
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Towards Business Intelligence over Unified
Structured and Unstructured Data Using XML

Zhen Hua Liu and Vishu Krishnamurthy
Oracle University,

USA

1. Introduction

Traditional data warehousing has been very successful in helping business enterprises to
make intelligent decisions through declarative analysis of large amount of structured data
stored in a relational database. However, not all enterprise data naturally fit into a relational
model. Within an enterprise, there are huge amount of unstructured data, such as document
content, emails, spreadsheets, that do not have a fixed schema, or have a very sparse or
loose schema that cannot be effectively modeled using relational model. Yet, like relational
data, unstructured data record many useful facts that are equally essential and important to
be analyzed by businesses to make intelligent decisions. In this chapter, we propose an
XML-enabled RDBMS that uses XML as the underlying logical data model to uniformly
represent both well-structured relational data, semi-structured and unstructured data in
building an enterprise data warehouse that is able to store and analyze any data regardless
of existence of schema or not. We show how XQuery used in SQL/XML as a declarative
language to do data query, analysis and transformation over both structured data and
unstructured content in the data warehouse. We present the rationale for using XML as the
logical data model for unified data warehouse query, XML extended inverted text index to
integrate structured data query and context aware full text search for unstructured content
so as to support efficient data analysis over large volume of structured and unstructured
data. We argue that the technical approach of using XML to unify both structured and
unstructured data in a warehouse has the potential to push business intelligence over all
enterprise data to a new era.

2. Concept of a data warehouse

Inductive reasoning refers to human arriving at a conclusion based on their observations.
The inductive reasoning is a bottom up process where a general conclusion is reached from
many instances observed and analyzed. (Myers,1986) Data Warehouse and decision support
capabilities in modern database management system (DBMS) reflect the human inductive
reasoning process. Data Warehouse (DWH) and decision support system (DSS), typically
based on an RDBMS, involve extraction of operational data from business activities,
transformation of the operational data, and loading of the results conforming to a fixed
relational data model into a DWH store. Sophisticated data transformation, analysis, and
mining can then be applied to a DWH to derive useful conclusions that assist businesses in

www.intechopen.com

Business Intelligence – Solution for Business Development

56

making intelligent decisions. Such evidence based decision-making process achieved
through DWH is generally accepted as standard business intelligence practices in
Enterprises.

To achieve the goal of business intelligence, the design of DWH in DBMS must address the
following requirements that are different from operational data store in Online Transaction
Processing (OLTP) environment: Data Heterogeneity, Data Extraction and Batch Loading,
Large Data Volumes, and Declarative Ad-Hoc Query Performance.

Data Heterogeneity: since DWH store loads data from different operational store, therefore,
it is likely that data may not be as homogeneous as operational store is. That is, data may
not have well-defined common schema or may not have schema at all. The general trend is
that unstructured data content and semi-structured data are more common than well-
structured data to process and to query.

Data Extraction and Batch Load: building decision support system involves extraction of
data from various operational stores and bulk loading of them into a central DWH store.
This is known as ETL (ExTract Load) process. Data transformation is applied during ETL
process to convert data from different operational stores into canonical form. To handle
large data volume, tables can be partitioned and managed by several data server instances
in a clustered environment. Query can use table partition criteria as selection qualification to
work on different partitions of data. Data in DWH is typically partitioned based on certain
criteria, such as timestamp based range partition criteria or hash partition based on record
key or hybrid combination of the two. Such partition scheme facilitates life cycle
management of data and enables query parallelism.

Large Data Volume: Given the fast growing of memory core, it is reasonable to assume that
operational data are able to all fit in memory such that in memory database processing
becomes very attractive to overcome the gap between disk I/O speed and CPU speed.
However, the amount of data for DWH store shall never be assumed to fit in main memory.
Therefore, DWH design must take into consideration of selecting data layout to be disk I/O
friendly. For example, design favoring small number of sequential large I/O requests
generally delivers better performance than that of large number of random small I/O
requests. Consequently, DWH design usually lays out data in a way to be optimized for
large number of read requests instead of laying out data to be optimized for a large number
of random frequent data modification requests.

Declarative Ad-hoc Query Performance: declarative query is an attractive property for
DBMS so that users can declaratively specify what they want to ask instead of procedurally
programming the system on how to obtain the answer. Declarative query language
processing with superior performance is critical for the success of DBMS. For operational
store, the supported operations over data are usually pre-determined, therefore, the data
query and modification requests have deterministic patterns. Operational store query is
typically point query using id lookup that selects small amount of data using simple query
criteria. However for DWH environment, the query requests are ad-hoc and exploring in
nature. The query pattern is less predictive than that of operational store. DWH Query
typically involves processing large amount of data to get summarized report to facilitate
decision-making process or to mine data to derive insightful conclusion based on statistical
analysis. So DWH query can be long running compared with short running point query in
operational store.

www.intechopen.com

Towards Business Intelligence over Unified Structured and Unstructured Data Using XML

57

3. Data warehouse in SQL/RDBMS – its success and limitations

Based on a strong foundation in relational model and algebra (Codd, 1970), relational database
management system (RDBMS) is a great success. The practical realization of relational model
using Entity/Relationship (E/R) design (Chen,1975) greatly facilitates users to model real
world objects into entities with relationships so that they can be managed by RDBMS and
queried or modified declaratively using SQL. RDBMS has been very successful in supporting
On Line Transaction Processing (OLTP) workloads. Following the success of OLTP, businesses
have successfully built DWH using RDBMS to make intelligent business decisions. The
strength of DWH using SQL and RDBMS is described in section 3.1.

