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1. Introduction 

The key pathological characteristic of Parkinson’s disease PD is the degeneration of 

dopaminergic neurons in the substantia nigra pars compacta SNc that project to the striatum 

(Barolin and Horykiewicz 1967). The depletion of dopamine leads to abnormalities of the 

transmission in striatal projections to the lateral or medial segments of the globus pallidus, 

or to the substantia nigra reticulata SNr (Brotchie et al, 1993; Albin et al., 1989). It is well 

known, however, that in PD, besides dopaminergic degeneration, a considerable loss of 

noradrenergic neurons, as well as, a decrease of noradrenaline levels in several brain regions 

occurs (Hornykiewicz & Kish 1987). 

Interestingly, the neural loss in PD in Locus coreleus is greater than that of dopamine in the 

substantia nigra (Zarow et al., 2003).  

The influence of noradrenergic neurotransmission on dopamine-mediated behaviour has 

been the focus of several studies over the last four decades, and has confirmed the 

importance of the relationship between dopaminergic and noradrenergic pathways in the 

control of locomotor activity. The progressive neurodegeneration of the main noradrenergic 

nucleus – the locus coeruleus LC – might influence not only the progression of Parkinson's 

disease but also the response to dopaminergic replacement. Furthermore, additional 

evidences support the notion that noradrenaline deficit might be relevant for the 

pathogenesis of long-term complications of L-DOPA treatment such as the wearing-off 

phenomenon and dyskinesias (Bezard et al., 2001; Obeso et al., 2000; Marsden and Parkes, 

1976). 

However, in spite of the bulk of data on the influence of the alterations of noradrenergic 

transmission on locomotor behaviour, much of these data is conflicting and not conclusive. 

Therefore, definitive conclusions, as to the specific role of the noradrenergic system in the 

generation of symptoms of Parkinson’s disease and L-DOPA-induced dyskinesia LID, 

cannot yet be drawn.  
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Based on a number of behavioural studies, demonstrating the alleviation of dyskinesia by 2 

adrenergic receptor antagonists, in addition to other biochemical studies, this chapter aims 

to test the hypothesis that the noradrenergic system plays a role in the neural mechanisms 

underlying Parkinson’s disease and L-DOPA-induced dyskinesia.  

The model presented here suggests that the degeneration of noradrenergic neurons 

contributes to the pathophysiology and symptomatology of PD, and that the remaining 

intact noradrenergic neurons exert a compensatory mechanism in PD. Furthermore, we 

suggest a role for L-DOPA metabolites in the mechanism of LID; this role might be mediated 

through the activation of 2 adrenoceptors.  

Our data and other studies presented in this chapter demonstrate a potential role for 

noradrenergic system in Parkinson’s disease and LID.  

2. Parkinson’s disease and L-DOPA-induced dyskinesia  

Parkinson's disease is a progressive hypokinetic neurodegenerative disorder, characterised 

by bradykinesia, rigidity, tremor, akinesia, and abnormal posture. Non-motor symptoms 

such as cognitive decline, depression, sleep disturbances and autonomic and sensorimotor 

dysfunction also occur (Marsden, 1990, Remy et al., 2005; Schapira, 2008). The key 

pathological characteristic of Parkinson’s disease is the degeneration of dopaminergic 

neurons in the substantia nigra that project to the striatum (Barolin and Horykiewicz 

1967).  

Dopamine neurons degenerate with advancing age more than other neuronal systems in the 

brain (Fearnley & Lees, 1991). Neurons in the SNc and VTA are lost at a rate of 1% per year 

in parkinsonian patients compared to 0.5% per year in non-parkinsonian subjects (Scherman 

et al, 1989). Parkinsonian symptoms become apparent when striatal dopamine levels fall by 

about 70% (Altar and Marien, 1989). Post-mortem studies show substantial depletion of 

dopamine in the putamen. In caudal parts of the putamen, dopamine content is less than 1% 

of control levels, whereas the dopamine content of the caudate nucleus is relatively well 

preserved i.e. 40% of control levels (Hornykiewicz, 1973; Kish et al, 1988). The degeneration 

of cells in the SNc is accompanied by the presence of eosinophilic intraneuronal, 

cytoplasmic inclusions called Lewy bodies, which are characterised by a central core and 

peripheral halo (McGeer et al, 1988; Quinn et al, 1989). Lewy bodies show immunoreactivity 

for tubulin and ubiquitin (Jellinger, 1990).  

The loss of dopaminergic neurons in the substantia nigra pars compacta, which results in 

a reduction in the level of dopamine in the striatum, leads to alterations in the activity of 

striatal output nuclei. This results in changes in the other nuclei basal ganglia, which can 

be summarized as following: (a) Degeneration of the nigrostriatal pathway, (b) the 

underactivity of the GABA/dynorphin striato-medial pallidal/SNr nigral pathway, (c) 

the overactivity of the GABA/enkephalin striato-lateral-pallidal pathway, (d) the 

overactivity of the subthalamic nucleus, (e) the overactivity of the GABA medial 

pallidal/SNr (output regions of the basal ganglia) -thalamic projection (Brotchie et al, 

1993). The overactivity of basal ganglia output results in increased inhibition of 

excitatory glutamatergic projections from the thalamus to the cortex. Cortical motor 

outputs are, thus, underactive leading to the movement paucity in Parkinson's disease 

(Albin et al., 1989). 
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Although the predominant pathology of PD is the loss of dopaminergic cells in the 

substantia nigra, however, there is also degeneration of other neurotransmission systems, 

such as cholinergic, noradrenergic, serotoninergic and peptidergic brainstem nuclei 

(Jellinger, 1991).  

