We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,500
Open access books available

175,000
International authors and editors

190M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Solid State and Thermal Behavior of 17β-Estradiol in Ammonioethyl Methacrylate Ester Copolymer

Chutima Wiranidchaphong
Faculty of Pharmacy, Srinakharinwirot University
Thailand

1. Introduction

17β-estradiol is the most potent form of naturally occurring estrogen secreted during the reproductive years (Andersson 2000; Paoletti 2001). It is an essential steroid hormone that regulates numerous endocrine functions through binding to two estrogen receptor (ER) isoforms, i.e., ERα and ERβ. The concentration of these receptor subtypes and the corresponding cofactors vary with tissue types, leading to tissue specific regulation of estrogen response and toxicity. However, the content of ER in tissues has been assumed to be time-invariant (Plowchalk 2002). This indicates that multiple or prolonged exposure to E₂ of ER in various tissues should not alter physiological and toxic responses.

Estradiol (E₂) is carried in the plasma in two forms, bound to plasma binding proteins (95-98 %) and unbound form or free estradiol (2-5 %) (Dunn 1983; Pardridge 1986; Plowchalk 2002). Both unbound and bound forms of E₂ manifest pharmacological actions. Bound form acts as a reservoir for E₂ in blood circulation (Plowchalk 2002). After menopause the primary circulating estrogen is estrone, which is less biologically active than E₂ (Kuhl 2005; Margolis 2010). Thus, E₂ is usually administered to control early menopausal symptoms such as hot flashes and night sweats. For long-term administration E₂ can prevent cardiovascular diseases and osteoporosis (Andersson 2000; Paoletti 2001). After administered E₂ reaches to blood circulation, it rapidly undergoes chemical conversions to estrone, driven in part by the body’s need to maintain homeostasis. Other estrogens in conjugated forms either equine- or synthetic-derived also exist as a balance between the ingested form and estrone at steady state in the body. Margolis (Margolis 2010) indicated that the conversion of E₂ to estrone was reversible reaction. Therefore, estrone plays as a hormonally inert reservoir, capably converting to E₂. These conversions make the administered estrogen indistinguishable from naturally occurring E₂ in the body.

However, hormone therapy is not without risks. The FDA and several professional organizations currently recommend prescribing the lowest effective dose for the shortest duration of time in accordance with treatment goals for an individual woman (Mueck 2003; Utian 2008; Margolis 2010). Nowaday there are a wide variety of estrogen products, including oral tablets, transdermal patches, and topical sprays, gels, and lotions, as well as vaginal creams, tablets, and rings. Selection of an appropriate product is often based on patient’s preference. Oral estrogen dosage form is preferred due to its convenient route of
administration. To improve outcome of estrogen therapy, formulation properties and product pharmacokinetics should be considered for choosing an appropriate product.

2. Biopharmaceutics and pharmacokinetics of estrogen products

Oral administration of estrogen in tablet dosage form is the most favorable form for estrogen replacement therapy. The oral bioavailability of estrogen is dependent on its solubility in gastrointestinal (GI) fluid and permeability across membrane of endothelial cell lining in the gut wall. Unconjugated estrogens are hydrophobic molecules with low solubility in GI fluid. To improve the bioavailability their dissolution has to be increased.

Methods normally used to enhance estrogen dissolution are chemical modification and reduction of the particle size. Modification of chemical structure by conjugating with hydrophilic groups via esterification such as estradiol acetate and sulfonation such as sulfonated estrogens can improve drug dissolution. Conjugated estrogens exhibit better solubility than unconjugated form. However, most of conjugated estrogens have low affinity for ER. Thus, oral administration of conjugated form such as sulfonated estrogens may reduce undesired stimulation of ER within the GI tract. Since sulfonated estrogens are carried to target tissues, they are enzymatically hydrolyzed and then converted to bioactive estrogens (Margolis 2010). Similarly, estradiol acetate is also hydrolyzed in plasma and tissue and then transforms to active estrogen (Iwamori 2005; Margolis 2010).

Using micronized form of estrogen as an active ingredient in tablet formulation can improve estrogen dissolution by increasing surface area exposure to the dissolution medium. This phenomenon can be described by the Noyes-Whitney Equation (Shargel 1999):

\[
\frac{dc}{dt} = \frac{DA}{h} (C_s - C)
\]

where \(\frac{dc}{dt} \) = rate of drug dissolution at time \(t \), \(D \) = diffusion rate constant, \(A \) = surface area of the drug particles, \(C_s \) = concentration of drug in the stagnant layer (equal to solubility of the drug), \(C \) = concentration of drug in bulk solution, \(h \) = thickness of the stagnant layer.

From Noyes-Whitney equation, rate of drug dissolution at time \(t \) \(\left(\frac{dc}{dt} \right) \) is directly increased as the surface area of the drug particles \((A) \) is increased. Using micronized estrogen in tablet formulation results in the increase of surface area of the drug particles and consequently increases estrogen dissolution. Furthermore, design of tablet disintegration by using specific disintegrants in the formulation affects the duration to allow estrogen to dissolve in the GI fluid and then absorb into the blood stream. Product design potentially affects the bioavailability of estrogen.

During hormone therapy estrogens are orally administered once a day according to prolonged terminal elimination half-life (Plowchalk 2002). Oral dosage form of estrogens is often formulated in immediate-release tablet. This kind of product rapidly releases estrogen after administered. Due to rapid absorption of estrogens into the blood circulation (Margolis 2010), plasma estrogen concentration versus time profile reveals peaks and troughs pattern. Therefore, oral administration of immediate-release estrogen tablets has the potential to produce high spikes in blood levels, which possibly lead to estrogen-excess symptoms such as breast tenderness, headaches, nausea, vomiting, mood swings, bleeding, or spotting.

Boyd et al. (Boyd 2003; Margolis 2010) reported the decrease in maximum concentration ranging from 3% to 36% in a fed state as compared to a fasting state in subjects, taking
Solid State and Thermal Behavior of 17β-Estradiol in Ammonioethyl Methacrylate Ester Copolymer

Conclusions

In summary, the trend of estrogen product development has led to the exploration of non-oral administrations, which avoid hepatic first-pass effect and allow for smaller doses while preventing undesirable changes from liver stimulation. However, desirable estrogen products require not only the lowest effective dose but also maintaining estrogen concentration within a therapeutic range over a conveniently long dosing interval. These characteristics ensure adequate concentration of estrogen in blood for preventing both daytime hot flashes and night sweats, while not reaching overly high or peaky blood levels that may cause adverse events.

In the past, the only way to eliminate the peak and trough plasma levels of drug therapy was to deliver continuous intravenous (IV) infusion to a patient at a constant rate based on pharmacokinetics of the drug. However, this kind of drug administration requires healthcare professionals to monitor drug concentration in the plasma, thus usually cannot be performed at home. To alleviate this problem, various types of controlled-release drug delivery systems have been developed to release the drug at a constant rate, replacing the administration via continuous IV infusion. In 1937, Parks and Dansby had formulated compressed pure crystalline estrogen pellets and administered them by subcutaneous injection to livestock. The results showed a continuous release of hormone over 3 months in several animals. Their work was presented at the Royal Society of Medicine in London. This led to a widespread idea of hormonal implantation in animals, which became the standard practice in the 1950s (Dash 1998). This discovery sparked an interest area of implantable drug delivery systems, leading to extended studies and continuous discoveries until the present time.

Implantable drug delivery systems have basically been classified into two major classes, i.e., drug implants and implantable pumps containing the drug. The first class utilizes various types of polymer matrices and polymeric membranes to control the kinetics of drug release from the delivery systems (Danckwerts 1991; Dash 1998). The second class consists of mechanical pump-type implants, which utilize an infusion pump-type action to control release of the drug. For estrogen therapy, the goal of the delivery system is to release estrogens at a constant rate throughout an intended period of time. Controlled release of estrogen products either transdermal patches or vaginal rings utilize polymer matrices and/or polymeric membranes as rate-controlling element similar to drug implants. To clearly understand how polymer matrices and polymer membranes can facilitate the release of estrogen, the fundamentals of rate-controlling drug delivery should be addressed.

3. Basic concepts of rate-controlled estrogen delivery

The majority of recent literatures have been focused on sustained-release and controlled-release drug delivery systems. Sustained-release drug product is referred to a dosage form formulated to retard the release of a therapeutic agent. Thus, the drug in the systemic
circulation is delayed the onset, prolonged its plasma concentration and provided longer duration of action (Chien 1992). On the other hand, controlled-release drug product is pointed to the delivery system giving a release profile not only predictable kinetically but also reproducible from one unit to another (Chien 1982; Chien 1989; Chien 1992).

