytic leukemia is associated with a progressive pattern of disease. 

Haematologica, Vol. 83, No. 12, (December 1998), pp. 1122-1124, ISSN 0390-6078. 

Molica, S.; Vitelli, G.; Levato, D.; Levato, L.; Dattilo, A. & Gandolfo, G. (1999). Clinico-

biological implications on increased serum levels of interleukin-8 in B-cell chronic 

lymphocytic leukemia. Haematologica, Vol. 84, No. 3, (March 1999), pp. 208-211, 

ISSN 0390-6078. 

Mone, A.; Cheney, C.; Banks, A.; Tridandapani, S.; Mehter, N.; Guster, S.; Lin, T.; Eisenbeis, 

C, Young, D & Byrd, J. (2006). Alemtuzumab induces caspase-independent cell 

death in human chronic lymphocytic leukemia cells through a lipid draft-

dependent mechanism. Leukemia, Vol. 20, No. 2, (February 2006), pp. 272-279,  

ISSN 0887-6924. 

Munk-Pedersen, I. & Reed, J. (2004). Microenvironmental interactions and survival of CLL 

B-cells. Leukemia and Lymphoma, Vol. 45, No. 12, (December 2004), pp. 2365-2372, 

ISSN 1042-8194. 

Nishio, M.; Endo, T.; Tsukada, N.; Ohata, J.; Kitada, S.; Reed, J.; Zvaifler, N. & Kipps, T. 

(2005). Nurselike cells express BAFF and APRIL, which can promote survival of 

www.intechopen.com



 
Chronic Lymphocytic Leukemia 

 

58

chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of 

SDF-1ǂ. Blood, Vol. 106, No. 3 (August 2005), pp. 1012-1020, ISSN 0006-4971. 

Obermann, E.; Went, P.; Tzankov, A.; Pileri, S.; Hofstaedter, F.; Marienhagen, J.; Stoehr, R. & 

Dirnhofer, S. (2007). Cell cycle phase distribution analysis in chronic lymphocytic 

leukaemia: a significant number of cells reside in early G1-phase. Journal of Clinical 

Pathology, Vol. 60, No. 7, (July 2007), pp. 794-797, ISSN 0021-9746. 

Ocana, E.; Delgado-Perez, L.; Campos-Caro, A.; Munoz, J.; Paz, A.; Franco, R. & Brieva, J. 

(2007). The prognostic role of CXCR3 expression by chronic lymphocytic leukemia 

B cells. Haematologica, Vol. 92, No. 3, (March 2007), pp. 349-356, ISSN 0390-6078. 

O’Sullivan, R. & Karlseder, J. (2010). Telomeres: protecting chromosomes against genome 

instability. Nature Reviews Molecular Cell Biology, Vol. 11, No. 3, (March 2010),  

pp. 171-181, ISSN 1471-0072. 

Packham, G. & Stevenson, F. (2005). Bodyguards and assassins: Bcl-2 family proteins and 

apoptosis control in chronic lymphocytic leukaemia. Immunology, Vol. 114, No. 4, 

(April 2005), pp. 441-449, ISSN 0019-2805. 

Panayiotidis, P.; Ganeshaguru, K.; Jabbars, A. & Hoffbrand, V. (1993). Interleukin 4 inhibits 

apoptotic cell death and loss of the bcl 2 protein in B-chronic lymphocytic 

leukaemia cells in vitro. British Journal of Haematology, Vol. 85, No. 3, (November 

1993), pp. 439-445, ISSN 0007-1048. 

Paul, J.; Henson, E.; Mai, S.; Muchinski, F.; Cheang, M.; Gibson, S. & Johnston, J. (2005). 

Cyclin D expresion in chronic lymphocytic leukemia. Leukemia and Lymphoma,  

Vol. 46, No. 9, (September 2005), pp. 1275-1285, ISSN 1042-8194. 

Pedersen, I.; Kitada, S.; Leoni, L.; Zapata, J.; Karras, J.; Tsukada, N.; Kipps, T.; Choi, Y.; 

Bennett, F. & Reed, J. (2002). Protection of CLL B cells by a follicular dendritic cell 

line is dependent on induction of Mcl-1. Blood, Vol. 100, No. 5, (September 2002), 

pp. 1795-1801, ISSN 0006-4971. 