Some of these alterations in neurotransmitters occur before the appearance of parkinsonian 

symptoms (Bezard et al, 2001). Noradrenaline (NA) is particularly implicated in certain 

symptoms of Parkinson’s disease. Biochemical analysis revealed that 40-80% of the brain’s 

content of NA is depleted in PD (Agid, et al., 1987; Gerlach et al, 1994).  

Current strategies for the treatment of PD still depend largely on the replacement of lost 

dopamine. Levodopa, a precursor of dopamine, has proved very successful as an 

antiparkinsonian agent (Cotzias et al 1967). L-DOPA can cross the blood-brain barrier and 

is converted to dopamine by aromatic amino acid decarboxylase, presumably in the 

striatum at the synaptic sites of surviving nigrostriatal cells (Melamed et al 1984). 

However, due to the massive degeneration of nigrostriatal terminals, it is unlikely that the 

majority of dopamine synthesis occurs in nigrostriatal terminals (Snyder & Zigmond, 

1990). Within the striatum, 5-HT terminals, striatal interneurons and glial cells also 

contain aromatic amino acid decarboxylase, and these sites may play a role in the 

conversion of L-DOPA to dopamine in the degenerated striatum (Opacka-Juffry, 1995; 

Mura et al, 1995).  

Initially, L-DOPA is successful in reversing parkinsonian symptoms, akinesia, rigidity and 

tremor. However, as treatment progresses, the effectiveness of L-DOPA treatment decreases 

and dyskinesia, fluctuations in mobility and freezing episodes, occur (Marsden & Parkes, 

1976; Mouradian et al, 1991). With the progress of treatment, the dose of L-DOPA required 

to induce dyskinesia gradually decreases and the dose of L-DOPA required to alleviate 

parkinsonian symptoms is increased, thereby, resulting in the development of a narrow 

therapeutic window (Mouradian et al, 1988).  

The mechanism, underlying L-DOPA-induced dyskinesia, is still far from being fully 

understood. The fact, that dyskinesia results from prolonged replacement of dopamine, 

suggests that it arises through the overactivity of dopaminergic mechanisms. Similarities in 

the choreic dyskinesia seen among various brain disorders, i.e. L-DOPA-induced 

dyskinesia, tardive dyskinesia and hemiballism, has led to the suggestion of a common 

mechanism for all dyskinesia (Crossman (review) 1990).  

According to the most acceptable model, L-DOPA-induced dyskinesia is associated with an 

imbalance of basal ganglia circuitry in favour of the direct pathway. Data obtained from 

animal models of PD have implicated a relative underactivity of the indirect pathway, and 

overactivity of the direct pathway. The net effect of the overactive GABAergic projection in 

the direct and indirect pathways and the underactive glutamatergic projection of the STN, 

will lead to the cumulative inhibitory effects on the output nuclei of the basal ganglia. This, 

in turn, leads to the decrease of the inhibition of thalamocortical neurons and overactivation 

of cortical motor areas. 

 PD.: Decreased activity in the dopaminergic nigrostriatal pathway, Overactivity 
of the GABA striato-lateral-pallidal pathway, Overactivity of the subthalamic 
nucleus, Overactivity of the regions of the basal ganglia that project to non-basal 
ganglia motor regions, i.e., the medial pallidal segment and the SNr (Blandini et al, 
2000).  
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Fig. 1. Diagram illustrating the changes in the organisation of the basal ganglia in 
Parkinson’s disease and L-DOPA-induced Dyskinesia. 

 LID: Increased activity in the dopaminergic nigrostriatal pathway, Underactivity of the 

GABA striato-lateral-pallidal pathway, Underactivity of the subthalamic nucleus, 

Underactivity of the regions of the basal ganglia that project to non-basal ganglia motor 

regions, i.e., the medial pallidal segment and the SNr. 

3. Noradrenergic system 

The main noradrenergic system is the locus coeruleus LC (A6-cell group), in which about 

45% of brain noradrenergic cells are present.  

The total estimated number of noradrenergic neurons in the LC of the normal young adult 

human brain ranges from 45,000 to 60,000 (Baker et al, 1989; , German et al., 1988). The vast 

majority (90%) of LC efferent projections remain ipsilateral (Ader et al., 1980; Mason & 

Fibiger, 1979; Room et al., 1981). There are two types of LC axonal terminals: regular 

synaptic terminals, and varicosities that are believed to cause an extra-synaptic release of 

noradrenaline, which then may diffuse over a distance (Aoki, 1992; Beaudet & Descarries, 

1978; Koda et al., 1978; Parnavelas & Papadopoulos, 1989). 

The main projections of the LC are to the neocortex, where LC neurons project to all layers 

of the neocortex, although the density of fibres varies according to the cortical regions and 

the species (Morrison et al, 1979; Morrison et al, 1982). The LC also sends efferents to the 

hippocampus, amygdala, septum, thalamus and hypothalamus. Morphologically different 

types of neurons in the locus coeruleus project to different regions of the CNS (Loughlin, et 

al, 1986), and the axons of LC neurons are extensively ramified, as one axon may branch up 

to 100,000 times (Moore & Bloom, 1979). Noradrenaline may co-exist with other 
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neurotransmitters and modulators, and the type of modulators co-existing with NA 

depends, in part, on species. For instance, noradrenergic neurons have been reported to 

have immunoreactive staining for enkephalin in cats, vasopressin in rats, and neuropeptide 

Y (NPY) in rats and humans (Caffe et al, 1985).  