Basic principles in the rate-controlled drug released from both polymer matrix and polymeric membrane is governed by Fick’s laws of diffusion (Grant 1968; Chien 1992), which define the flux of diffusion \(J_D \) across a plane surface of unit area as shown;

\[
J_D = -D \frac{dc}{dx}
\]

where \(D \) is the diffusivity of drug molecule in a medium of solid, solution, or gas, \(\frac{dc}{dx} \) is the concentration gradient of the drug molecule across a diffusional path with thickness \(dx \), and a negative sign is used to define the direction of diffusion from a region with high concentration to a region with low concentration. The drug concentration gradient acts as the energy element for the diffusion of drug molecules.

In order to identify the mechanism of drug release, governed by Fick’s laws of diffusion, the following assumptions need to be established (Chien 1992);

1. Dissolution of drug crystals into their surrounding medium is the first step of the drug release process.
2. A pseudo-steady state exists in the process of controlled drug release.
3. The diffusion coefficient of a drug molecule in a given medium is invariable with time and distance.
4. The interfacial partitioning of a drug molecule from polymer toward solution is related to its solubility in polymer \(C_p \) and in solution \(C_s \) as defined by

\[
K = \frac{C_s}{C_p}
\]

where \(K \) is defined as the partition coefficient.

Kinetically released of drug molecules from these types of rate-controlled drug delivery should be illustrated at each mechanism of drug release.

3.1 Polymer membrane permeation-controlled drug release

Polymer membrane permeation-controlled drug release has been appeared in a pharmaceutical dosage form in which a drug is totally or partially encapsulated within a drug reservoir compartment. The drug reservoir may exist in solid, suspension, or solution forms. The encapsulation of drug formulation inside the reservoir compartment is performed by spray coating, injection molding, hot-melt extrusion, microencapsulation, or other techniques. The examples of this kind of rate-controlled drug delivery system are Progestasert IUD, an intrauterine device and Norplant, subdermal implant. Progestasert IUD contains a suspension of progesterone crystals in silicone medical fluid, encapsulated in a nonporous membrane of ethylene vinyl acetate copolymer in a T-shaped device. This product can continuously release progesterone in the uterine cavity at rate of at least 65 \(\mu g \)/day for a year (Chien 1992). For Norplant, the active drug is levonorgestrel, encapsulated in nonporous silicone medical-grade tubing with both ends sealed with medical-grade adhesive silicone. The development of this product has been found in 2 generations. The first is composed of 6 units of levonorgestrel crystals encapsulated in silicone tubes and the second is composed of 2 units of silicone tubes.
-containing levonorgestrel dispersing in silicone elastomer matrix inside. Both are designed to continuously liberate the active drug at a daily dosage rate of 30 μg for up to 7 years (Croxatto 1981; Weiner 1981; Diaz 1982; Segal 1983; Chien 1992).

The release process begins on the outermost layer of drug particles dissociating themselves from the crystal state and then dissolving in the surrounding medium, partitioning and diffusing through the polymer structure, and finally partitioning into the elution medium surrounding the device. During the device is sink in the surrounding medium, the hydrodynamic diffusion layer occurs on the immediate surface of the device. Therefore, the diffusion path length in which drug molecules diffuse across under a concentration gradient is the addition of the thickness of polymeric membrane and the hydrodynamic diffusion layer.

The cumulative amount of drug \(Q \) released from a unit surface area of a polymer membrane permeation-controlled drug delivery system is expressed as shown (Chien 1992);

\[
Q = \frac{C_p K D_p D_d}{K D_p h_p + D_d h_d} t - \frac{D_p D_d}{K D_p h_p + D_d h_d} \int_0^t C_b(t) \, dt
\]

where \(C_p \) is the drug solubility in the polymer, \(K \) is the partition coefficient as defined by Equation (3), \(D_p \) and \(D_d \) are the drug diffusivities in the polymer membrane with thickness \(h_p \) and in the hydrodynamic diffusion layer with thickness \(h_d \), respectively. \(C_b(t) \) is the concentration of drug in the interface of diffusion layer/bulk solution, \(t \) is time, and \(dt \) is a differential length of time.

In the case of sink condition throughout the course of controlled drug release, the saturated concentration of drug in the solution \((C_s) \) is much higher than the concentration of the drug in the bulk solution \((C_b(t); C_s >> C_b(t) \) or \(C_b(t) \approx 0 \). Thus, Equation (4) can be reduced to

\[
Q = \frac{C_p K D_p h_p}{K D_p h_p + D_d h_d} t
\]

The rate of drug released from this system can be defined by rearrangement of Equation (5) into

\[
\frac{Q}{t} = \frac{C_p K D_p h_p}{K D_p h_p + D_d h_d}
\]

Equation (6) indicates that the rate of drug release per unit time is equal to a constant value, i.e., the solubility of drug in the polymer, the partition coefficient, the diffusivity of drug molecule, and the thickness of the rate-controlling membrane. This implies that the polymer membrane permeation-controlled drug delivery gives a constant drug release profile. Equation (6) has considerably described the release of progesterone from Progestasert IUD (Chien 1992).

In case of a thick polymer membrane \((h_p) \) and/or extremely low diffusivity of drug molecules in a polymer \((D_p) \), which is dependent on the type of polymer material, the term of \(K D_p h_p \) is much higher than the term of \(D_d h_d \). Thus, Equation (6) can be simplified to

\[
\frac{Q}{t} = \frac{C_p D_p}{h_p}
\]

Under this condition the rate of drug release is a function of the solubility and diffusivity of drug in the polymer and is inversely proportional to the thickness of the polymer membrane. So the release of drug molecules is governed by the membrane-modulated permeation process.
In case of a very low interfacial partition coefficient \((K) \) or a thick hydrodynamic diffusion layer \((h_d) \), in which a condition is little movement of the surrounding medium, the \(KD_{hp} \) term is significantly smaller than the \(D_p h_d \) term. Equation (6) can be reduced to

\[
\frac{q}{t} = \frac{C_p K D_d}{h_d} \]
(8)

From Equation (2), since \(C_p K = C_w \) Equation (8) can be rewritten as;

\[
\frac{q}{t} = \frac{C_p D_d}{h_d} \]
(9)

Under this condition the rate of drug release is a function of drug solubility in the surrounding medium and drug diffusivity in the hydrodynamic diffusion layer and is inversely proportional to the thickness of the hydrodynamic diffusion layer. Thus, the release of drug molecules is governed by the diffusion layer-limiting partition-controlled process.

From the principle of controlled release of drug from a dosage form in which the drug is encapsulated inside the polymer membrane, solubility of the drug strongly affects the rate of drug release. Under the condition in which the polymeric membrane plays the leading role in modulation of drug release, drug solubility in that polymer is a significant factor influencing the rate of drug release. On the other hand, under the condition of the hydrodynamic diffusion layer-limiting partition-controlled process, drug solubility in the surrounding medium affects the rate of drug release. Thus, an alteration in drug solubility either in polymer membrane or in the surrounding medium can also affect the rate of drug released from this kind of drug delivery system.

3.2 Polymer matrix diffusion-controlled drug release

Delivery system, controlling drug release by polymer matrix diffusion-controlled drug release, is prepared by homogeneously dispersing drug particles in a rate-controlling polymer matrix. The drug dispersion in the polymer matrix can be produced by dissolving the drug and the polymer in an appropriate solvent, followed by solvent evaporation at an elevated temperature and/or under a vacuum, or mixing finely ground drug particles with a rubbery polymer at an elevated temperature. The drug-polymer dispersion is then compressed, molded, or extruded to form a drug delivery device of various shapes and sizes designed for specific application.

An example of this type of drug delivery system is Compudose subdermal implant, fabricated by dispersing micronized estradiol (E\(_2\)) crystals in a viscous silicone elastomer and then coating the E\(_2\)-dispersing polymer around a rigid (drug-free) silicone rod by extrusion to form a rod-shaped implant. This product has been used for growth promotion in steers. It can release E\(_2\) at controlled dose for 200 to 400 days (Hsieh 1987; Chien 1992).