3.1 Strength of current DWH practices with SQL and RDBMS

3.1.1 Well-defined relational model for structured data

E/R design models structured data objects, that is, objects having well-defined schema, very
well. Objects are decomposed into entities (tables) with primitive attributes (columns).
Hierarchical tree shaped objects are modeled by one-to-one and one-to-many relationships
among entities via primary and foreign key relationships among tables. Graphical objects
are modeled by many-to-many relationships among entities via intermediate key mapping
tables. Many-to-many relationship enables construction of objects with different hierarchies.
Given that data is frequently updated in OLTP workload, high degree of data normalization
provides good update performance because same data is not duplicatively stored so that
data update occurs only in one place.

DWH schema design in RDBMS follows the same E/R design principle. The common
practice is to use star schema where there is a fact table with a set of dimension tables. An
example is shown in Tables 1,2,3,4,5 below. Fact table records business transactions. A fact
record is a WWWW tuple (Who purchased What,Where and When). In the example below,
Table 1 is a Fact table, while Tables 2-1,2,3,4,5 are dimension tables containing Customer,
Item, Store and Date dimensions respectively. There is a primary key on id column in each
dimension table. The id column of a dimension table is referred as dimension id. The
dimension id is also stored in the fact table. There is a foreign-key and primary-key
relationship between each column of fact table that stores the dimension id and its
corresponding referencing dimension table. In addition, for each dimension table, there are
dimensional columns that specify composite values for that dimension. DWH SQL query
involves joins among fact table and multiple dimension tables shown as Query 1. The
WHERE clause of DWH SQL query may use combinations of multiple predicates on
dimensional values and thus is ad-hoc in nature.

CustomerId ItemId StoreId DateId QuantitySold Description

1454 1456 123 13579 2

<sale_comment>
This is sold via special summer
sale promotion program at the
store. The promotion program

is conducted along with the
independence celebration

event in the city.
</sale_comment>

Table 1. Transaction fact table

www.intechopen.com

Business Intelligence – Solution for Business Development

58

CustomerId CustomerName

1454 John Smith

Table 2. Customers dimension table

ItemId ItemName ItemPrice ItemCategoryCode

1456 T.V $250.32 Electronic

Table 3. Items dmension table

DateId Date Month Year

13579 4 July 2004

Table 4. Dates dimension table

StoreId StoreName StoreZipCode

123 Eletronic-Supply 45789

Table 5. Stores dimension table

SELECT StoreId, count(*)
FROM TransactionFact f, Customers c, Items i, Dates d, Stores s
WHERE f.CustomerId = c.CustomerId AND f.ItemId = i.ItemId AND f.StoreId = s.StoreId AND
f.DateId = d.DateId AND i.ItemName = ‘TV’ AND s.StoreZipCode >= 45000 and
s.StoreZipCode <= 46000 AND i.ItemPrice < 300 AND d.Year between 2003 and 2005
GROUP BY StoreId

Query 1. SQL on Star Schema

3.1.2 Declarative SQL language with high performing SQL engines

SQL is powerful enough to express analytical queries declaratively. Beyond basic
conventional aggregation functions, such as sum() and avg(), contemporary RDBMS
supports data mining capabilities as built-in functions so that statistical analysis of data can
be done declaratively (Milenova et al., 2005). Through database extensibility work from
Object Relational DBMS (Stonebraker et al.,1998), user defined aggregation functions and
table functions are supported by contemporary RDBMS so that customized analytical logic
over virtual table row sources can be integrated into the SQL engine.

DWH has promoted fruitful research results and industrial practices in the past three decades
resulting in RDBMSs with well-engineered optimizers and executors to support DSS type of
SQL query workload. Advanced algebraic query transformation based on mathematical
property of relational set algebra (Seshadri et al., 1996), sophisticated statistics gathering and
dynamic sampling techniques, parallel query execution infrastructure (DeWitt & Gray 1992)
are well-developed compile time and execution time techniques to speed up SQL query for
DWH workloads. Furthermore, the recent trend of hardware acceleration to speed up query
execution is a new direction in greatly improving SQL query performance.

3.1.3 I/O friendly bitmap join index structures

The logical query plan of Query 1 on star-schema consists of three phases. The first phase is
to probe each Dimension table to find a set of dimension ids given the dimension value.

www.intechopen.com

Towards Business Intelligence over Unified Structured and Unstructured Data Using XML

59

Then use resulting dimension ids to find a set of row ids of the rows in Fact table that have
foreign key value matching the dimension ids using primary key and foreign key
relationship between the Fact table and each Dimension table. The row id (RID) in RDBMS
represents a physical locator to a row, which is typically composed of file id, page number
and slot number of a page where the row resides on a page. The second phase is to perform
set intersection of the set of RIDs of the Fact table to get a common set of RIDs that satisfy all
the AND qualifications in the where clause. The third phase is to use RIDs from second
phase to probe the Fact table to do further processing, such as Group By and Aggregation.
This phase may involve probing Dimension tables again using dimension ids from the Fact
table row to obtain dimension column values if the query selects dimension column value.

Given that a Dimension table is typically small enough to fit in memory, table scans can be
used to find a set of dimension ids given a dimension value. However, finding the set of
RIDs of the Fact table having these dimension ids via table scan of Fact table yields poor
performance due to the large size of the Fact table. The first attempt to improve the
performance is to leverage B+ tree index on foreign key columns of Fact table containing
dimension ids so that RIDs of the Fact table can be found via B+ tree index access. However,
B+ tree index results in many random I/O requests. Excessive seeks followed by small reads
after each seek is not I/O friendly.

To resolve B+ tree index performance problem, Bitmap Join Index (O’Neil & Graefe, 1995)
can be created between the foreign key column of the Fact table containing the dimension
ids and its referencing dimension id column of the Dimension table. In bitmap join index,
each row is given a row ordinal position (ROP). The bitmap join index maps a dimension
value of the Dimension table to a bitmap representing ROPs of the fact table that having that
dimension value. Bitmap can be compressed so that small amount of I/O is needed to load
all the relevant bitmaps into memory. During second phase, set intersection using bitmaps
of ROPs can be executed much more efficiently than that of using RIDs. At the end of
second phase, ROPs are converted into RIDs for further processing.