Pepper, C.; Lin, T.; Pratt, G.; Hewamana, S.; Brennan, P.; Hiller, L.; Hills, R.; Ward, R.; 

Starczynski, J.; Austen, B.; Hooper, L.; Stankovic, T. & Fegan, C. (2008). Mcl-1 

expression has in vitro and in vivo significance in chronic lymphocytic leukemia 

and is associated with other poor prognostic markers. Blood, Vol. 112, No. 9, 

(November 2008), pp. 3807-3817, ISSN 0006-4971. 

Petlickovski, A.; Laurenti, L.; Li, X.; Marietti, S.; Chiusolo, P.; Sica, S.; Leone, G. & Efremov, 

D. (2005). Sustained signaling through the B-cell receptor induces Mcl-1 and 

promotes survival of chronic lymphocytic leukemia B cells. Blood, Vol. 105, No. 12, 

(June 2005), pp. 4820-4827, ISSN 0006-4971. 

Podhorecka, M.; Halicka, D.; Klimek, P.; Kowal, M.; Chocholska, S. & Dmoszyńska, A. 

(2011). Resveratrol increases rate of apoptosis caused by purine analogues in 

malignant lymphocytes of chronic lymphocytic leukemia. Annals of Hematology, 

Vol. 90, No. 2, (February 2011), pp. 173-183, ISSN 0939-5555. 

Riedl, S. & Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. 

Nature Reviews Molecular Cell Biology, Vol. 5, No. 11 (November 2004), pp. 897-907, 

ISSN 1471-0072. 

www.intechopen.com



 
Dysregulation of Apoptosis and Proliferation in CLL Cells 

 

59 

Robak, T. (2010). Application of New Drugs in Chronic Lymphocytic Leukemia. 

Mediterranean Journal of Hematology and Infectious Diseases, Vol. 2, No. 2, (May 2010), 

e2010011, ISSN 2035-3006. 

Robertson, L.; Plunkett, W.; McConnell, K.; Keating, M. & McDonnell, T. (1996). Bcl-2 

expression in chronic lymphocytic leukemia and Its correlation with the induction 

of apoptosis and clinical outcome. Leukemia, Vol. 10, No. 3, (March 1996), pp. 456-

459, ISSN 0887-6924. 

Romano, C.; De Fanis, U.; Sellitto, A.; Chiurazzi, F.; Guastafierro, S.; Giunta, R.; Tirelli, A.; 

Rotoli, B. & Lucivero, G. (2005). Induction of CD95 upregulation does not render 

chronic lymphocytic leukemia B-cells susceptible to CD95-mediated apoptosis. 

Immunology letters, Vol. 97, No. 1, (February 2005), pp. 131-139, ISSN 0165-2478. 

Romano, M.; Lamberti, A.; Tassone, P.; Alfinito, F.; Constantini, S.; Chiurazzi, F.; Defrance, 

T.; Bonelli, P.; Turco, M. & Venuta, S. (1998). Triggering of CD40 antigen inhibits 

fludarabine-induced apoptosis in B chronic lymphocytic leukemia cells. Blood,  

Vol. 92, No. 3, (August 1998), pp. 990-995, ISSN 0006-4971. 

Roos, G.; Krober, A.; Grabowski, P.; Kienle, D.; Buhler, A.; Dohner, H.; Rosenquist, R. & 

Stilgenbauer, S. (2008). Short telomeres are associated with genetic complexity, 

high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia. 

Blood, Vol. 111, No. 4, (February 2008), pp. 2246-2252, ISSN 0006-4971. 

Rossi, D.; Cerri, M.; Deambrogi, C.; Sozzi, E.; Cresta, S.; Rasi, S.; De Paoli, L.; Spina, V.; 

Gattei, V.; Capello, D.; Forconi, F.; Lauria, F. & Gaidano, G. (2009). The prognostic 

value of TP53 mutations in chronic lymphocytic leukemia is independent of 

Del17p13: implications for overall survival and chemorefractoriness. Clinical Cancer 

Research, Vol. 15, No. 3, (February 2009), pp. 995-1004, ISSN 1078-0432. 

Sainz-Perez, A.; Gary-Gouy, H.; Gaudin, F.; Maarof, G.; Marfaing-Koka, A.; de Revel, T. & 

Dalloul, A. (2008). IL-24 induces apoptosis of chronic lymphocytic leukemia B cells 

engaged into the cell cycle through dephosphorylation of STAT3 and stabilization 

of p53 expression. Journal of Immunology, Vol. 181, No. 9, (November 2008),  

pp. 6051-6060, ISSN 0022-1767. 