The release of drug dispersing in a matrix environment is based on the hypothesis that the drug particles cannot move from their individual positions in the polymer matrix. The drug solids in the layer closer to the surface of the device are first diffused, so that this layer becomes a drug depletion zone. Then, the drug particles in the next layer begin to dissolve and diffuse, resulting in the growing thickness of drug depletion layer. This thickness becomes greater and greater as more drug solids are eluted out of the device, leading to inward advancement of the interface of drug dispersion zone/ drug depletion zone into the core of the device for another thickness \((dh_p) \). Therefore, the rate of drug release from the polymer matrix diffusion-controlled drug delivery system is time-dependent and
progressively decreases in response to increase in the thickness of the diffusional path as time goes by. At steady state the rate of drug release \(\frac{dQ}{dt} \) is defined as followed (Chien 1992):

\[
\frac{dQ}{dt} = \left(\frac{AC_pD_p}{2t} \right)^{1/2}
\]

(10)

where \(A \) is the initial drug loading dose in the polymer matrix, \(C_p \) is the drug solubility in the polymer, which is also the drug reservoir concentration in the system, and \(D_p \) is the diffusivity of the drug molecules in the polymer matrix.

Integration of Equation (10) gives the relationship of the cumulative amount of drug release \(Q \) directly varied with the square root of time as the following equation;

\[
Q = \left(2AC_pD_p \right)^{1/2}(t)^{1/2}
\]

(11)

From Equation (11), the cumulative amount of drug released from the polymer matrix diffusion-controlled drug delivery system is controlled by the loading dose, solubility and diffusivity of the drug in the polymer matrix. This confirms that the drug solubility in the polymer is also one of significant factors affecting the amount of drug released from this delivery system.

One major drawback of the polymer matrix diffusion-controlled drug delivery system is its inability to achieve a constant release due to the variable thickness of the drug depletion zone. The thickness of the drug depletion zone increases as the release of drug proceeds. Therefore, the rate of drug release decreases with the reciprocal of the square root of time. Rippe and Johnso (Rippe 1969), Cobby et al. (Cobby 1974), and Hsieh et al. (Hsieh 1983) revealed that the shape of a matrix could be a factor affecting drug release, so that several researches since last 2 decades have been done in development of new designs of matrix system in order to achieve the zero-order or near zero-order release kinetics.

3.2.1 Hemipheric polymer matrix diffusion-controlled drug release

Drug released from hemispheric polymer matrix device has been designed to achieve a constant release (Hsieh 1983). The device is composed of the drug dispersing in a hemispheric polymer matrix, coated with an impermeable material except for a small cavity cut into the center of the flat surface as shown in Figure 1. Only a cavity in the center where

![Diagram of a hemispheric polymer matrix device](https://www.intechopen.com)

Fig. 1. Diagram of a hemispheric polymer matrix device: \(a_i \) was the inner radius; \(a_o \) was the outer radius; \(R \) was the distance to the interface between the drug depletion zone (white area) and the drug dispersing zone (diagonal lines); and black represented coated regions through which the drug release could not occur (From Hsieh, et. al., 1983).
the drug can be released the interface between drug depletion zone and drug dispersing zone moves into the interior as a front. The inwardly-releasing hemisphere increases the available area, where the drug can be released, so as to compensate the increase in diffusion distance of drug transport.

The rate of drug release \(\frac{dq}{dt} \) from the hemispheric polymer matrix device can be expressed as (Hsieh 1983):

\[
\frac{dq}{dt} = 2\pi C_s D_p a_i \left(\frac{R}{R-a_i} \right) \tag{12}
\]

where \(\pi \) is a constant value, \(C_s \) is drug solubility in the surrounding medium, \(D_p \) is the diffusivity of drug molecules in the polymer matrix, \(a_i \) is radius of the cavity, and \(R \) is radial distance to interface between drug depletion zone and drug dispersing zone within the matrix. Since \(R-a_i \) becomes equal to \(R \) when \(R \gg a_i \), Equation (12), then, can be simplified to:

\[
\frac{dq}{dt} = 2\pi C_s D_p a_i \tag{13}
\]

Each of the terms in Equation (13) is a constant. Thus, the rate of drug released from the hemispheric polymeric matrix device with small \(a_i \) is essentially constant. The theoretical analysis has been agreed with the experimental data obtained from Hsieh et al. (Hsieh 1983). Their study addressed that hemispheric matrices acted as constant release systems for both sodium salicylate and bovine serum albumin, which were represented as small molecule and macromolecule, respectively.

3.2.2 A hollow cylindrical polymer matrix diffusion-controlled drug release

Drug released from a hollow cylindrical matrix device demonstrates a constant release profile because mechanism of drug released from this device is almost similar to that of the hemispheric polymer matrix device. This device has been fabricated by Vandelli and Cameroni since 1993 (Vandelli 1993a; Vandelli 1993b). It is a cylindrical polymer-drug matrix with a hole bored in the center of the flat surface through both sides of the matrix as displayed in Figure 2. All surfaces of the device are coated with an impermeable polymer except a central hole where the drug can be released, similar to the hemispheric polymer matrix device.

![Diagram of a hollow cylindrical matrix device](https://www.intechopen.com)

Fig. 2. Diagram of a hollow cylindrical matrix device: \(a_i \) was the inner radius; \(a_o \) was the outer radius; \(R \) is the distance to the interface between the drug depletion zone (light gray area) and the drug dispersing zone (dark gray area); and black representing coated regions through which the drug release could not take place (Reproduced from Wiranidchapong, 2006).
In addition, the swelling polymer used in the matrix can modulate the drug release following pseudo-zero order kinetics regardless of the loaded drug. This device regulates the drug release by swelling process and the effect of matrix geometry (Vandelli 1993b).

3.2.3 The three-layer polymer matrix diffusion-controlled drug release

The three-layer polymer matrix device has been designed to achieve zero-order kinetics of the drug release under the trade name of Geometrix® Technology since 1992 (Conte 1993; Conte 1996; Conte 2000; Abdul 2004). In fact, this device is a multi-layer tablet, which comprises of a matrix core containing an active drug and one or more barriers applied to the core directly during the tableting process. The barriers reduce the burst release of the drug in the core by limiting the available surface for the drug release and controlling the solvent penetration rate at the same time. During the subsequent portions of the barriers dissolve, the erosion of these swollen barriers is dominated and the surface available for the drug release slowly increases. In this way the decrease of delivery rate due to the increase of diffusion path-length, corresponding to the increase of drug depletion zone, is counterbalanced by the simultaneous increase of the available area for drug release. Thus, the drug release can be maintained at a relatively constant level during the swelling and erosion of the barriers.

Maggi et al. (Maggi 2000) declared that release profiles of the three-layer matrices with the same cores and different barriers were different. The barriers containing polymers of higher viscosity were stronger reduction in the rate of drug release than those containing polymers of lower viscosity. In the same way, the cores containing the polymers of higher viscosity released the drug at a lower rate than those containing the polymers of lower viscosity. However, the dissolution profiles of the three-layer systems with the same barriers but different polymers used in the cores were similar. Their work was focused on the modulation of highly water-soluble drug released such as diltiazem hydrochloride. Therefore, the core had less effect on the modulation of drug release while the barriers played the leading role in controlling drug release from the three-layer matrix system used a highly water-soluble drug as a model drug.

The three-layer polymer matrix containing 17β-estradiol (E\textsubscript{2}) as a model drug was produced by Wiranidchapong (Wiranidchapong 2006). E\textsubscript{2} dispersing in poly(ethyl acrylate-methyl methacrylate-trimethylammonioethyl methacrylate chloride) 1:2:0.1 or Eudragit® RS (ERS) at weight percent of 10, 20, and 30 was used in the core component while ERS free drug was used as polymeric barriers on both sides of the core. In vitro release of E\textsubscript{2} from the three-layer matrices exhibited 80 % of cumulative amount of E\textsubscript{2} released within 7 days in all cases as shown in Figure 3(a). E\textsubscript{2} daily release rate from these matrices is shown in Figure 3(b). The increase in weight percent of E\textsubscript{2} in the core did not significantly increase E\textsubscript{2} daily release rate.