The firing activity of noradrenergic neurons in the LC is regulated by somatodendritic 

autoreceptors of the 2- adrenergic subtype. These receptors are believed to decrease the 

firing rate of NA neurons primarily through an increase in potassium conductance.  

The firing rate of LC cells is influenced by behavioural activity and sensory input and 

seems to relate closely to arousal and sleep-waking cycles (Astone –Jones et al, 1991). The 

LC cells are completely inactive during rapid-eye-movement (REM) sleep (Aston-Jones & 

Bloom, 1981). The changes in cell firing in sleep-waking cycles suggest a contribution of 

LC to the mechanisms controlling sleep-waking states (Foote et al, 1980; Mallick, 2002).  

Numbers of LC cells and the concentration of brain noradrenaline decline with age in 

normal brain respectively by 25% and 50% between the fourth and ninth decades of life 

(Mann, 1983; Mann et al, 1983).  

4. Noradrenaline functions 

Electrophysiological and behavioural studies have revealed an important role for 

noradrenaline in attention, arousal and waking (Grant and Redmond 1984; Kumar, 2003). 

There is an increase in the activity of the LC in rats and primates during high awareness, 

whereas the activity is decreased during grooming, feeding and sleeping (Grant and 

Redmond 1984). Furthermore, the 2 adrenoceptor agonist clonidine increases the total 

duration of sleep and significantly reduces the duration of REM sleep. In contrast, 

yohimbine, an 2 adrenoceptor antagonist, reverses the effects of clonidine (Autret et al, 

1977).  

Noradrenaline has also been implicated in controlling feeding behaviour (Goldman et al, 

1985). Injection of noradrenaline or the 2 receptor agonist clonidine into the area of the 

paraventricular nucleus (PVN), caused a potent feeding response in satiated animals, an 

effect probably mediated via 2 adrenoceptors located postsynaptically (Weiss &Leibowitz, 

1985; Goldman et al, 1985). Further studies have suggested that feeding behaviour is 

stimulated by low levels of clonidine, and decreased by further production of noradrenaline 

(Bungo et al, 1999).  

The noradrenaline system has also been implicated in anxiety-related behaviours since 2 

agonists are of clinical benefit in treating some types of anxiety (Hoehen-Saric et al, 1981; 

Crespi, 2009), while 2 antagonists elicit intense anxiety (Charney et al, 1983; Graeff, 1994). 

However, it is not clear whether these effects are mediated through pre-or postsynaptic 

adrenoceptors. A study by Tanak et al., has suggested that the increased release of 

noradrenaline in the locus coeruleus is, in part, involved in the frustration of anxiety and/or 

fear in animals exposed to stress (Tanaka et al, 2000). On the other hand, genetic studies on 

2a adrenoceptor knock-out mice suggest that 2a may play a protective role in some types 

of depression and anxiety (Schramm et al, 2001).  

Noradrenaline is also involved in cognitive processes such as memory, learning and 

selective attention (Franowicz, & Arnsten, 1998; Franowicz et al, 2002; Gibbs & Summers, 

2002; Marrs et al, 2005; Timofeeva & Levin, 2008).  In Alzheimer Type Dementia (ATD), both 
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the concentration of noradrenaline and the noradrenaline transporters sites are significantly 

decreased in a number of brain regions including the Locus coeruleus, cingulate gyrus, 

putamen, hypothalamus, medial thalamic nucleus, and raphe area (Arai et al, 1984; Tejani et 

al, 1993). 

Evidence has accumulated suggesting that noradrenaline is also involved in controlling 

body temperature (Lin et al, 1981, Sallinen et al, 1997), endocrine secretion (Endroczi et al, 

1978; Valet et al, 1989; Ruffolo et al, 1991), and sexual behaviour (Morales et al, 1987; 

Guiliano & Rampin, 1997). 

5. Noradrenaline in the basal ganglia 

The synthesis of noradrenaline (Glowinski & Iverson, 1966) and its release (Coyle & Henry, 

1973) was initially demonstrated in the striatum. Later studies revealed that the striatum 

receives little noradrenergic projection from the locus coeruleus and has low levels of 

dopamine -hydroxylase (Swanson & Hartman, 1975). Nevertheless, the striatum shows 

high levels of 2 adrenoceptor gene expression (mRNA) (Scheinin et al, 1994) and high 

radioligand binding to 2C adrenoceptors (Uhlen et al, 1997). Noradrenergic terminals and 

uptake sites have also been demonstrated in the SNc (Fuxe, 1965), subthalamic nucleus 

(Carpenter et al, 1981b; Parent & Hazrati, 1995; Belujon et al, 2007) and the SNr (Gehlert et 

al, 1993). 

The precise role of noradrenaline in the basal ganglia is not yet clear. However, the 

noradrenergic inputs to the basal ganglia appear to have a modulatory effect on other 

neurotransmitters in different structures of the basal ganglia. 