3.1.4 I/O Friendly columnar storage

Columnar storage (Stonebraker et al., 2005) for DWH is an I/O friendly approach to store
data in columnar fashion in order to avoid unnecessary disk I/O to read data that is not
needed by the query. Furthermore, when all values of a column are stored together, it is
more amenable to data compression that reduces amount of I/O and facilitates query
processing strategies that directly operate on compressed columnar data (Abadi et al., 2008).
We will explore this further in section 5.

3.2 Limitations of current DWH practices with SQL and RDBMS

3.2.1 Limited capability of handling unstructured data

Unlike structured data that has a static schema that fit into the relational model, we define
unstructured data to represent loosely structured data, arbitrarily structured data, or data
with high degree of schema variability. Such data do not fit into the structured relational
model. For data having highly varying schema, fitting it into relational model requires
constant schema evolution which is not a scalable and maintainable solution. It is more
natural to model such data as semi-structured data or as a string of attribute-value pairs.

www.intechopen.com

Business Intelligence – Solution for Business Development

60

Without a schema, such semi-structured data can only be stored in LOB (CLOB or BLOB)
columns in an RDBMS. Data without conforming to a rigid schema is increasingly becoming
common in enterprises. Like structured data, there is valuable information embedded inside
unstructured data that can help business enterprise to make better decision. Users are
looking to store and query unstructured data without defining a schema first. This exposes a
limitation of relational model that requires data to have schema before they are storable and
queryable.

3.2.2 Limited queriability of unstructured data

While unstructured data could be stored as LOBs in the RDBMS, there is effectively no
means to query the data inside these lobs. Popular RDBMSs have been extended to support
Full-text functionality that can be exercised through SQL. Therefore, text in these lobs could
be queried using Full-text search. For example, in the transaction Fact table, there is a
description column that records the comments of each purchase transaction. Users can
query transaction comments using text CONTAINS() function that does keyword search as
shown in Query 2. Users can create an inverted text index on description column of the fact
table to speed up CONTAINS() function. Organization of inverted text index follows the
traditional Information Retrieval (IR) technique (Salton & McGill, 1983) where a posting list
is created for each keyword. Given a keyword, the posting list identifies a set of DOCIDs
(Zobel & Moffat, 2006). The DOCID is the same as that of ROP, which is a simple integer
based sequence number in contrast with RID which is concatenated raw bytes from different
components. It identifies the row of the Fact table that has the keyword in the description
LOB column.

SELECT StoreId, count(*)
FROM TransactionFact f, Customers c, Items i, Dates d, Stores s
WHERE f.CustomerId = c.CustomerId AND f.ItemId = i.ItemId AND f.StoreId = s.StoreId AND
f.DateId = d.DateId AND i.ItemName = ‘TV’ AND s.StoreZipCode >= 45000 and
s.StoreZipCode <= 46000 AND i.ItemPrice < 300 AND d.Year between 2003 and 2005 AND
CONTAINS(description, ‘promotion’)
GROUP BY StoreId

Query 2. SQL on Star-Schema with Text Search

However, traditional IR (Salton & McGill, 1983) keyword based full text search is restricted
to text content search only, it doesn’t address querying structured data with text search, nor
does it address the capability of providing context aware text search (Yates & Navarro 1996).
There is no support for efficiently querying structure and content together. We will explore
and resolve this limitation in section 4 and section 5 using XML data model and XML
extended text index.

3.2.3 Lack of query optimizer and engine that is able to optimize both structured and
unstructured data query

Consider how Query 2, which consists of both structured data query and unstructured
content search via CONTAINS() function, is processed in RDBMS, Contemporary
processing strategy optimizes and executes the query in two parts. One part is the
structured query processing as described in for Query 1 to get a set of RIDs of the fact table.

www.intechopen.com

Towards Business Intelligence over Unified Structured and Unstructured Data Using XML

61

The other part is unstructured text content search query processing that gets a set of
DOCIDs of the fact table rows whose description column containing the search keyword
‘promotion’. Given a keyword, inverted text index returns a set of DOCIDs containing the
keyword. The set of DOCIDs is then mapped to set of RIDs. Then these two sets of RIDs are
intersected to get common RIDs of fact table. Note the inverted text index stores DOCIDs
instead of RIDs in its posting list because DOCIDs are more amenable for delta compression
to achieve very compact posting list size and thus reducing I/O traffic (Zobel &
Moffat,2006). This two-part processing strategy is rooted in different indexing and query
processing strategies in relational and IR approaches. However, the two-part processing
strategy does not deliver ideal performance for queries spanning both structured data and
unstructured data. We shall present a better strategy for handling such queries in section 5.

4. Using XML data model in a data warehouse for both structured and
unstructured data

4.1 Why XML data model in DBMS ?

Paper (Stonebraker & Hellerstein 2005) reveals the evolution of data models in database
community starting with the hierarchical model, then network, relational, object, object-
relational, leading up to the XML data model. The criticism on XML data model is that it
appears to date back to the hierarchical model that is well supported in IMS systems. Indeed
XML is a tree-based model forming single hierarchy and thus is not adequate to handle
multiple hierarchies. For example, for data with many-to-many relationship, such as the
classical example of students taking courses, relational model offers the most flexible way of
presenting such relationship without duplicating data. In a relational model, entity is
identified by an id, the ids are recorded in a relationship mapping table to capture many-to-
many relationships. With many-to-many relationships, two different hierarchies: the
hierarchy of student taking multiple courses and the hierarchy of a course being taken by
multiple students can be modeled without data duplication. For OLTP workloads where
data is read and updated frequently, relational model with application of high degree of
normalization rules is the best model. Therefore, there is no reason to suggest XML
model/XQuery as a replacement of the relational model/SQL.