To compare E\textsubscript{2} release profiles obtained from the three-layer matrices containing different weight percents of E\textsubscript{2} used in the cores, the similarity factor (f\textsubscript{2}) was used in the assessment. The f\textsubscript{2} test adopted by the Center for Drug Evaluation and Research (FDA) and by Human Medicines Evaluation Unit of the European Agency for the Evaluation of Medicine Products (EMEA) can be defined as the following equation (Costa 2001).

\[
f_2 = 50 \times \log \left[\left(\frac{1}{n} \sum_{j=1}^{n} R_j^2 - T_j^2 \right)^{0.5} \times 100 \right]
\]

(14)
where \(n \) is the sampling number, \(R_j \) and \(T_j \) are the percent dissolved of two comparative formulations at each time point \(j \). FDA and EMEA have suggested that two dissolution profiles are declared similar if \(f_2 \) is between 50 and 100. The higher \(f_2 \) value, the more similar dissolution profiles are obtained (Costa 2001).

\[
\begin{align*}
\text{(A)} & \quad \text{In vitro release} \\
\text{(B)} & \quad \text{daily rate}
\end{align*}
\]

Fig. 3. In vitro release (A) and the daily rate (B) of E\(_2\) released from the three-layer matrices containing 10, 20, and 30 % w/w E\(_2\) in ERS used in the cores (Reproduced from Wiranidchapong, 2006).

\(f_2 \) values of E\(_2\) release profiles of the core containing 10 % w/w E\(_2\) compared with those containing 20 and 30 % w/w E\(_2\) were 57.18 and 58.16, respectively. In addition, \(f_2 \) values obtained from the comparison of E\(_2\) release profiles of the core containing 20 % w/w E\(_2\) with those containing 30 % w/w E\(_2\) was 77.77 (Wiranidchapong 2006). Thus, E\(_2\) release profiles of the three-later polymer matrices containing 10, 20, and 30 % w/w E\(_2\) in ERS used in the cores were similar.

In the case of the increase in weight percent of drug in the matrix, the porosity upon drug depletion is increased and the tortuosity is reduced, so that rate of drug release should increase. However, the rate of E\(_2\) release did not increase as weight percent of E\(_2\) in the cores increased. This suggested that the increase in porosity and the decrease in tortuosity in the core of the three-layer matrix could not elevate the E\(_2\) release rate. The porosity and the tortuosity might not be the important factors in controlling E\(_2\) release from this system.

Similar study was investigated with norethindrone (NET), the other poorly water-soluble drug, used in the core and ERS employed as barriers of the three-layer matrix (Wiranidchapong 2006). The cumulative release and the daily release rate of NET from the three-layer matrices containing 30, 40, and 50 % w/w NET in ERS used in the cores are shown in Figure 4. NET release profiles showed 80 % of NET released within 14 days in all cases. NET daily release rate exhibited relatively constant within 9 days.
Fig. 4. In vitro release (A) and the daily rate (B) of NET released from the three-layer matrices containing 30, 40, and 50 % w/w NET in ERS used in the cores (Reproduced from Wiranidchapong, 2006).

From preliminary study conducted at 37°C, 120 rpm, the solubility of E₂ and NET in 3.5 % w/v benzalkonium chloride in phosphate buffer pH 7.4 used as release medium were 891.29 μg/ml and 460.16 μg/ml, respectively. The solubility of NET in the release medium is around two times lower than that of E₂ corresponding to two times longer extended release of NET than that of E₂.

The f_2 values obtained from the comparison of NET release profile of the three-layer matrix in which core containing 30 % w/w NET with those containing 40 and 50 % w/w NET were 73.23 and 72.55, respectively. Furthermore, f_2 values obtained from NET release profile of the core containing 40 % w/w NET compared with that of 50 % w/w NET was 96.69. This indicated the similarity among NET release profiles obtained from the three-layer polymer matrices containing 30, 40, and 50 % w/w NET in the polymeric cores.

This study represented that the intrinsic solubility of E₂ and NET affected the duration of drug released from the three-layer matrix. The increase in weight percent of E₂ and NET used in the core corresponding to the increase of the porosity and decrease of the tortuosity did not increase the daily release rate. The solubility of E₂ and NET in the release medium predominated in controlling the E₂ and NET release when compared with the porosity and the tortuosity upon drug depletion.

Further study was to investigate the effect of the barrier and the type of polymer used in the core and barrier on NET released from the three-layer matrix (Wiranidchapong 2006). Poly(ethyl acrylate-methyl methacrylate-trimethylammonioethyl methacrylate chloride) 1:2:0.1 and 1:2:0.2 or Eudragit® RS (ERS) and Eudragit® RL (ERL), respectively have been used as rate controlling polymers. ERL is more permeable than ERS because of higher content of quaternary ammonium groups in the structure. The NET released profile obtained from the three-layer matrix using ERL in the core was compared with that of ERS.
In addition, the NET released profiles obtained from the three-layer matrices having the same cores but different kinds of polymer used in the barriers and without the barriers were also investigated. The percentage of drug loading was set at 30.

The cumulative release of NET from the three-layer matrices using ERL in the cores with barrier layers of either ERL or ERS exhibited 80 % of NET released within 2 days whereas those of ERS in the cores with either ERS or ERL in the barriers and without the barriers exhibited 80 % of NET release within 14 days as illustrated in Figure 5. The difference of polymer used in the core significantly changed NET release profile but the difference of polymer used in the barriers, including without the barriers did not significantly change NET release profile. Therefore, the core exerted more influence on the modulation of a poorly water-soluble drug release than the barrier did.

NET release profiles of the devices containing ERS in the cores were compared with each other. The f_2 values of NET release profiles obtained from the device using ERS in the barriers compared with those of ERL and without the barriers were 75.36 and 77.76, respectively. In addition, f_2 value of NET release profile obtained from the device using ERL in the barriers compared with that of without barriers was 86.00. The NET release profiles obtained from the devices using ERS in the cores with the barriers using either ERS or ERL and without the barriers were similar. Thus, the three-layer design did not affect the NET release.

Fig. 5. In vitro release of NET from the three-layer matrices containing ERS or ERL used in the cores and ERS or ERL used in the barriers, including without the barriers (Reproduced from Wiranidchapong, 2006).

Approximately 60 % of either E₂ or NET released from the three-layer matrices investigated in this study were well fitted with the zero-order released model by linear regression analysis. The coefficient of determination (R^2) obtained from each fit was in the range of 0.9946 – 0.9999 (Wiranidchapong 2006). The zero-order model was apparently appropriate to describe either E₂ or NET released from the matrices using ERS as the rate-controlling polymer. As previously mentioned, the zero-order kinetic of drug released is accomplished in the polymer membrane permeation-controlled drug delivery system in both conditions.
Solid State and Thermal Behavior of 17β-Estradiol in Ammonioethyl Methacrylate Ester Copolymer

governed by the polymeric membrane-modulated permeation process and the diffusion layer-limiting partition-controlled process. In case of incompletely coated membrane such as the three-layer polymeric matrix, the hydrodynamic diffusion layer (h_d) predominates in controlling the drug release. As seen in Equation (9), the rate of drug release is a result of drug solubility in the surrounding medium.

Chandrasekaran and Paul (Chandrasekaran 1982) announced that the solubility of poorly water-soluble drug predominated and offered as the limiting resistance to drug release. This resulted in the saturated concentration of dissolved drug at the inside of matrix pores when drug loading exceeded the drug solubility under the given condition. Non-dissolved drug was not available for diffusion but it acted as a drug reservoir for keeping constant the absolute amount of drug release within a certain period of time. The zero-order release kinetic could be achieved under this condition (Siepmann 2001). Furthermore, Kim (Kim 2000) indicated that the geometry was not an important factor for a drug dissolution controlled release system and the increase in the porosity and the reduction in the tortuosity did not influence the kinetics of drug release. Therefore, the zero-order kinetic of either E$\textsubscript{2}$ or NET released from the matrices was a result of the inherent solubility of E$\textsubscript{2}$ and NET providing the drug dissolution controlled release system (Wiranidchapong 2006). The E$\textsubscript{2}$ released from the polymeric matrix is controlled by the dissolution of E$\textsubscript{2}$ in the surrounding medium. Therefore, an alteration in the solid state of E$\textsubscript{2}$ dispersing in the polymer matrix can modify the characteristic of E$\textsubscript{2}$ release. Solid state of E$\textsubscript{2}$ should be revealed in both cases of pure drug and the drug dispersing in the polymer under various conditions, which might be appeared in the manufacturing process.