Noradrenaline derived from the LC may induce an inhibition of striatal neurons trans-

synaptically activated by nigral stimulation (Fujimoto et al, 1981). It has been shown that the 

2 antagonist yohimbine increases the synthesis and release of dopamine in the striatum, 

while the agonist clonidine can reverse this effect (Anden and Grabowska, 1976). 2 

presynaptic heteroreceptors also seem to regulate the release of amino acid 

neurotransmitters such as glutamic acid, aspartic acid, GABA as evaluated with 

synaptosoms (Bristow and Bennett, 1988, Kamisaki, et al, 1992, Bickler and Hansen, 1996, 

Pralong and Magistretti, 1995). Immunocytochemical studies reveal that 94% of spiny 

GABAergic neurons in the striatum contain 2C adrenergic receptors (Holmberg et al, 1999), 

which are negatively coupled to adenylyl cyclase (Zhang et al, 1999). These 2C receptors are 

thought to play a regulatory role on the direct and indirect pathways of the basal ganglia by 

modulating GABA transmission.  Recent studies on 2 receptor knock-out mice indicate that 

2a and 2C adrenoceptors are located on different neurons in the striatum, and that striatal 

GABA release is mediated by the activation of 2C but not 2a adrenoceptor (Zhang & 

Ordway, 2003). These authors suggest that the effect of 2C on GABA release might be 

mediated by dopamine.  

In the basal ganglia,  adrenoceptors are mainly found in the striatum, globus pallodus, 

substantia nigra pars compacta SNc and substantia nigra pars reticulata SNr (Unnerstall et 

al, 1984; Boyajian et al, 1987; Uhlen et al, 1997; Winzer-Srhan et al, 1997).  

Noradrenergic pathways might have a significant role in regulating basal ganglia function 

and thus motor activity by modulating the spontaneous activity of the STN neurons. 

Accordingly, noradrenaline has been reported to induce stimulation of the firing rate of a 

www.intechopen.com



Noradrenergic Mechanisms in Parkinson’s Disease and L-DOPA-Induced 
Dyskinesia: Hypothesis and Evidences from Behavioural and Biochemical Studies 

 

537 

neuronal subpopulation of the subthalamic nucleus, and this stimulation was suggested to 

be mediated through the activation of 1 adrenoceptors (Arcos et al, 2003).  

The modulation of dopamine neurone firing by the noradrenergic system of the locus 

coeruleus in the rat has provided further evidence for the role of noradrenaline in regulating 

the activity of the basal ganglia. Interestingly, noradrenaline has been reported to evoke 

excitation followed by inhibition of the electrical activity of dopaminergic cells (Grenhoff et 

al, 1993; Grenhoff et al, 1995). 

The SNr represents, with medial segment of globus pallidus, the main output regions of the 
basal ganglia and therefore, plays a crucial role in movement initiation. The GABAergic 
neurons in the substantia nigra are spontaneously active and the modulation of their activity 
would significantly influence the basal ganglia functions. Indeed, there is evidence 
supporting the regulatory action of noradrenaline upon the neurons of the SNr. 
Noradrenaline has been demonstrated to increase the tonic firing of principal cells in the 
SNr (Berretta et al, 2000). On the other hand, we demonstrated the stimulatory effects of 

both the activation and blockade of 2 adrenergic receptors on the release of GABA from 
slices of the SNr. (Alachkar et al, 2006). 

6. Noradrenaline- dopamine interaction 

The interaction between dopamine and noradrenaline systems has been demonstrated, 

previously, in the brain. Dopamine, for instance, has long been demonstrated to have 

stimulatory actions upon noradrenergic neurons in the locus coeruleus (Persson and 

Waldeck, 1970). On the other hand, noradrenaline has been shown to reduce the 

spontaneous firing of dopaminergic neurons in the SNc (White & Wang, 1984), although, 

other workers have reported excitatory responses of the SNc to the stimulation of the locus 

coeruleus (Grenhoff, 1993). Other studies have provided evidences for the mutual inhibition 

of dopaminergic and noradrenergic systems (Persson & Waldeck, 1970; Guiard et al, 2008). 

A number of studies indicate, interestingly, that dopamine is co-released with noradrenaline 

from noradrenergic neurons in the locus coeruleus (Anden et al, 1973; Devoto et al, 2001). 

On the other hand, dopamine may activate 2 adrenoceptors in more than a region in the 
brain (Segawa et al, 1998; Cornil et al, 2002; Alachkar et al, 2010a). It is well documented that 

a molecular relationship exists, at the level of the amino acid sequence, between 2 and 

dopamine D2 receptors, in that D2 dopamine receptors are more closely related to 2 
adrenoceptors than to D1 dopaminergic receptors (Harrison et al, 1991).  
NA was found to act as a D1 dopaminergic agonist (Kubrusly et al., 2007), and mimic the 
effect of DA on the DA D2 receptor (Onali et al., 1985). Furthermore, it was demonstrated 
that NA binds to the human DA D4 receptor with high affinity (Lanau et al., 1997; Newman-
Tancredi et al., 1997) and 10% of total D2-like receptors are of the DA D4 receptor located in 
the caudate putamen (Tarazi et al., 1997). 

2 adrenoceptor mRNA, type A and C, is present in high levels in the striatum and locus 

coeruleus (Nicholas et al, 1993; Scheinin et al, 1994, our unpublished results), with receptors 

binding located in the striatum, and SNr (Rosin et al, 1996; Lee et al, 1998a,b).  