However, the rationale for a DBMS is that it can store and retrieve all kind of data, not just
one kind of data. In RDBMS, structure of the data is well-defined so that data and its
structure can be separated out cleanly. Structure of data is defined using the relational
schema (table definitions) and managed as meta-data by RDBMS. Unstructured content is
one extreme of data where there is no meaningful structure to describe the collection of data.
Semi-structured data is data whose structure is not easily separable from data because the
structure is dynamic and evolving. Semi-structured data is represented by adding tags to
mark and annotate the data. The tag denotes inline structures of the data so that they can be
referred via navigation of tags. Each tag has a name and tags can form a hierarchy.
Querying semi-structured data involve querying tag names, tag hierarchy and data
together.

XML data model defines a hierarchical tree composed of nodes having both tag and content.
Structure of data is recorded as XML tags annotating the data. Both structure and data can
be stored and queried together using XQuery, a declarative language. XML can be used as a

www.intechopen.com

Business Intelligence – Solution for Business Development

62

canonical data model for representing all: unstructured data, semi-structured data and
structured data, in a DWH. The following is a list of key points illustrating how
XQuery/XML model differentiates from SQL/Relational model and keyword text search/IR
model.

Schema Flexibility: “Data first, schema later or never” approach is the key strength of XML
data model that differentiates itself from relational model. Data can be stored and queried
without defining schema for the data first. Data annotated with tags become self-describing
and self-contained. Data with high schema variability, data with rapidly evolving schema
can be modeled using XML model. Schema evolution, which is a common issue for RDBMS
administrators and developers, is not an issue for XML model. Although XML can be
schema-based, XML schema is primary used for the purpose of data validation instead of
being used as relational schema that defines table structures to store XML data. One XML
document collection can hold XML document instances without any XML schemas or
different XML schemas. This differentiates an XML model from a relational model where
one table can hold only entities conforming to one particular relational schema.

Structure Query Capability: In the XML data model, structures are not specified apriori as
meta-data. Instead, structures are embedded into the data, therefore, they can be searched
and queried as if they were data. Capabilities of wildcard tag name search and descendant
tag name search in XQuery essentially support the notation of searching structures without
knowing the exact names of the structure or the exact hierarchy of the structure. This
differentiates from SQL where exact names of the relational tables that hold the data and
exact join column keys to join tables must be specified in the query. Using XQuery on XML,
users have the flexibility of writing specific query with precise structural names and
hierarchy or generic query without precise structural names and hierarchy. The latter
capability gives user the flexibility of querying structures and data together while structure
of data is dynamic and evolving.

Full context aware text search Capability: With XQuery full text capability, XML data
model is an ideal data model to manage document contents. Classical keyword text search
for unstructured content from the IR community lacks declarative language to search
content with mark-up tag annotation. However, after document content is modeled as XML
document, XQuery full text search can be leveraged to provide hierarchical context-aware
full text search with context defined by XML tags. Classical keyword text search capability is
logically a degeneration of XQuery full text search over one XML text node capturing the
entire unstructured content. Therefore, XQuery/XML model completely subsumes the
keyword text search/IR model.

Declarative data transformation and construction: XQuery is an expressive language for
not only queries that enable “finding needles in the haystack”, but also transformation
constructs that enable transformation of existing data, construction of new data in a
declarative way. This differentiates from classical keyword text search where there is no
declarative language construct to process the searched keywords. Keyword highlighting
functionality is not part of the full text language. This also differentiates from SQL where
there is no declarative language facilitating hierarchical result construction. Therefore, in the
relational model that flattens everything, hierarchical object construction has to be done
outside SQL in a procedure-oriented host programming language code. With XML data

www.intechopen.com

Towards Business Intelligence over Unified Structured and Unstructured Data Using XML

63

model and XQuery, hierarchical object construction can be defined declaratively as
hierarchical views over the relational model.

In summary, Figure 1 shows the positions and value of XML. Currently unstructured data is

stored in LOB column without the need of schema. So they are easy to store, however, there

is no strong declarative language, such as SQL, to query them. This falls into NO-SQL

approach. Structured data are stored in relational model and is easy to query them using

SQL. However, it is relatively hard to store them without coming out schema first. XML sits

in the middle to bridge these two worlds and provides value as a flexible data model with

declarative XQuery language.

Fig. 1. XML bridges SQL and No-SQL approaches

4.2 Why XML for DWH?

Besides representing semi-structured data and unstructured content, there are advantages to
leveraging XML data model to handle DWH processing. We present the key points here.

4.2.1 ETL flexibility

Building DWH requires Extracting, Transforming, and Loading (ETL) of data from multiple
data sources. XML is increasingly being used as an exchange format to facilitate data
transfer. In the past decade, different industries have defined XML schemas, such as XBRL
schema for business reporting, HL7 schema for health industry, FPXML schema for financial
industry to capture and exchange domain specific XML data. When an XML schema is rigid,
it is possible to shred the XML data into relational tables. However, common industrial XML
schema is designed to capture all possible data representations, therefore, industrial XML
schema is highly variant with usage of many XML constructs, such as XML nodes of any
data type, mixed content data, choice models, etc., so that mapping XML schema into
relational schema is either infeasible or will result in the creation of many tables having

www.intechopen.com

Business Intelligence – Solution for Business Development

64

many null columns that are sparsely populated with data. From the perspective of XML
schema, this is reasonable because XML schema is supposed to be used for XML data
validation instead of being used to decompose XML into relational data. This indeed
highlights the crux of the challenges faced with data integration and extraction. That is,
coming up with a small, rigid relational like schema that covers every piece of data variant
is not feasible. To overcome this problem, common ETL process for RDBMS DWH store
defines a minimal relational schema that captures the most commonly used data. The rest of
the data that do not fit the relational schema are either stored in LOB columns or as files in
the file system. This results in limited query capability over the non-relational data.