4. Solid state properties of estradiol

The most common form of E$\textsubscript{2}$ is the hemihydrates (Variankaval 2000; Wiranidchapong 2008). However, E$\textsubscript{2}$ can exist in various kinds of pseudopolymorphs as hemisolvates, dependent on the type of solvent used in the crystallization. For an example, E$\textsubscript{2}$-hemisolvate of methanol was produced by crystallization in saturated solution of E$\textsubscript{2}$ in methanol (Variankaval 2000). In addition, either polymorphs or pseudopolymorphs exhibit the definite arrangement of molecules inside the crystal lattice. This directly affects on a crystal habit, which is an external shape of the crystal. Thus, crystal morphology is a specific characteristic for each polymorphic form. An alteration in polymorphic state possibly changes the crystal habit and/or even crystal morphology, leading to significant variation in raw-material characteristics such as particle orientation, flowability, packing, compaction, suspension stability and dissolution. This can lead to serious implications of physical stability in dosage forms (Niazi 2007).

E$\textsubscript{2}$ can exist in the amorphous form and at least three crystalline forms, including E$\textsubscript{2}$-hemihydrate (Variankaval 2000; Wiranidchapong 2006; Wiranidchapong 2008). Differential scanning calorimetry (DSC) curve reveals that the three crystal forms and amorphous form of E$\textsubscript{2}$ are inter-convertible under various thermal conditions as displayed in Figure 6(A) (Wiranidchapong 2006; Wiranidchapong 2008). This indicates that the polymorphic transformation of E$\textsubscript{2}$ possibly occurs during manufacturing process in which optimal thermal energy has been utilized. Thus, inconsistency of E$\textsubscript{2}$ polymorphs have probably been found in pharmaceutical products obtained from inadequate quality control of manufacturing procedures. Different polymorphs exhibit dramatic change in physical and chemical properties. This leads to inconsistency in dissolution rate, rate of drug release from
controlled-release product, and bioavailability. To control the product quality, physicochemical properties of E2 polymorphs should be verified.

4.1 Characterization by DSC and TGA

From DSC analysis, E2-hemihydrate exhibited the melting point onset at 179.2 °C corresponding to the third endotherm observed in the first heating run (DSC; 0-182 °C at 10 K/min). The first endotherm (onset at 110 °C) and second endotherm (onset at 174 °C) in the first heating run corresponded to the partial release of hydrogen bonded water and the complete loss of water lattice, respectively. The water loss observed in the first scan was agreed with a weight loss of 3.2 % of E2 measured by thermogravimetric analysis (TGA) as illustrated in Figure 6(B) (Wiranidchapong 2006; Wiranidchapong 2008). This result indicated that the stoichiometry of E2 should be C_{18}H_{24}O_{2}.1\frac{1}{2}H_{2}O.

![Figure 6](https://www.intechopen.com)

Fig. 6. (A) DSC curve of E2 scanned with the program: (1) heating to 182 °C, 10 K/min, cooling to 0 °C, 20 K/min, and then (2) heating to 250 °C, 10 K/min; (B) TGA of E2 (Reproduced from Wiranidchapong, 2008).
On cooling (DSC; 182-0 °C at 20 K/min) the glass transition temperature (T_g) was observed around 84.2 °C, correlating to that observed in the second heating (DSC; 0-250 °C at 10 K/min). This aspect revealed an appearance of amorphous E2 after E2-hemihydrate had been melted and then rapidly cooled. In the second heating the amorphous E2 in glassy state was changed to that in rubbery state when the temperature reached the T_g, followed by recrystallization into ED form as stated by Variankaval et al. (Variankaval 2000) and anhydrous E2 exhibiting their melting points at 169.6 °C and 179.2 °C, respectively (Variankaval 2000; Wiranidchapong 2006; Wiranidchapong 2008).

4.2 Characterization by X-ray powder diffraction
Each polymorph of E2 exhibits the definite X-ray powder diffraction (XRPD) patterns as illustrated in Figure 7. E2-hemihydrate demonstrates characteristic peaks at 13.14, 15.74, 18.26, 22.62, and 26.58° (Latsch 2003; Park 2005; Wiranidchapong 2006; Wiranidchapong 2008). Anhydrous E2 prepared by heating E2-hemihydrate from 0-175 °C and 0-180.5 °C at heating rate of 5 K/min exhibited the characteristic peaks at 13.60, 16.78, 21.00, and 24.72°, which were not observed in the diffraction pattern of E2-hemihydrate.

The relative peak intensity of anhydrous E2 obtained from heating to 180.5 °C was less than that of anhydrous E2 obtained from heating to 175 °C. In addition, the diffraction peaks of anhydrous E2 obtained from heating to 180.5 °C did not significantly separate from baseline, indicating a mixture of crystalline form and amorphous form. This represents the inconsistency in the appearance of E2 polymorph when the process slightly changes. ED form of E2 prepared by heating E2-hemihydrate to 180.5 °C at 5 K/min and cooling to 0 °C at 20 K/min and finally heating to 140 °C at 5 K/min manifested the definite diffraction pattern, which exhibited the characteristic peaks at 12.64 and 19.94°. This feature indicates that XRPD analysis can be used to investigate polymorphic forms of E2, which are inter-convertible under various thermal conditions.

4.3 Characterization by FTIR
FTIR spectra of E2-hemihydrate, anhydrous E2, and the mixture of anhydrous E2 with amorphous E2 are displayed in Figure 8. E2-hemihydrate exhibited very broad bands
centered at 3435.95 and 3232.06 cm$^{-1}$ attributed to O-H stretching of hydroxyl group adjacent to C-17 and C-3 positions in E$_2$ chemical structure, respectively (Barnett 1995; Wiranidchapong 2006; Wiranidchapong 2008; Wiranidchapong 2009). The broad band characteristic indicates the hydrogen-bonded hydroxyl group with water entrapped in the crystal structure.

Anhydrous E$_2$ prepared by heating E$_2$-hemihydrate to 175 °C at 5 K/min displayed the peak around 3530 cm$^{-1}$ in the FTIR spectrum. This peak corresponded to free hydroxyl group absorption (Kuo 2001a; Kuo 2001b; Wiranidchapong 2006; Wiranidchapong 2008; Wiranidchapong 2009). The appearance of this peak was agreed with the water loss during heating. However, broad bands centered at 3434.27 and 3245.29 cm$^{-1}$ attributed to O-H stretching of hydroxyl group adjacent to C-17 and C-3 positions respectively in the E$_2$ chemical structure, were still observed.

For FTIR spectrum of E$_2$ heated to 220 °C at 5 K/min, which was presumably the mixture of anhydrous E$_2$ with amorphous E$_2$, the O-H stretching bands of hydroxyl groups adjacent to the C-17 and C-3 positions and C-H stretching vibration of aromatic ring in the regions of 3100-3000 cm$^{-1}$ (Silverstein 1991) shifted to lower wavenumber when compared with those of E$_2$-hemihydrate and anhydrous E$_2$. Furthermore, three consecutive peaks in the range of 1655-1580 cm$^{-1}$ attributed to absorption of the mixtures of tautomeric keto and enol forms (Silverstein 1991) were noticed in FTIR spectrum of E$_2$ heated to 220 °C whereas only two consecutive peaks in this region were observed in FTIR spectra of E$_2$-hemihydrate and anhydrous E$_2$. Due to the absorption peak in this region affected by physical state, electronic and mass effects of neighboring substituents, conjugation, hydrogen bonding, and ring strain (Silverstein 1991), this might be the characteristics of amorphous E$_2$ blended with anhydrous
E₂. In addition, the peaks in the regions of 1300-900 cm⁻¹ illustrated different shapes from those of E₂-hemihydrate, and anhydrous E₂.

According to drug dissolution and drug solubility in the polymer affecting the rate of drug released from either polymer membrane permeation- or polymer matrix diffusion-controlled release systems, solid state of E₂ dispersing in the polymer should also influence the rate of E₂ release. Solid dispersion prepared by solvent evaporation is generally used to distribute drug into the polymeric matrix (Serajuddin 1999). Solid dispersions containing E₂ in ERS at 1 and 2 % w/w exhibited amorphous state of E₂ in the dispersion while those containing E₂ at 10, 20, and 30 % w/w illustrated crystalline state of E₂ in the dispersion (Wiranidchapong 2006). This interpretation was supported by photomicrographs of ERS, solid dispersion containing 1, 2, 10, 20, and 30 % w/w of E₂ in ERS and E₂ under polarized light microscope as shown in Figure 9. The absence of birefringence was observed in ERS and solid dispersions containing 1 and 2 % w/w of E₂. This is a characteristic of amorphous substance, which cannot turn plane polarized light and cannot reflect purple light to other wavelengths of visible lights. On the other hand, the birefringence was observed in solid dispersions containing 10, 20, and 30 % w/w of E₂ and E₂ crystal powder. This is a characteristic of crystalline substance, which is able to turn plane polarized light and reflect purple light to other visible wavelengths.