The presence of noradrenaline uptake sites in the SNr (Gehlert et al, 1995; Strazielle et al, 

1999) indicates noradrenaline release in this nucleus.  

The NA could affect the activity of the SNr through their direct noradrenergic projections 

and their indirect influence by the action of SNc and other parts of basal ganglia.  
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7. Noradrenaline in Parkinson’s disease 

In Parkinson’s disease, a significant loss of noradrenergic cells of the locus coeruleus and the 
noradrenergic pathways occurs, in addition to the degeneration of the nigrostriatal 
dopaminergic pathway, (Hornykiewicz & Kish 1987; Zarow et al., 2003). Moreover, there is 
a considerable decrease in NA levels in a number of brain structures including the 
hypothalamus, cerebral cortex, substantia nigra and caudate nucleus in patients with this 
disease (Fahn et al, 1971; Rinne & Sonninen, 1973; Kish et al, 1984). The significance of the 
loss of LC cells to Parkinson’s disease is still largley unknown. It is possible that 
noradrenergic depletion contributes to the degeneration of other brain nuclei. Postmortem 
studies have revealed that the symptoms of depression and dementia in PD were associated 
with a significant loss of noradrenergic neurons in the LC and NA depletion in the cortex 
(Zweig et al., 1993; Bosboom et al., 2004; Remy et al., 2005; Ridderinkhof et al., 2004; Ramos 
and Arnsten, 2007). LC-noradrenergic neurotransmitter system may be involved in the 

pathogenesis of non-motor symptoms in PD. A decrease in 2 receptor density in the 
prefrontal cortex has also been shown in animal models of Parkinson’s disease (Mavridis et 
al, 1991). Administration of α2-adrenergic agonist was demonstrated to improve the 
cognitive impairments in PD patients (Remy et al., 2005; Riekkinen and Riekkinen, 1999).  
The great extent to which LC cell loss occurs in PD is emphasized by the study by Zarow et 
al. who, interestingly, demonstrated that the greatest loss of neurons in PD was found in the 
LC (83.2%). The degree of cell loss in the LC seemed to be even more extensive than that 
observed in the substantia nigra (77.8% loss) (Zarow et al. 2003). Significant depletions 
(>80%) of noradrenaline in the substantia nigra pars compacta and reticulata, of postmortem 
PD brains have also been described (Taquet et al., 1982). 
 The NA depletion in the LC was proved to decrease DA release in the striatum (Lategan et 
al., 1990; Lategan et al., 1992). Furthermore, clinical studies have indicated that some motor 
symptoms of PD are likely to result from noradrenergic lesions (Grimbergen et al., 2009). 
These findings suggest the implication of the LC-noradrenergic system in the 
pathophysiology of PD.  
Experimental data suggest that the LC noradrenaline system may have a neuroprotective 
role on dopaminergic SN neurons (Gesi et al, 2000). For instance, noradrenaline depletion 
significantly increased MPTP- as well as methylamphetamine-induced striatal dopamine 
depletion in mice and monkeys (Forani et al, 1995, Marien et al 1993; Archer and 
Fredriksson, 2006; Nishi et al., 1991). Furthermore, lesions of LC by 6-OHDA in MPTP 
treated monkeys produced a more significant depletion and greater loss of substantia nigra 
cell compared to normal controls, and impaired the recovery which usually occurs from the 
parkinsonian manifestations induced by MPTP (Mavridis et al, 1991; Bing et al, 1994). A 
potentiation of parkinsonian symptoms following locus coeruleus noradrenaline depletion 
has been reported in 6-OHDA-lesioned rats (Srinivasan & Schmidt, 2003).  
The mechanism by which the locus coeruleus may protect dopaminergic neurons is still 

unknown. The activation of 2 adrenoceptors by clonidine, 2 agonist, has been 

demonstrated to suppress MPTP-induced reduction of striatal dopamine and tyrosine 

hydroxylase activity in mice (Bristow and Bennett, 1988; Fornai et al, 1995).  
Noradrenaline may exert its neuroprotective effects by facilitating the release of trophic 
factors, such as the nerve growth factor NGF; this was suggested to occur through an action 

on -adrenoceptors on the glial cells (Mochetti et al, 1989). Noradrenaline may suppress the 
formation of toxic MPP+ from MPTP by inhibiting the production of glial monoamine 
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oxidase B in the substantia nigra (Stone and Ariano, 1989). Interestingly, the administration 
of L-threo-3, 4 dihydroxyphenylserine (L-threo-DOPS) an immediate precursor of 
noradrenaline, seems to alleviate parkinsonian symptoms (Narabayashi et al, 1984). 
Although L-threo DOPS causes an increase in dopamine as well as noradrenaline levels, its 

anti-parkinsonian action was inhibited by adrenoceptor antagonists and dopamine -

hydroxylase inhibitors. The 2 adrenoceptor antagonist R47 243 has been found to reverse 
some parkinsonian signs in a monkey in which MPTP’s effects had been progressive, by a 
mechanism that is still unknown (Colpaert et al, 1991). On the other hand, blockade of α2 

adrenoceptors counteracted to some extent the development of parkinsonian symptoms and 
neurochemical alterations in the rotenone model of Parkinson's disease (Alam et al, 2009). In 
addition Belujon et al have provided behavioral and electrophysiological evidence for the 
noradrenergic modulation of subthalamic nucleus activity in intact and 6-
hydroxydopamine-lesioned rats. The authors have shown that the firing of STN neurons is 

controlled by noradrenergic system through the activation of 1- and 2 adrenergic receptors 
(Belujon et al, 2007). 
Firing activity of LC-noradrenergic neurons was demonstrated to increase in rats after the 

SNc lesion (Guiard et al, 2008; Wang et al., 2009), which may imply an overactivity of LC-

noradrenergic neurons and enhanced influence of LC in rats with SNc lesion.  