Sanchez, I. & Dynlacht, B. (2005). New insights into cyclins, CDKs, and cell cycle control. 

Seminars in Cell & Developmental Biology, Vol. 16, No. 3, (June 2005), pp. 31-321,  

ISSN 1084-9521. 

Sellmann, L.; de Beer, D.; Bartels, M.; Opalka, B.; Nuckel, H.; Duhrsen, U.; Durig, J.; Seifert, 

M.; Siemer, D.; Kuppers, R.; Baerlocher, G. & Roth, A. (2011). Telomeres and 

prognosis in patients with chronic lymphocytic leukaemia. International Journal of 

Hematology, Vol. 93, No. 1, (January 2011), pp. 74-82, ISSN 0925-5710. 

Sivina, M.; Hartmann, E.; Kipps, T.; Rassenti, L.; Krupnik, D.; Lerner, S.; LaPushin, R.; Xiao, 

L.; Huang, X.; Werner, L.; Neuberg, D.; Kantarjian, H.; O’Brien, S.; Wierda, W.; 

Keating, M.; Rosenwald, A. & Burger, J. (2011). CCL3 (MIP-1ǂ) plasma levels and 

the risk for disease progression in chronic lymphocytic leukemia. Blood, Vol. 117, 

No. 5, (February 2011), pp. 1662-1669, ISSN 0006-4971. 

Smit, L.; Hallaert, D.; Spijker, R.; de Goeij, B.; Jaspers, A.; Kater, A.; van Oers, M.; van 

Noesel, C. & Eldering, E. (2007). Differential Noxa/Mcl-1 balance in peripheral 

www.intechopen.com



 
Chronic Lymphocytic Leukemia 

 

60

versus lymph node chronic lymphocytic leukemia cells correlates with survival 

capacity. Blood, Vol. 109, No. 4, (February 2007), pp. 1660-1668, ISSN 0006-4971. 

Soma, L.; Craig, F. & Swerdlow, S. (2006). the proliferation centre microenvironment and 

prognostic markers in chronic lymphocytic leukemia/small lymphocytic 

lymphoma. Human Pathology, Vol. 37, No. 2, (February 2006), pp. 152-159,  

ISSN 0046-8177. 

Stanglmaier, M.; Reis, S. & Hallek, M. (2004). Rituximab and alemtuzumab induce  

a nonclassic, caspase-independent spoptotic pathway in B-lymphoid cell lines and 

in chronic lymphocytic leukemia cells. Annals of Hematology, Vol. 83, No. 10, 

(October 2004), pp. 634-645, ISSN 0939-5555. 

Steele, A.; Prentice, A.; Hoffbrand, A.; Yogashangary, B.; Hart, S.; Nacheva, E.; Howard-

Reeves, J.; Duke, V.; Kottaridis, P.; Cwynarski, K.; Vassilev, L. & Wickremasinghe, 

R. (2008). p53-mediated apoptosis of CLL cells: evidence for a transcription-

independent mechanism. Blood, Vol. 112, No. 9, (November 2008), pp. 3827-3834, 

ISSN 0006-4971. 

Stoetzer, O.; Pogrebniak, A.; Scholz, M.; Pelka-Fleischer, R.; Gullis, E.; Darsow, M.; Nussler, 

V. & Wilmanns, W. (1999). Drug-induced apoptosis in chronic lymphocytic 

leukemia. Leukemia, Vol. 13, No. 11, (November 1999), pp. 1873-1880, ISSN 0887-

6924. 

Susin, S.; Daugas, E.; Ravagnan, L.; Samejima, K.; Zamzami, N.; Loeffler, M.; Constantini, P.; 

Ferri, K.; Irinopoulou, T.; Prevost, M.; Brothers, G.; Mak, T.; Penninger, J.; 

Earnshaw, W. & Kroemer, G. (2000). Two Distinct Pathways Leading to Nuclear 

Apoptosis. Journal of Experimental Medicine, Vol. 192, No. 4, (August 2000), pp. 571-

580, ISSN 0022-1007. 