![Photomicrographs](https://example.com/photomicrographs.png)

Fig. 9. Photomicrographs obtained from polarized light microscope: (A) ERS; solid dispersions containing E₂ in ERS at weight percent of (B) 1; (C) 2; (D) 10; (E) 20; (F) 30; and (G) E₂-hemihydrate (Reproduced from Wiranidchapong, 2006).

To compare with approximately 80 % of the E₂ released from the matrices containing E₂ at 10, 20, and 30 % w/w in the dispersion within 7 days, the matrices, which were composed of E₂ at 1 and 2 % w/w in the dispersions released approximately 60-80 % of the E₂ within 3
Sex Hormones

420 days (Wiranidchapong 2006). This study was in accordance with the finding of amorphous
E\(_2\) in the dispersion containing E\(_2\) at 1 and 2 % w/w. Amorphous state is
thermodynamically unstable. The molecular interactions of amorphous substance are
weakened and usually gone into breaking. Therefore, amorphous E\(_2\) exhibited higher
dissolution rate than crystalline E\(_2\), so that the rate of E\(_2\) release from matrix containing
amorphous E\(_2\) is higher than that of the matrix containing crystalline E\(_2\).
The polymorphic state of E\(_2\) in the polymer matrix can be observed not only by polarized
light microscope but also by DSC and/or MTDSC (modulated temperature differential
scanning calorimetry) (Wiranidchapong 2006; Wiranidchapong 2008; Wiranidchapong
2009). To understand how DSC and/or MTDSC can differentiate between amorphous state
and crystalline state of E\(_2\) dispersing in the polymer matrix. Thermal behavior of solid
dispersion containing E\(_2\) in ERS should be explored.

5. Thermal behavior of E\(_2\) in ERS solid dispersion

In general, T\(_g\) is one of thermal properties of an amorphous material observed by thermal
analysis. Likewise, the melting point is a thermal property of a crystalline material. In the
case of the amorphous E\(_2\) existing in the polymer matrix, either E\(_2\) or polymer in the matrix
are amorphous materials. Thus, both amorphous E\(_2\) and the polymer can manifest their T\(_g\).
A question is how the T\(_g\) behavior of this solid dispersion is. Which one between a single T\(_g\)
or both T\(_g\) of amorphous E\(_2\) and the polymer should be observed? For a solid dispersion
composed of crystalline E\(_2\) in the polymer matrix, what the temperature should be the
melting point of E\(_2\) in the dispersion? Does the polymer influence on the melting point of E\(_2\)?
To understand the thermal behaviors of E\(_2\) in ERS solid dispersion, the theory of the
miscibility between the binary mixtures in which a polymer blend should be addressed.

5.1 T\(_g\) behavior described by the Gordon Taylor equation

In polymer sciences, the miscibility of a polymer blend composed of two amorphous
polymers can be determined by thermal analysis. A single T\(_g\) point is an indication of full
miscibility of a polymer blend (Kuo 2001a; Kuo 2001b; Maldonado-Santoyo 2004). On the
contrary, an immiscible polymer blend exhibits more than one T\(_g\) representing T\(_g\) of
amorphous pure polymers used as components (Kuo 2001a). In general, T\(_g\) of a miscible
blend lies between T\(_g\) of the pure polymers, which can be predicted by Gordon-Taylor
equation or its modified version equation (Maldonado-Santoyo 2004). Either T\(_g\) or weight
fraction of binary polymer components are major factors in predicting the T\(_g\) of a miscible
polymer blend by Gordon-Taylor equation and its modified version equation.
Gordon-Taylor equation has been proposed for the composition dependence on the T\(_g\) of
miscible polymer blends derived under these assumptions (Schneider 1988):
1. The contacts due to the interaction between the components of the blend are
responsible for conformational arrangement, free volume distribution, and
conformational energy barriers.
2. The probabilities of binary contact are related to the volume fractions of the
components, so that the composition dependence on the T\(_g\) has been related to the
volume fractions (\(\Omega\)) of the components.
The Gordon-Taylor equation with respect to the volume fraction (\(\Omega_2\)) of the stiffer polymer
component (with T\(_{g2}\)) has been defined as the following relationship (Schneider 1988):

www.intechopen.com
The parameters K_1 and K_2 are related to the difference of the T_g of the polymer components $(T_{g2} - T_{g1})$, so that

$$K_1 = \frac{K'_2}{(T_{g2} - T_{g1})}$$

and

$$K_2 = \frac{K'_2}{(T_{g2} - T_{g1})}$$

The system-specific constant K'_2 is related to the interaction energy differences between hetero- and homo-contacts, whereas K'_2 considers the energetic effects on the binary contacts of the molecular surrounding.

The ideal behavior of the polymer blend exhibits the equality of the different energetic effects. This means the identical energetic effects of both hetero- and homo-contacts and the equality of the contact energy of the molecular neighborhood. So both K_1 and K_2 are equal to zero in the idealized condition of the T_g behavior of miscible polymer blend. The Gordon-Taylor equation resulted from the idealized condition can be expressed;

$$\frac{T_{g2} - T_{g1}}{T_{g2} - T_{g1}} = \phi_2$$

$$T_g = \phi_2 T_{g2} + (1 - \phi_2) T_{g1}$$

Because of $\phi_1 + \phi_2 = 1$, and then

$$T_g = \phi_2 T_{g2} + \phi_1 T_{g1}$$

To express in term of the temperature-dependent weight fraction (w_i), the volume fractions (ϕ_i) are given by the expression;

$$\phi_i = \frac{(\Delta a_i \times w_i) / \rho_i}{\sum((\Delta a_i \times w_i) / \rho_i)}$$

where ρ_i is the density of the components and Δa_i is the difference between the expansion coefficients of the melt (L) and the glass (gl) at T_g ($\Delta a_i = a_{Li} - a_{gli}$).

Introducing Equation (21) into Equation (20), yielding the Gordon-Taylor equation expressed in term of the temperature-dependent weight fraction as displayed;

$$T_g = \frac{\rho_2 \Delta a_1 w_1 T_{g1} + \rho_1 \Delta a_2 w_2 T_{g2}}{(\rho_2 \Delta a_1 w_1 + \rho_1 \Delta a_2 w_2)}$$

Due to $K = \frac{\rho_1 \Delta a_1}{\rho_2 \Delta a_2}$ so that Equation (22) can be rearranged as;

$$T_g = \frac{w_1 T_{g1} + Kw_2 T_{g2}}{w_1 + Kw_2}$$

In the case of polymer blends exhibiting the behavior deviating from the ideal behavior, the fit of Gordon-Taylor equation to experimental data fails. This suggests an interaction contribution to the Gordon-Taylor parameters (K). The Kwei equation is recommended in this case. The Kwei relation is identical to a second-order equation of the proposed model
expressed in Equation (15). It considers different energetic effects of the binary contact \((K_1 \neq 0)\), but neglects the effects of the immediate neighborhood of contacts \((K_2 = 0)\). Therefore, Equation (15) can be written under this assumption as shown:

\[
\frac{T_g-T_{g1}}{T_{g2}-T_{g1}} = (1 + K_1) \Phi_2 - K_1 \Phi_2^2
\]

(24)

Equation (24) can be illustrated in term of the corrected weight fraction \((w_{1c})\) as the following equations;

\[
\frac{T_g-T_{g1}}{T_{g2}-T_{g1}} = (1 + K_1) w_{2c} - K_1 w_{2c}^2
\]

(25)

\[T_g = w_{1c} T_{g1} + w_{2c} T_{g2} + (T_{g2} - T_{g1}) (K_1 w_{2c} w_{1c})
\]

(26)

Due to \(w_{1c} = w_1/(w_1 + K w_2)\) and \(w_{2c} = K w_2/(w_1 + K w_2)\), so that Equation (26) can be rewritten as displayed;

\[
T_g = \frac{w_1 T_{g1} + K w_2 T_{g2}}{w_1 + K w_2} + (T_{g2} - T_{g1}) \frac{K_1 K w_2 w_1}{(w_1 + K w_2)^2}
\]

(27)

Because of \(q = (T_{g2} - T_{g1}) \frac{K_1 K}{(w_1 + K w_2)^2}\), then Equation (27) can be illustrated as;

\[
T_g = \frac{w_1 T_{g1} + K w_2 T_{g2}}{w_1 + K w_2} + q w_2 w_1
\]

(28)

Equation (28) is the Kwei equation, which is the second order equation of the proposed model. The q parameter reflects the balance between breaking the intra bonding and forming the inter bonding. Normally the q parameter corresponds to the strength of hydrogen bonding. The q value of the polymer blend should depend on an entropy change corresponding to the change in the number of hydrogen bonding interactions. In the case of negative q value, it indicates that the self-associated hydrogen bonding is stronger than the inter-associated hydrogen bonding. In reciprocal way, the positive q value indicates that the self-associated hydrogen bonding is weaker than the inter-associated hydrogen bonding. The higher q value, the stronger hydrogen bonding (Kuo 2001a; Kuo 2001b).