Using an RDBMS that supports XML persistence overcomes the above deficiencies because
using XQuery the structure and data in the XML can be queried together. Furthermore,
well-structured data in the XML can be extracted into relational tables by building XML
indexes on top of XML storage (Liu et al., 2007). This approach of persisting data as XML
first and extracting well-structured data within XML as XMLTable based XMLIndex is
the practical means to fulfill the spirit of “data first schema later”.

4.2.2 Integrated structured, semi-structured, unstructured content search query

Query 2 is a SQL query involving both text search and regular relational search. Such a
query enables users to integrate well-structured data search based on classical RDBMS
technology and unstructured content search query from classical IR technology together.
Paper (Yates & Navarro 1996) illustrates the need of integrating contents and structure
search tightly in text retrieval. As XQuery full text capability subsumes the classical IR text
search capability, Query 3 shows how SQL/XML that provides XQuery capability in SQL is
able to do integrated data query regardless of the availability of a pre-defined structure for
the data. Description column of the Fact table is of XMLType that stores XML data. The ‘.
contains text “promotion” ftand “independence”’ is XQuery full text syntax to specify searching
the keyword ‘promotion’ and ‘independence’ anywhere in all the descendent text nodes from
the input context node. XMLEXISTS() is a SQL/XML operator that takes as input an
XMLType column, which in this case is the Description column of the Fact Table. This
predicate executes the XQuery full text functions to see if the evaluation of the text node
returns any nodes. If it does, XMLEXISTS() returns the boolean TRUE value.

SELECT f.StoreId, count(*)
FROM TransactionFact f, Customers c, Items i, Dates d, Stores s
WHERE f.CustomerId = c.CustomerId AND f.ItemId = i.ItemId AND f.StoreId = s.StoreId AND
f.DateId = d.DateId AND i.ItemName = ‘TV’ AND s.StoreZipCode >= 45000 and
s.StoreZipCode <= 46000 AND i.ItemPrice < 300 AND d.Year between 2003 and 2005 AND
XMLEXISTS(‘. contains text “promotion” ftand “independence”’ PASSING description)
GROUP BY f.StoreId

Query 3. SQL/XML Query on Hybrid XML and Relational Star-Schema

4.2.3 I/O friendly XML object retrieval and object transformation

In a DWH, data is loaded once and read many times. In a typical relational database, to
retrieve the original entity data in full, tables are joined over primary keys and foreign keys
which results in generation of random I/O requests compared to the option of storing data
aggregated and contiguous on disk which results in typically one I/O to bring the whole

www.intechopen.com

Towards Business Intelligence over Unified Structured and Unstructured Data Using XML

65

object entity into memory. Therefore, for a DWH, it is desirable to store data in a de-
normalized way compared to an OLTP database where data is normalized to avoid update
anomalies. XML persistency essentially extends the idea of de-normalization further by
materializing hierarchy without joint keys and thus provides the fastest whole object
retrieval from the perspective of disk friendly I/O. From I/O perspective, excessive seeks with
small read per seek is worse in performance compared with few seeks with large read per seek.

Consider the third phase of processing of Query 1 where the set of RIDs from the Fact table

is computed. In addition to fetching the rows from Fact table based on RID, Dimensional

table lookup may still be needed to bring in relevant dimensional values using dimension

ids stored in the Fact table to re-construct the original transaction object. On the other hand,

XML data may be stored in a compressed binary format without shredding the data into

relational tables resulting in the advantage of efficient retrieval of the whole object when

needed. This form of XML persistency is essentially a generalization of data de-

normalization concept in DWH design. Furthermore, XQuery provides constructs to

transform XML into different hierarchical shapes and forms for different presentations of

the data.

Having discussed the value of XML data model for DWH, we now show the XML and
XQuery functionality support in RDBMS leveraging the SQL/XML standard.

4.3 SQL/XML in RDBMS for XML based DWH

SQL/XML is an ISO SQL standard that defines XML as a datatype conforming to the

XQuery data model with three new built-in operators: XMLQuery(), XMLExists(), and

XMLCast(); and one new table construct - XMLTable to facilitate XQuery invocation in SQL

and to query and modify XML datatype. Furthermore, it has introduced new built-in

SQL/XML publishing operators: XMLElement(), XMLForest(), XMLComment(), and

XMLPI(); and a new built-in aggregation operator - XMLAgg() that facilitate constructing

XML from structured relational data. Therefore, with the SQL/XML standard, XML data

can be managed by RDBMS along with structured data without the need of a specialized

XML database. It is more elegant to enable management of all data in one system, and query

them using SQL with domain object extension (such as SQL/XML), than to manage

different data in different systems, and to correlate them in the application tier or mid-tier.

Indeed, SQL/XML approach reflects the success of object relational approach that provides

a type, function, index extensibility framework for managing any data in Object Relational

DBMS - ORDBMS (Stonebraker et al., 1998). Contemporary RDBMS supports SQL/XML

standard leveraging ORDBMS principle (Krishnaprasad et al., 2005). There are three

approaches to supporting SQL/XML in a post-relational DBMS.

4.3.1 Approach 1: Relational and XML hybrid

In this approach, the relational table is extended with XMLType column instead of LOB
column to store content that do not have rigid schema to be shredded into relational
columns. This approach is conservative and represents the first generational adoption of
XML in RDBMS. Query 3 shows this approach. It has the advantage of specifying both SQL
and XQuery declaratively in one query. However, like processing of Query 2, processing

www.intechopen.com

Business Intelligence – Solution for Business Development

66

Query 3 still requires the two-part processing strategies, that is, join of relational indexing
for relational part of the query and XML indexing for XML part of the query. Furthermore,
the conceptual issue with this hybrid approach is that in many cases, structured data and
unstructured data are embedded within each other, i.e. there could be islands of structured
data embedded in top-level unstructured content. Therefore, it is natural to store the whole
top-level data as one XML object and only project out the islands of structured data as index.
This leads to Approach2 discussed below.