Tait, S. & Green, D. 2008. Caspase independent cell death: leaving the set without the final 

cut. Oncogene, Vol. 27, No. 50, (October 2008), pp. 6452-6461, ISSN 0950-9232. 

Thomas, A.; Pepper, C.; Hoy, T. & Bentley, P. (2000). Bcl-2 and bax expression and 

chlorambucil-induced apoptosis in the T-cells and leukaemic B-cells of untreated  

B-cell chronic lymphocytic leukaemia patients. Leukemia Research, Vol. 24, No. 10, 

(October 2000), pp. 813-821, ISSN 0145-2126. 

Till, K.; Lin, K.; Zuzel, M. & Cawley, J. (2002). the chemokine receptor CCR7 and ǂ4 integrin 

are important for migration of chronic lymphocytic leukemia cells into lymph 

nodes. Blood, Vol. 99, No. 8, (April 2002), pp. 2977-2984, ISSN 0006-4971. 

Trentin, L.; Zambello, R.; Sancetta, R.; Facco, M.; Carutti, A.; Perin, A.; Siviero, M.; Basso, U.; 

Bortolin, M.; Adami, F.; Agostini, C. & Semenzato, G. (1997). B Lymphocytes from 

Patients with Chronic Lymphoproliferative Disorders Are Equipped with Different 

Costimulatory Molecules. Cancer Research, Vol. 57, No. 21, (November 1997),  

pp. 4940-4947, ISSN 0008-5472. 

Vallabhapurapu, S. & Karin, M. (2009). Regulation and Function of NF-κB Transcription 

Factors in the Immune System. Annual Review of Immunology, Vol. 27, No. 1, (April 

2009), pp. 693-733, ISSN 0732-0582. 

Veronese, L.; Tournilhac, O.; Verrelle, P.; Davi, F.; Dighiero, G.; Chautard, E.; Veyrat-

Masson, R.; Kwiatkowski, F.; Goumy, C.; Vago, P.; Travade, P. & Tchirkov, A. 

(2008). Low MCL-1 mRNA expression correlates with prolonged survival in B-cell 

www.intechopen.com



 
Dysregulation of Apoptosis and Proliferation in CLL Cells 

 

61 

chronic lymphocytic leukemia. Leukemia, Vol. 22, No. 6, (June 2008), pp. 1291-1293, 

ISSN 0887-6924. 

von Bergwelt-Baildon, M.; Maecker, B.; Schultze, J. & Gribben, J. (2004). CD40 activation: 

potential for specific immunotherapy in B-CLL. Annals of Oncology, Vol. 15, No. 6, 

(June 2004), pp. 853-857, ISSN 0923-7534. 

Vousden, K. & Lu, X. (2002). Live or let die: the cell’s response to p53. Nature Reviews Cancer, 

Vol. 2, No. 8, (August 2002), pp. 594-605, ISSN 1474-175X. 

Vrhovac, R.; Delmer, A.; Tang, R.; Marie, J.; Zittoun, R. & Ajchenbaum-Cymbalista, F. (1998). 

Prognostic Significance of the Cell Cycle Inhibitor p27Kip1 in Chronic B-Cell 

Lymphocytic Leukemia. Blood, Vol. 91, No. 12, (June 1998), pp. 4694-4700,  

ISSN 0006-4971. 

Wei, M.; Zong, W.; Cheng, E.; Lindsten, T.; Panoutsakopoulou, V.; Ross, A.; Roth, K.; 

MacGregor, G.; Thompson, C. & Korsmeyer, S. (2001). Proapoptotic BAX and BAK: 

A Requisite Gateway to Mitochondrial Dysfunction and Death. Science, Vol. 292, 

No. 5517, (April 2001), pp. 727-730, ISSN 0036-8075. 

Winkler, D.; Schneider, C.; Zucknick, M.; Bogelein, D.; Schulze, K.; Zenz, T.; Mohr, J.; 

Philippen, A.; Huber, H.; Buhler, A.; Habermann, A.; Benner, A.; Dohner, H.; 

Stilgenbauer, S. & Mertens, D. (2010). Protein expression analysis of chronic 

lymphocytic leukemia defines the effect of genetic aberrations and uncovers  

a correlation of CDK4, P27 and P53 with hierarchical risk. Haematologica, Vol. 95, 

No. 11, (November 2010), pp. 1880-1888, ISSN 0390-6078. 