On the other hand, lesions of the LC in rat models of PD caused further hyperactivity of SNr 

neurons implying that LC-noradrenergic system may play a role in decreasing the activity of 

the output regions of the basal ganglia (wang et al, 2010). Intact noradrenergic neurons of 

the LC were believed to play a crucial role in the compensational mechanism after the 

dopaminergic depletion in the SNc (Gesi et al., 2000; Rommelfanger and Weinshenker, 

2007). 

8. Noradrenaline and L-DOPA-induced dyskinesia 

Progressive neurodegeneration of the noradrenergic neurons in the locus coeruleus was 

suggested to influence the response to dopaminergic replacement (Cotzias et al., 1967), and 

the pathogenesis of long-term complications of L-DOPA treatment (Bezard et al., 2001; 

Marsden and Parkes, 1976; Obeso et al., 2000).  

The involvement of noradrenergic transmission in L-DOPA-induced dyskinesia has been 
the focus of several investigations. This was based on the well documented interaction 
between dopaminergic and noradrenergic system. Early studies on reserpine-treated rats 
revealed that the hyperkinesia induced by L-DOPA was mediated via activation of the 
noradrenergic system (Anden et al, 1969; Stromber & Svensson, 1971). A number of studies 
substantiated evidence that the noradrenergic system may have a modulatory effect on L-
DOPA-induced dyskinesia. Gomez-Mancilla and Bedard (1993) investigated the effects of 
several agents acting on the noradrenergic system in the brain on L-DOPA-induced 

dyskinesia. They reported that the 2 adrenergic receptor antagonist, yohimbine, decreased 
L-DOPA-induced dyskinesia without reducing the anti-parkinsonian action of L-DOPA, in 
MPTP-treated monkeys. Further studies have reported that the reduction of dyskinesia can 

be mediated by blocking the actions of 2 adrenergic receptors, shown using a number of 2 
antagonists (Henry et al 1999, Fox et al 2001; Grondin et al, 2000; Rascol, 2001, Savola et al, 

2003; Dekundy et al, 2007). The mechanism by which 2 antagonists can alleviate L-DOPA-

induced dyskinesia is unknown; however, activation of 2 adrenoceptors on the striatal 
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output neuron terminals has been suggested to reduce GABA release and inhibition of the 
lateral segment of the globus pallidus (GPl) in the indirect pathway (Henry et al, 1999). 
Therefore, blockade at these sites may up-regulate the inhibitory striatopallidal connections 

and reduce STN inhibition and dyskinesia. The other explanation for the effect of 2 
adrenoceptor antagonists in reducing L-DOPA-induced dyskinesia may be the blockade of 

the action of noradrenaline synthesised from levodopa on 2c receptors in the basal ganglia 
(Fox et al, 2001). There is evidence that local administration of NA into the lesioned striatum 
can induce dyskinetic movements in rats in a similar manner to intrastriatal L-DOPA 
treatment (Buck & Ferger, 2009). 
On the other hand, noradrenaline synthesized from exogenous L-DOPA administered in 

Parkinson’s disease therapy may, in part, be involved in the locomotor activity produced by 

L-DOPA (Dolphin et al, 1976). This implies that at least some symptoms of LID are mediated 

through the activation of the noradrenergic system. Therefore, the therapeutic actions of 2 

antagonists may be correlated with this noradrenergic disruption in Parkinson’s disease and 

LID. 

Fox et al., have reported that 2 antagonism reduces L-DOPA-induced dyskinesia but did not 

affect apomorphine-induced dyskinesia suggesting that L-DOPA-induced dyskinesia but not 

dopamine agonist-induced dyskinesia, involves activation of adrenoceptors (Fox et al, 2001). 

The authors suggested that the pharmacological characteristics of the neural mechanisms 

underlying levodopa-induced dyskinesia and dopamine agonist-induced dyskinesia in 

parkinsonism are distinct, at least with respect to the involvement of 2 adrenoceptors.  

9. Noradrenergic mechanisms in PD and LID: A theory 

9.1 Parkinson’s disease PD 

We present here a model to explain the mechanism by which noradrenergic system may 

modulate the activity of the basal ganglia in PD.This model attempts to answer the question 

of whether noradrenergic abnormalities reflect a response to, or the cause of, the PD. Our 

scenario is based on the discussion above and most importantly the following three 

observations: 

 Certain evidences support the belief that LC lesion may exacerbate the abnormal 
activity of basal ganglia in PD, resulting in a further overactivity of the SNr neurons. 
This implies that LC-noradrenergic system may play a role in decreasing the activity of 
the output regions of the basal ganglia in PD (wang et al, 2010). 

 Further evidence indicates that the firing activity of LC-noradrenergic neurons 
increases after the SNc lesion (Guiard et al, 2008; Wang et al., 2009), which may imply 
an overactivity of LC-noradrenergic neurons; and enhanced influence of LC in PD.  