4.3.2 Approach 2: XML persistence with XML table based XMLIndex

Approach1 reveals the underlying problem that structures inside XML can be too diverse to
be captured by relational tables. In this approach, the XML is stored as is, while an XML
Index is created to index the islands of structured data for relational processing. XQuery can
be used to declaratively specify the extraction of the structured data from the XML in the
XML Index creation.

For example, consider that the purchase transaction captured in table 1,2,3,4,5 is stored as
one XML document, shown in XML-Document 1 below, in a table containing all XML
documents.

<Transaction>
<Customer id = 1454>
 <CustomerName>John Smith</CustomerName>
</Customer>
<Store storied =123>
 <StoreName>Electronic-Supply</StoreName>
 <StoreZipCode>45789</StoreZipCode>
</Store>
 <Item ItemId=1456>
 <ItemName>T.V</ItemName>
 <ItemPrice>250.32</ItemPrice>
 <QuantitySold>2</QuantitySold>
 </Item>
 <poDate dateId=13579>2004-07-20</poDate>
 <sale_comment>
This is sold via special summer sale promotion program at the store. The promotion program is
conducted along with the independence celebration event in the city.
</sale_comment>
</Transaction>

XML-Document 1. Transaction Fact

We create a transactions table having an XMLType column that stores each transaction fact
as an XML document in a row. Then we create XMLTable based XMLIndex to extract
structured data out into a relational table: TransactionFact as shown in SQL-DDL 1. The
XML Index uses XMLTable construct with XPath/XQuery. The equivalent of Query 3 is
now formulated as Query 4 using the XMLTable construct. In Query 4, the original fact table
in Query 3 becomes a virtual table computed by XMLTable() construct over XMLType
column.

www.intechopen.com

Towards Business Intelligence over Unified Structured and Unstructured Data Using XML

67

Create table Transactions(xmldata XMLType);

Create Index tabIdx on Transactions(xmldata) as
(transactionfact XMLTable(‘/Transaction’
 column
 CustomerId varchar(20) PATH ‘Customer/@id’,
 ItemId varchar(20) PATH ‘Item/@ItemId’,
 StoreId varchar(20) PATH ‘Store/@storeid’,
 DateId integer PATH ‘poDate/@dateId’,
 QuantitySold integer PATH ‘Item/QuantitySold’)
);

SQL-DDL 1. XMLTable based XMLIndex Creation

SELECT f.StoreId, count(*)
FROM Transactions,
XMLTable(‘/Transaction’ PASSING Transactions.xmldata
 Column
 CustomerId varchar(20) ‘PATH Customer/@id’,
 ItemId varchar(20) PATH ‘Item/@ItemId’,
 StoreId varchar(20) PATH ‘Store/@storeid’,
 DateId integer PATH ‘poDate/@dateId’,
 QuantitySold integer PATH ‘Item/QuantitySold’) Fact f,
Customers c, Items i, Dates d, Stores s
WHERE f.CustomerId = c.CustomerId AND f.ItemId = i.ItemId AND f.StoreId = s.StoreId AND
f.DateId = d.DateId AND i.ItemName = ‘TV’ AND s.StoreZipCode >= 45000 and
s.StoreZipCode <= 46000 AND i.ItemPrice < 300 AND d.Year between 2003 and 2005 AND
XMLEXISTS(‘. contains text “promotion” ftand “independence”’ PASSING description)
GROUP BY f.StoreId

Query 4. SQL/XML Query on XML Persistency with XMLTable

Compared to the hybrid approach, this XML persistency approach with XMLTable based
XMLIndex has the following advantages for DWH environment:

 There is no need to force all data into a common integration schema; all data can be

captured without any data loss.

 XMLTable based XML index can be used to index the islands of structured data. This
results in a flexible mechanism because index can be dropped and re-created without
affecting the base storage. Users have the flexibility to decide what to index and how to
index without the need for changing the base XML persistency. This genuinely fulfills
the goal of ‘data first, schema later’ approach. Such an approach is superior to that of a
relational approach because data can be stored without first defining the schema. Yet, it
does not lose the advantage of relational processing because the projection of the
embedded structured data as an index allows for queries over this data to be processed
using relational access methods. (Liu et al., 2006). XMLTable based XMLIndex
conceptually represents partial relational shredding approach of XML. Furthermore, it
gives users the flexibility of not decomposing XML relationally even if XML is well-
structured.

www.intechopen.com

Business Intelligence – Solution for Business Development

68

 For a DWH, where data is not frequently modified, maintenance of the XMLTable
based XMLIndex is acceptable. For cases where the index definition is complex enough
requiring more time to be processed, XMLIndex can be maintained like materialized
views that can be refreshed asynchronously.

 Finally, all existing business intelligence tools on current relational model based DWH
are completely useable on XML via the XMLTable constructs supported by XMLTable
based XMLIndex.

4.3.3 Approach 3: XML persistence with XML-extended Inverted Index (XEIIX)

This approach uses the same XML persistence as that of Approach 2. Approach 2 above still
conceptually requires users to split structured query from full text query, and therefore
forces users to write the query to explicitly join the two parts of the query together. In
Approach 3, using XQuery on XML, it is feasible to express the structures and unstructured
data query intermixed naturally and natively as shown in Query 5.