Wołowiec, D.; Benchaib, M.; Pernas, P.; Deviller, P.; Souchier, C.; Rimokh, R.; Felman, P.; 

Bryon, P. & Ffrench, M. (1995). Expression of cell cycle regulatory proteins in 

chronic lymphocytic leukemias. Comparison with non-Hodgkin’s lymphomas and 

non-neoplastic lymphoid tissue. Leukemia, Vol. 9, No. 8, (August 1995), pp. 1382-

1388, ISSN 0887-6924. 

Wołowiec, D.; Ciszak, L.; Kosmaczewska, A.; Boćko, D.; Teodorowska, R.; Frydecka, I. & 

Kuliczkowski, K. (2001). Cell cycle regulatory proteins and apoptosis in B-cell 

chronic lymphocytic leukemia. Haematologica, Vol. 86, No. 12, (December 2001),  

pp. 1296-1304, ISSN 0390-6078. 

Wołowiec, D.; Wójtowicz, M.; Ciszak, L.; Kosmaczewska, A.; Frydecka, I.; Potoczek, S.; 

Urbaniak-Kujda, D.; Kapelko-Słowik, K. & Kuliczkowski, K. (2009). High 

intracellular kontent of cyklin-dependent kinase inhibitor p27Kip1 in early- and 

intermedia te stage B-cell chronic lymphocytic leukemia lymphocytes predicts 

rapid progression of the disease. European Journal of Haematology, Vo. 82, No. 4, 

(April 2009), pp. 260-266, ISSN 0902-4441. 

Xie, P.; Kraus, Z.; Stunz, L. & Bishop, G. (2008). Roles of TRAF molecules in B lymphocyte 

Function. Cytokine & Growth Factor Reviews, Vol. 19, No. 3-4, (June - August 2008), 

pp. 199-207, ISSN 1359-6101. 

Yen Chong, S.; Lin, Y.; Czarneski, J.; Zhang, M.; Coffman, F.; Kashanchi, F. & Raveche, E. 

(2001). Cell cycle effects of IL-10 on malignant B-1 cells. Genes and Immunity, Vol. 2, 

No. 5, (August 2001), pp. 239-247, ISSN 1466-4879. 

www.intechopen.com



 
Chronic Lymphocytic Leukemia 

 

62

Yu, C.; Minemoto, Y.; Zhang, J.; Liu, J.; Tang, F.; Bui, T.; Xiang, J. & Lin, A. (2004). JNK 

Suppresses Apoptosis via Phosphorylation of the Proapoptotic Bcl-2 Family Protein 

BAD. Molecular Cell, Vol. 13, No. 3, (February 2004), pp. 329-340, ISSN 1097-2765. 

Zheng, C.; Yin, Q. & Wu, H. (2011). Structural studies of NF-κB signaling. Cell Research, Vol. 

21, No. 1, (January 2011), pp. 183-195, ISSN 1001-0602. 

www.intechopen.com



Chronic Lymphocytic Leukemia

Edited by Dr. Pablo Oppezzo

ISBN 978-953-307-881-6

Hard cover, 448 pages

Publisher InTech

Published online 10, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

B-cell chronic lymphocytic leukemia (CLL) is considered a single disease with extremely variable course, and

survival rates ranging from months to decades. It is clear that clinical heterogeneity reflects biologic diversity

with at least two major subtypes in terms of cellular proliferation, clinical aggressiveness and prognosis. As

CLL progresses, abnormal hematopoiesis results in pancitopenia and decreased immunoglobulin production,

followed by nonspecific symptoms such as fatigue or malaise. A cure is usually not possible, and delayed

treatment (until symptoms develop) is aimed at lengthening life and decreasing symptoms. Researchers are

playing a lead role in investigating CLL's cause and the role of genetics in the pathogenesis of this disorder.

Research programs are dedicated towards understanding the basic mechanisms underlying CLL with the hope

of improving treatment options.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Marcin Wójtowicz and Dariusz Wołowiec (2012). Dysregulation of Apoptosis and Proliferation in CLL Cells,

Chronic Lymphocytic Leukemia, Dr. Pablo Oppezzo (Ed.), ISBN: 978-953-307-881-6, InTech, Available from:

http://www.intechopen.com/books/chronic-lymphocytic-leukemia/dysregulation-of-apoptosis-and-proliferation-

in-cll-cells



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