The third order equation of the proposed model considers the contact interaction energies \((K_1 \neq 0)\) and the influence of the molecular neighborhood on the contact energy \((K_2 \neq 0)\), so that Equation (15) can be written in the term of the corrected weight fraction of the stiffer polymer \((w_{2c})\) as displayed below;

\[
\frac{T_g-T_{g1}}{T_{g2}-T_{g1}} = (1 + K_1) w_{2c} - (K_1 + K_2) w_{2c}^2 + K_2 w_{2c}^3
\]

(29)

The Equation (29) can be resolved for the \(T_g\) of the blend as the following expression;

\[
T_g = \frac{(1-w_2) T_{g1} + K w_2 T_{g2}}{1 + (K-1) w_2} + \frac{K_1 K}{1 + (K-1) w_2^2} \times (1-w_2) w_2 - \frac{-K_1 K_2}{1 + (K-1) w_2^2} \times (1-w_2) w_2^2
\]

(30)

Equation (30) is an extended Gordon-Taylor equation, which is written in term of the weight fraction of the stiffer polymer \((w_2)\). Due to Equations (16) and (17), \(K_1^*\) and \(K_2^*\) are related to \(K_1\) and \(K_2\), respectively, so that the influence of the weight fraction of the components on the \(T_g\) is included both \(K_1\) and \(K_2\).
The application of Gordon-Taylor equation and its modified version equation has been extended to describe the T_g behavior of E_2 in ERS solid dispersion (Wiranidchapong 2006; Wiranidchapong 2008; Wiranidchapong 2009). The study revealed that solid dispersions containing E_2 in ERS at weight percent of 1-90 manifested a single T_g lying between the T_g of ERS (66.21 °C) and E_2 (83.77 °C) as displayed in Figure 10.

In addition, the T_g shifted toward the T_g of E_2 when weight fractions of E_2 in the dispersions increased. This behavior was observed in E_2 in ERS solid dispersions investigated by MTDSC with the program of heating from 25 to 182 °C at 10 °C/min, cooling to 25 °C at 20 °C/min, an isothermal period for 5 min at 25 °C, and finally heating to 250 °C at 5 °C/min. This heating program provided the transformation of E_2-hemihydrate into amorphous E_2 blended with ERS as the same as a blend of amorphous polymers. Thus, the T_g behavior of these blends could be described by the principle of Gordon-Taylor equation. However, the experimental T_g values were better fitted to Kwei equation than the Gordon-Taylor equation. The q value, the Kwei equation parameters, obtained from the curve-fitting was not equal to zero, which implied an interaction between E_2 and ERS in the blend.

5.2 The melting point behavior described by the flory-huggins theory

In the case of a crystalline polymer blended with an amorphous polymer, the melting point depression of a crystalline polymer in blend indicates the miscibility and interaction between the polymer components. Partially miscible or immiscible blends do not typically show the depression of melting point whereas a miscible blend displays the melting point depression when the content of amorphous polymer increases. The temperature reduction was a result of morphological effects and thermodynamic reasons (Kuo 2001a; Kuo 2001b). In a thermodynamically miscible blend, an amorphous polymer resides inside the interlamellar regions of a semi-crystalline polymer. It expands the interlamellar regions.

Fig. 10. T_g of E_2 in ERS solid dispersions at concentration range of 0-100 % w/w investigated by MTDSC with the program: heating to 182 °C, 10 K/min, cooling to 25 °C, 20 K/min, an isothermal period for 5 min at 25 °C, and finally heating to 250 °C, 5 K/min (Reproduced from Wiranidchapong, 2008).
Sex Hormones

radial growth rate, time to half volume crystallization and melting temperature of semi-crystalline component generally decrease as the concentration of the amorphous polymer increases. The mean field self-consistent theory used to a model of a blend containing di-block copolymers composing of crystallisable and amorphous copolymer blocks has been proposed. The free energy based on this theory can be expressed as a sum of free energy of free crystalline and amorphous blocks, entropy and enthalpy of interactions between these two blocks. For long chain polymers, the effect of the end groups can be ignored. The change in partial free energy of the crystals in a miscible blend \(\Delta g_{2b} \) can be expressed (Rostami 2000);

\[
\Delta g_{2b} = \Delta g_2 + \Delta g_m
\]

(31)

where \(\Delta g_2 \) is the change in partial free energy of energy of crystalline unit of a homopolymer and \(\Delta g_m \) is the change in partial free energy of the mixture.

The equilibrium melting temperature is defined as the last temperature that infinitely long crystal melts. By definition, at the equilibrium melting temperature of the blends, where the last crystal melts, \(\Delta g_{2b} \) becomes zero, so that Equation (31) can be expressed as following equations;

\[
\Delta g_2 = -\Delta g_m
\]

(32)

\[
\Delta h_2 - T_{mb}\Delta S_2 = -\Delta g_m
\]

(33)

\[
1 - \frac{T_{mb}\Delta S_2}{\Delta h_2} = -\frac{\Delta g_m}{\Delta h_2}
\]

(34)

where \(\Delta h_2 \) is the heat of fusion of a crystalline polymer, \(T_{mb} \) is the equilibrium melting point of a blend, and \(\Delta S_2 \) is the entropy of crystalline unit in a blend.

In condition of a narrow temperature range between \(T_{mb} \) and \(T_m \) which is the equilibrium melting point of a crystalline polymer, it is reasonable to assume that \(\Delta h_2 \) and \(\Delta S_2 \) are temperature independent hence;

\[
T_m = \frac{\Delta h_2}{\Delta S_2}
\]

(35)

Introducing Equation (35) into Equation (34), so that Equation (34) can be expressed as the following equation;

\[
1 - \frac{T_{mb}}{T_m} = -\frac{\Delta g_m}{\Delta h_2}
\]

(36)

A popular equation for \(\Delta g_m \) is given by the classic Flory-Huggins mean field model. When a crystalline polymer is designated as the second component in the mixture, the lattice model gives;

\[
\Delta g_m = \frac{RT_{mb}V_2}{V_1} \left\{ \ln \left(\frac{\phi_2}{\tau_2} \right) + \left(\frac{1}{\tau_2} - \frac{1}{\tau_1} \right) \phi_1 \right\} + \frac{RT_{mb}V_1}{V_2} \phi_2 \lambda_{21} \phi_2^2
\]

(37)

where \(\Phi \) is the volume fraction and \(r \) is the chain length of each component denoted by the subscript used. \(V_1 \) and \(V_2 \) are the molar volume of the amorphous unit and the crystalline unit, respectively. \(\lambda_{21} \) is the polymer-polymer interaction parameter. \(R \) is the universal gas constant. \(T_{mb} \) is the temperature of the blends. The term in the square bracket represents contribution from the combinatorial entropy to the chemical potential changes per mole of crystalline unit in the mixture. As a major contribution to the molar free energy changes of
the mixture is provided by the enthalpy term, which is the second term of Equation (37). The entropy contribution is neglected, so that \(\Delta g_m \) can be written in term of an approximate chemical potential form as displayed;

\[
\Delta g_m = -\frac{RT_m V_b \lambda_{21}}{V_1} \Phi_1^2
\]

(38)

Substituting this approximated term into Equation (36) and rearranging, so that the resulting relationship is given as the following equation (Rostami 2000; Pimbert 2002);

\[
\frac{1}{T_{mb}} - \frac{1}{T_m} = -\frac{R \lambda_{21} \Phi_1^2}{\Delta h_2 V_1}
\]

(39)

According to \(\lambda_{21} = \frac{BV_s}{RT_{mb}} \), Equation (39) can be written as the following expression (Nishi 1975; Kuo 2001a);

\[
T_m - T_{mb} = -\frac{T_m BV_s \Phi_1^2}{\Delta h_2}
\]

(40)

where \(B \) is the interaction energy density characteristic of the polymer pair. The resulting equation, Equation (40), is the Nishi-Wang equation (Nishi 1975; Kuo 2001a; Kuo 2001b).