 Several studies have described the anti-parkinsonian effects of the blockade of 2 
inhibitory receptors. Although the site of action of these receptors is not known for 
certain, the data of other several studies conform to a model where alpha-2 antagonists 
produce their effects in the SNr by interacting with GABAergic transmission. 

According to our model, changes in Parkinson’s disease that occur in noradrenergic 
transmission contribute to the mechanism of PD, and partially compensate for the 
degeneration of the dopaminergic system.  
Based on the discussion above, we propose that in Parkinson’s disease, the degeneration of 

83% of LC neurons and depletion of noradrenaline exacerbate the Parkinsonian symptoms 
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through increasing the overactivity of the substantia nigra pars reticulata. On the other hand, 

the destruction of the dopamine-containing cells in the SNc results in a decrease in the 

inhibition, by dopamine, on the firing of the locus coeruleus and therefore, the remaining 

intact noradrenergic neurons of the LC are deemed to play a crucial role in the compensational 

mechanism after the dopaminergic depletion in the SNc (Gesi et al., 2000; Rommelfanger and 

Weinshenker, 2007). Noradrenaline released from overactive remaining LC neurons is thought 

to act as an inhibitory transmitter on 2 adrenoceptors located on the GABAergic striatal 

projecting neurons, and on the neurons of SNr. This would decrease the firing rate and the 

activity of the inhibitory GABAergic projection of SNr (which is overactive in PD) to the motor 

regions of the thalamus, and hence alleviate Parkinsonian symptoms. Accordingly, 

noradrenaline may contribute to the pathological and the compensational mechanisms in 

Parkinson’s disease. The prevalence of one of these two contradictory effects of noradrenergic 

system depends mainly on the extent of the degeneration of LC cells. The greater degeneration 

of LC noradrenergic neurons indicates more extensive abnormalities of the basal ganglia and 

overactivity of SNr, and thus further potentiation of the Parkinsonian symptoms.  

9.2 L-DOPA-induced dyskinesia LID 

Administration of L-DOPA with an AADC inhibitor, NSD1015, produced hyperlocomotor 
activity in reserpine-treated rats (Alachkar et al, 2010b). It seems likely that L-DOPA, or one 
or more of its metabolites not formed via routes involving direct decarboxylation of L-

DOPA, are responsible for the generation of hyperkinesia. Significantly, 2 receptor 
antagonist, rauwolscine, reduced centre vertical movement induced by L-DOPA and 
NSD1015 and shifted the time-course response curve to the left, (i.e. it caused earlier onset of 
L-DOPA and NSD1015 action). Thus, the behavioural effect of L-DOPA and NSD1015 given 
together is exerted, at least, in part, by the noradrenergic system.  
The prediction, arising from studies on the behavioural effects of L-DOPA, is that 

manipulation of 2 or/and dopamine receptors by L-DOPA or its metabolites may result in 
hyperlocomotor activity. This prediction was tested in a study by radioligand binding in 

membranes prepared from cell lines expressing 2 and dopaminergic receptors (Alachkar et 

al, 2010a). We reported that 3-MT bound to 2a receptors with high affinity compared to 2C 
adrenoceptors and dopaminergic receptors. The finding in the same study that dopamine 

bound to 2 adrenoceptors with relatively high affinities, provides evidence confirming 

previous reports on the direct activation of 2 adrenoceptors by dopamine (Cornil et al, 
2002; Zhang et al, 1999).   
A mechanism underlying the hyperkinesia induced by L-DOPA following the inhibition of 
central decarboxylase was suggested. According to these results, L-DOPA is metabolised in 
two steps leading to the formation of 3-MT, which will cause hyperkinesia (Nakazato & 

Akiyama, 2002; Nakazato, 2002), possibly through interaction with D1, or 2a adrenoceptors 
(Alachkar et al, 2010a). The reduction of vertical hyperlocomotor activity by rauwolscine 

supports that 3-MT interacts with 2 adrenoceptors (Alachkar et al, 2010b).  
In Parkinson’s disease, there is a decrease in the activity (Gjedde et al., 1993; Kuwabara et 

al., 1995) and expression (Ichinose et al., 1994) of the enzyme aromatic amino acid 

decarboxylase AADC. Interestingly, treatment with L-DOPA produces a further decrease in 

AADC (Tanaka et al., 1973; Fisher et al, 2000) and an increase of COMT (Liu et al, 2000; Zhao 

et al, 2001). In view of these observations, we propose that following long-term treatment 

with L-DOPA, the major portion of exogenous L-DOPA will not be metabolised to 
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dopamine, instead a large portion of L-DOPA will be methylated to 3,O, methyldopa. 3-O-

methyldopa has a longer half-life than L-DOPA itself (15 hours vs ½ hour) (Kuruma et al, 

1971; Cedarbaum, 1987) and, consequently, 3,O,methyldopa formed from exogenous L-

DOPA accumulates in the plasma and the brain to be subsequently metabolised slowly 

(Kuruma et al, 1971). The decarboxylation of 3,O,methyldopa leads to the formation of 3-

MT. The significance of methoxy groups in the production of abnormal induced movements 

was the focus of very early studies (Ericsson et al, 1971). A number of early studies 

suggested that the occupation of the meta position by a OCH3 group in the absence of 

similar groups at the para position caused hyperkinesias in rats (Hornykiewicz, 1966) and 

induced abnormal movements (Huntington chorea) in humans (Ericsson & Wertman, 1971). 