SELECT XMLCAST(XMLQUERY(‘$doc/Transaction/StoreId’) AS INTEGER) as StoreId,
count(*)
FROM Transactions
WHERE XMLExists(‘$doc/Transaction[Item/ItemName = “TV” and fn:year-from-
dateTime(poDate) >= 2003 and fn:year-from-dateTime(poDate) <= 2005 and
xs:integer(StoreZipCode) >=45000 and xs:integer(StoreZipCode) <= 46000 and
saleComment contains text “promotion” ftand “independence”]’
 PASSING description AS “doc”)
GROUP BY StoreId

Query 5. SQL/XML Query on XML Persistency with Full XQuery

The significance of Query 5 is that there is no explicit relational join query specified in SQL
FROM clause. From the perspective of user, it is more natural to express structured and
unstructured data query using Query 5 instead of Query 4. This illustrates the advantages of
XML as a hierarchical data model and XQuery as a user friendly language to access
hierarchical structures using XPath syntax instead of specifying explicit joins of relational
tables. Internally RDBMS can either process XPath relationally by decomposing XPath
traversal as joins of relational tables, if XML is indexed relationally, or by processing XPath
natively if XML is persisted in aggregated binary form. Although XQuery and SQL/XML
processing can be decomposed into storage/index independent query logical rewrite
transformation followed by storage/index dependent physical rewrite transformation (Liu
et.al, 2008), from the user’s perspective, the query is written independent of physical
storage/index methods. To process Query 5 efficiently, however, we need to extend
inverted text index to support XML; such an XML extended inverted index (XEIIX) is
discussed in section 5.

5. Efficient processing of DWH query on structured and unstructured data

In this section, we discuss the extended inverted (XEIIX) index layout to efficiently process
both structured and unstructured data search. XEIIX is an extension of the classical inverted
text index to index structured data, XML hierarchies and keywords in unstructured content
all together.

www.intechopen.com

Towards Business Intelligence over Unified Structured and Unstructured Data Using XML

69

5.1 Comparison of bitmap join index, columnar storage and IR inverted text index

Before we go into XML Extended Inverted Index (XEIIX), let’s look at the following three
common query processing strategies in RDBMS and IR systems to motivate the rationale for
developing XEIIX.

Bitmap Join Index: Recall that in the bitmap join index approach presented in section 3.1.3,
to efficiently process star-join in DWH, each row in the Fact table is mapped to a ROP (Row
Ordinal Position). Each bitmap index maps a set of dimension values of a given dimension
to ROPs. SQL and, or, not boolean predicates for different dimension values are processed
using set-based multi-dimensional joins. The set-based multi-dimensional join is done
efficiently by computing intersection, union and difference among a set of bitmaps. Bitmap
join-index representation is very compact and thus requires less amount of disk I/O.

Columnar Storage: Columnar storage (Stonebraker et al., 2005) for DWH is a similar
approach that uses invisible join strategy to process star-schema join query (Abadi et al.,
2008). All values of a column of the base table are stored together in a compressed form to
reduce the amount of disk I/Os to read them into memory. Each column value is implicitly
identified by its corresponding ROP of the row containing that column value. Fast scan of
columnar data using small amount of disk I/O results in a set of bitmaps representing ROPs
for rows that match the given dimension ids. The multi-dimension join is then done
efficiently using bitmap intersections.

IR Inverted text index: Each document stored in the base table row is given a document id

(DOCID). The DOCID is identical to the ROP, It is a unique sequential integer identifying

each document using the position of the row that contains the document. Inverted text index

maps a keyword to a posting-list which consists of a set of sorted DOCIDs that identify

documents that contain the keyword (Zobel & Moffat, 2006). The posting-list is delta-

compressed leveraging the sequential integer property of the DOCID. This results in small

amount of disk I/Os. Keyword search query using ‘and, or, not’ predicate is done via pre-

sorted merge join among posting-lists (Zobel & Moffat, 2006).

All three presented techniques have the following common query processing and indexing

properties:

 They all handle boolean predicates of and, or, not on a set of dimension values extracted
from a collection of objects. In RDBMS, each table can be considered as a collection and
each row of the table can be considered as an object. The dimension values are column
values extracted from each row. In an IR system, each document collection can be
considered as a collection, and each document can be considered as an object. The
dimension values are keywords extracted from each document.

 They identify each collection object using a unique sequential integer, henceforth
referred to as DOCID. There exists an I/O friendly layout of a mapping structure so
that looking up the mapping between a dimension value to a set of DOCIDs having the
dimension value is very efficient. In RDBMS, the mapping structure is either bitmap
join index or columnar layout of relational table. The mapping structure in IR system is
an inverted text index. Although the mapping structure can be logically modeled as a
relational table, storing each mapping as a row in the relational table causes poor
performance due to the on-disk layout of the table rows. This is one of the key reasons

www.intechopen.com

Business Intelligence – Solution for Business Development

70

why an IR text index layout using a relational table could be an order of magnitude
slower than a customized text search engine implementation (Brewer 2005). In fact,
contemporary RDBMS products that support inverted text index do not store keyword
and DOCID mapping as individual rows in a relational table. Instead, the disk layout of
posting list of the inverted text index is highly compressed and stored in LOB
structures. Therefore, it requires small amount of disk I/O to fetch the entire posting list
into memory.

 They all process boolean and, or, not predicates on dimension values using set
intersection, union and difference computation among sets of DOCIDs or bitmaps
identified by ROPs. This set join processing essentially converts the polynomial-bound
multiple binary-joins into a linear bound multi-way join. The inverted text index’s
posting list for a given keyword stores DOCIDs in a sorted order. The bitmap positions
stored in bitmap join index for a given dimension value stores ROPs in sorted order.
Therefore, DOCIDs are pre-sorted in all of these approaches and the linear multi-way
join is an effectively pre-sorted merge join (Sort-merge join has linear join property
excluding the sorting time.). Paper (Zhang et al., 2001) shows that Multi-Predicate
Merge Join strategy commonly employed by full text search engine with hardware
cache utilization are the two key reasons that conventional relational engines with
conventional join methods do not yield comparable performance to a full text search
engine. Furthermore, hardware based vector instructions can be leveraged to further
accelerate multi-way join process. For example, bitmap join, can be speedup by using
hard-ware vector processing instructions.