From the investigation of the E\(_2\) melting point in solid dispersions containing E\(_2\) in ERS at the concentration range of 0-100 % w/w (Wiranidchapong 2006; Wiranidchapong 2008), the melting point depression as a function of composition was revealed as displayed in Figure 11. The behavior of the E\(_2\) melting point in ERS solid dispersion was in accordance with that of a crystalline polymer blended with an amorphous polymer. Fitting experimental melting point of E\(_2\) in the dispersion to the Nishi-Wang equation exhibited good agreement between experimental values and predicted values, with randomly distributed residuals and the coefficient of determination \((R^2) \) of 0.9804. In addition, \(B \) value obtained from curve-fitting was \(-0.281 \text{J/(g*cm}^3\) (Wiranidchapong 2006; Wiranidchapong 2008). This indicated validity of the Nishi-Wang equation to predict the melting point of E\(_2\) in ERS solid dispersions, miscibility and interaction between E\(_2\) and ERS in the molten state.

Fig. 11. The melting point depression of E\(_2\) in ERS solid dispersions at concentration range of 0-100 % w/w investigated by MTDSC with the program of heating to 250 °C, 5 K/min (Reproduced from Wiranidchapong, 2006).
5.3 The interaction between E\textsubscript{2} and ERS in solid dispersion

Both Kwei equation and Nishi-Wang equation predicted an existence of a specific interaction between E\textsubscript{2} and ERS in the molten state. FTIR analysis was used to investigate the interaction between E\textsubscript{2} and ERS in solid dispersions. FTIR spectra of E\textsubscript{2} in ERS solid dispersions heated from 25-175 °C at 5 K/min were compared with those of anhydrous E\textsubscript{2} and ERS as illustrated in Figure 12. The peak around 3530 cm-1, corresponding to free hydroxyl group absorption (Kuo 2001a; Kuo 2001b; Wiranidchapong 2006; Wiranidchapong 2008; Wiranidchapong 2009), in FTIR spectrum of anhydrous E\textsubscript{2} was also observed in that of 75 % w/w E\textsubscript{2} in ERS solid dispersion heated from 25-175 °C. This indicated the water loss during the heating process, so that the free hydroxyl group of E\textsubscript{2} was observed. Additionally, the band at 1732 cm-1 corresponding to the ester C=O stretching vibration of free carbonyl group (Pignatello 2002; Wiranidchapong 2006; Wiranidchapong 2008; Wiranidchapong 2009) was displayed in FTIR spectrum of ERS.

The interaction between E\textsubscript{2} and ERS was affirmed by the shift of broad band centered at 3434 cm-1, attributed to O-H stretching of hydroxyl groups adjacent to C-17 positions in E\textsubscript{2}, to 3411 cm-1 with a shoulder of the ester C=O stretching band in 75 %w/w E\textsubscript{2} in ERS solid dispersion heated from 25-175 °C. The shoulder around 1710 cm-1 corresponding to the hydrogen-bonded carbonyl group (Kuo 2001a; Kuo 2001b; Wiranidchapong 2006; Wiranidchapong 2008; Wiranidchapong 2009) suggested the inter-associated hydroxyl-carbonyl bond. The shoulder around 1710 cm-1 was also observed in FTIR spectra of 50 and 20 %w/w E\textsubscript{2} in ERS solid dispersions heated from 25-175 °C. Thus, the inter-associated hydrogen bonding between the free hydroxyl group of E\textsubscript{2} and the ester C=O group of ERS was occurred in solid dispersion of E\textsubscript{2} in ERS in the molten state in which water was removed from the E\textsubscript{2} crystal. This occurrence was in accordance with the prediction by Kwei equation and Nishi-Wang equation.

![Fig. 12. FTIR spectra of E\textsubscript{2} in ERS solid dispersions at concentration range of 0-100 % w/w heated from 25-175 °C, 5 K/min, recorded at room temperature in the range of 3800-2600 cm-1 (A) and 1800-900 cm-1 (B) (Reproduced from Wiranidchapong, 2008).](www.intechopen.com)
6. Conclusions

E₂ is an essential steroid hormone that regulates numerous endocrine functions secreted during the reproductive years. Early phase in menopause symptoms can be relieved by administration of E₂ mimicking the menstrual cycle. The treatment goal requires the lowest effective dose delivered into the blood circulation at a constant rate. This manner can prevent estrogen-insufficient symptoms and/or estrogen-excess symptoms according to peak and trough pattern of plasma estrogen concentration versus time profile. Polymer matrix diffusion controlled-release drug delivery system can provide a relatively constant rate of E₂ release. The accomplishment of a constant release is a result of the inherent solubility of E₂ providing the drug dissolution controlled-release system. Polymorphic state of E₂ dispersing in the polymer matrix directly affects the solubility of E₂ in the surrounding medium and consequently the rate of E₂ released. Thermal analysis can be used to verify the polymorphic state of E₂ dispersing in the polymer matrix. In the case of amorphous E₂ dispersing in the polymer matrix, the T_g behavior can be described by the principle of Gordon-Taylor equation. On the other hand, the melting point depression of crystalline E₂ dispersing in the polymer matrix can be described by the Flory-Huggins theory. Additionally the interaction between E₂ and ERS used as a polymer matrix can be predicted by both theories.

7. Acknowledgment

This work is performed to celebrate Associate Professor Poj Kulvanich's sixty birthday. I wish to express my gratitude to my Ph.D. supervisor, Associate Professor Poj Kulvanich for providing me an opportunity to do the research at School of Pharmacy, University of Otago, New Zealand in 2005. The virtue of this work is given to Professor Ian Tucker, who makes me know how valuable the fitting model is. My acknowledgment is extended to Professor Thomas Rades, who firstly introduces me the principle of Gordon-Taylor equation. My special thanks are given to Boonta Chutvirasakul, lecturer in Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University for her assistance to proof the language of this work. Finally, I would like to express my gratitude to my mother and older brother for their support and encouragement.

8. References

miscibility, chemical structure and c_{12} interaction parameter in binary systems."
Polymer 43: 3295-3302.
pharmacokinetic model for estradiol in rats and humans: A biologically motivated
quantitative framework for evaluating responses to estradiol and other endocrine-active
compounds." Toxicological Sciences 69: 60-78.
matrix patches 50 mg/day: A three way cross-over study in 21 postmenopausal
Rostami, S. D. (2000). "Advances in theory of equilibrium melting point depression in
Spectrometric identification of organic compounds. J. Stiefel. Singapore, John Wiley
and Sons: 91-164.
"Estrogen and progestogen use in postmenopausal women: July 2008 position
matrices with a central hole. II. An interpretation of the release process." Int J
Pharm 100: 115-121.
Variankaval, N. E., Jacob, K. L., and Dinh, S. M. (2000). "Characterization of crystal forms of
β-estradiol-thermal analysis, Raman microscopy, X-ray analysis and solid-state
acrylate polymers as release controlling agent Pharmaceutics. Bangkok,
does not affect the miscibility between steroid hormone and polymethacrylate."
Thermochimica Acta 485: 57-64.
interactions between 17b-estradiol and Eudragit® RS in solid dispersion." J Pharm
Sex Hormones not only regulate reproductive function, but they also play a prominent role in the biology and physiology of several organs/tissues and in the pathophysiology of several diseases. During the last two decades, the information on the mechanisms of action of sex hormones, such as estrogens and androgens, has rapidly evolved from the conventional nuclear receptor dependent mechanisms to include additional non-nuclear, non-genomic and receptor-independent mechanisms. This highlights the need to update the current knowledge on sex hormones and their mode of action. Increasing evidence that exogenous/epigenetic factors can influence sex hormone production and action highlights the need to update our knowledge on the mechanisms involved. This book provides a systematic and updated overview of the male/female sex-hormones and their impact in the biology and physiology of various organs. Additionally, the book discusses their positive and negative association with the pathophysiology of various diseases (e.g. osteoporosis, cardiovascular-disease, hypogonadism, reproduction, cancer) and their therapeutic potential.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