More recent studies have confirmed these early finding, as 3-MT was demonstrated to 

induce hyperactivity in rats (Nakazato & Akiyama, 2002; Nakazato, 2002). As a result, 3-MT 

seems to be the candidate metabolite to induce dyskinesia following long term treatment 

with L-DOPA in Parkinson’s disease. 

 

 

Fig. 2. Effect of NSD1015 on the stimulant action of L-DOPA on locomotor activity.  

3-MT was found to bind to 2a adrenoceptors with relatively high affinity (Alachkar et al, 
2010a). The pharmacological experiments to determine whether 3-MT acts as an agonist or 

antagonist at 2a adrenoceptors have not yet been undertaken. However, the similarities in the 

chemical structures between 3-MT and other catecholamines such as -methylnoradrenaline 

and epinephrine, which are known to activate 2 adrenoceptors, suggest that 3-MT may act as 
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an agonist at these receptors. According to the present scenario, a high concentration of 
3,O,methyldopa, and hence 3-MT will occur in Parkinson’s disease and following long-term 

treatment with L-DOPA. The 3-MT will then bind to 2a receptors located presynaptically on 
the locus coeruleus terminals in the SNr. This hypothesis is supported by the finding of 
Mela et al. (2007) who demonstrated an increase in extracellular GABA release after 
administration of L-DOPA in dyskinetic rats in the substantia nigra pars reticulata (Mela et 
al., 2007).  
 

 

Fig. 3. l-DOPA and dopamine metabolic pathways. Abbreviations: l-DOPA, l-3,4-
dihydroxyphenylalanine; DA dopamine; NA noradrenaline; 3-OMD 3-O-methyldopa; 3-MT 
3-methoxytyramine; DOPAC dihydroxyphenylacetic acid; HVA homovanilic acid. (1) 
Esterase or hydrolase; (2) aromatic amino acid decarboxylase AADC; (3) catechol O-methyl 
transferase COMT; (4) dopamine _-hydroxylase BDH; (5) COMT; (6) monoamine oxidase 
MAO; (7) unknown; (8) MAO; (9) COMT (Alachkar et al, 2010a). 

The activation of 2 inhibitory autoreceptors would result in an inhibition of noradrenaline 

release from these terminals and, therefore, a decrease in the inhibitory tone on GABA 

release from striato-nigral projection to the SNr. This leads to the increase of the activity of 

the GABAergic direct pathway, resulting in an increase of the inhibition of the output 

regions of the basal ganglia, counteracting the underactivity of this structure, which is the 

key pathological mechanism of LID. Thus, the abnormalities in noradrenergic transmission 

may contribute to, or facilitate, the development of LID.    
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Previous experimental studies have demonstrated that 2 adrenoceptor antagonists such as 
yohimbine reduce L-DOPA-induced dyskinesia in rodent (Lundblad et al., 2002; Dekundy et 

al., 2007) as well as primate models (Gomez-Mancilla and Bedard, 1993). Moreover, some 2 

adrenoceptor antagonists like idazoxan and fipamezole have shown antidyskinetic efficacy 
without compromising the anti-parkinsonian action of L-DOPA in monkey studies (Grondin 
et al., 2000; Fox et al., 2001; Savola et al., 2003) and clinical trials. 
A series of behavioural studies have demonstrated the therapeutic benefits of non-selective 

2 antagonists in reducing LID in animal models of Parkinson’s disease (Henry et al, 1999; 

Gomez-mancilla & Bedard, 1993). The anti-dyskinetic effects of the 2a selective antagonist 
fipamezole in non-human primate model of PD have been demonstrated (Savola et al, 2003). 

It was suggested in this study that in LID, the activation of 2 adrenoceptors that regulate 
the activity of the direct pathway, by L-DOPA or its metabolites, may facilitate LID (Savola 

et al, 2003). Although the exact site of 2 adrenoceptor antagonist was not determined in the 
study by Savola et al, the authors have reached a similar conclusion by suggesting the 

involvement of the direct pathway in the mechanism of 2 adrenoceptor antagonists. 

According to the previous discussion, the anti-dyskinetic effect of 2 adrenoceptors can be 
simply explained by the blockade, by the antagonist, of the effect of 3-MT at the inhibitory 

presynaptic 2a in the terminals of locus coeruleus projection to the substantia nigra, 
resulting in facilitation of noradrenaline release. Noradrenaline, subsequently, exerts an 
inhibitory action on the GABAergic projection in the direct pathway, counteracting the 
overactivity of this pathway.  

10. Conclusion 

In conclusion, the discussions presented in this review demonstrate a potential role for 
noradrenergic system in Parkinson’s disease and LID. Several lines of evidence suggest that 
the noradrenergic system regulates the activity of the direct pathway of the basal ganglia, 

through presynaptic 2 receptors located in the SNr, and the indirect pathway through pre-

and postsynaptic 2 in the striatum, and 2 and 2 in the subthalamic nucleus. The model 
presented here suggests that the degeneration of noradrenergic neurons contributes to the 
pathophysiology and symptomatology of PD, and that the remaining intact noradrenergic 
neurons exert a compensatory mechanism in PD. Furthermore, we suggest a role for L-
DOPA metabolites in the mechanism of LID; this role might be mediated through the 

activation of 2 adrenoceptors. According to this model, the anti-dyskinesic action of 2 

antagonists might be mediated by the blockade of 2a adrenoceptors located in the terminals 
of locus coeruleus projection to the SNr.  
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