It has also been shown that inverted index is more space efficient and delivers better query
performance than that of bitmap index when the attribute indexed has a high cardinality
(Bjørklund et al., 2009). This leads to the conclusion that applying IR inverted index to DWH
is a fruitful direction to take.

5.2 XML-extended inverted index (XEIIX)

Having examined the above three cases, we propose to process the structured and
unstructured DWH query 5 in a disk I/O friendly manner based on Multi-Predicate Pre-
Sorted Merge join (MPPSMJ), a technique, employed by customized inverted index text
engines.

We extend the classical inverted text index to form the XEIIX. The XML element and
attribute tags are indexed as regular keywords. All XML text content is indexed by their
keywords. There is already keyword position stored in posting list in classical inverted text
index so that phrase search is done by comparing keyword position information during
MPPSMJ process (Zobel & Moffat, 2006). The XEIIX contains XML tag hierarchical position
information so that keyword and XPath containment is processed during MPPSMJ process.
Parent-child relationship between XML tags can also be tracked in the index so as to speed
up hierarchical relationship check. The key idea behind XEIIX is that it captures both XML
structures (tags and their hierarchical relationships) and content data together in one index.
With such an integrated index, the search of structure and data together can be processed
efficiently, thereby realizing the full potential of XML and XQuery. From a RDBMS
perspective, being able to query without differentiating structures and data is a conceptual
milestone. From an IR perspective, being able to do content search within structures so that
text search becomes context aware is also a conceptual milestone.

www.intechopen.com

Towards Business Intelligence over Unified Structured and Unstructured Data Using XML

71

But there is still one thing missing in that classical full text search is not capable of

performing range predicates using common scalar datatypes, such as, number, date, time, etc,

that are widely used in RDBMS. However, XQuery supports the capability of querying data

embedded in XML using datatype aware range predicate. For example, to process XQuery

expressions of Query 5, such as ‘fn:year-from-dateTime(poDate) >= 2003 and fn:year-from-
dateTime(poDate) <= 2005 and xs:integer(StoreZipCode) >=45000 and xs:integer(StoreZipCode) <=

46000’, we need to further enhance the XEIIX to index range type data embedded in XML.

Even for XQuery expression ‘Item/ItemName = “TV”‘, ItemName range comparison is

performed using character string datatype which is semantically different from full text search

because full text search is subject to stemming, thesaurus, diacritics, etc. options supported by

a text search engine.

We, therefore, propose to enhance XEIIX to also index well-defined relational data in the

XML document. The XMLTable construct used in XMLTable based XMLIndex presented in

section 4.3.2 can be used as a conceptual framework to allow users to declaratively locate the

data to be indexed as range-typed data. This is shown in SQL-DDL2 as an illustrative syntax

to create XEIIX covering relational scalar datatypes data. However, unlike XMLTable based

XMLIndex that physically implements the index as relational tables, the index layout is

exactly the same as that of mapping a keyword to a posting list of sorted DOCIDs. The

range-data index structure maps a range typed data value to a set of sorted DOCIDs having

that value. The MPPSMJ processing can join posting lists for both ranged-typed data and

text keywords. This essentially accomplishes the integration of structured data query and

unstructured content search at the index level. This integrated index approach performs

better than the conventional approach of evaluating structured predicates using relational

indexes and retrieving ROWIDS and evaluating text predicates using Text indexes and

retrieving DOCIDs and then finally joining DOCIDs and ROWIDs. The XEIIX structure

and the MPPSMJ process essentially flattens all joins uniformly using DOCIDs. In fact, both

the bitmap index join approach and invisible join in columnar storage for pure relational

queries have demonstrated the performance advantage of doing join using ROPs instead of

ROWIDs due to small sequential I/O traffic and linear-bound MPPSMJ join. From this

perspective, XEIIX leverages the benefits of both the bitmap join-index in RDBMS and

inverted text inedex in IR. This is an efficient design to fulfill the goal of XQuery with full

text capability that tightly integrates both structured data query and unstructured content

search together that otherwise would have to been done separately (one in RDBMS and one

in IR) and joined in the end.

Create Index xml-text-index on Transactions(xmldata) as
(xmlfull text,
Range-data: XMLTable(‘/Transaction’
 column
 ItemName varchar(20) PATH ‘Item/ItemName’,
 StoreZipCode integer PATH ‘Store/StoreZipCode’,
 Year integer PATH ‘fn:year-from-dateTime(poDate/@dateId)’
)
);

SQL-DDL 2. XML-extended Inverted Index

www.intechopen.com

Business Intelligence – Solution for Business Development

72

5.3 Declarative & efficient object construction and transformation

Because the relational model normalizes entity objects into a set of tables, in an RDBMS, in
order to re-create the original entity object, one has to issue a SQL query that joins the tables
and selects all the columns out into the mid-tier where a host programming language is
used to construct the original object entity. In a DWH star-join query, the retrieval of the
original transactional object entails pulling columns of both the fact transaction table and all
the dimensional tables. This is illustrated in the SQL example in Query 6. If all fields of an
entity object needs to be retrieved in the end, one of the challenges for an RDBMS using
columnar storage is to develop efficient materialization strategies to delay the row
construction (Abadi et al., 2007).

SELECT c.CustomerId, c.CustomerName, d.Date, d.Month, d.Year, s.StoreZipCode, f.Description
FROM TransactionFact f, Customers c, Items i, Dates d, Stores s
WHERE f.CustomerId = c.CustomerId AND f.ItemId = i.ItemId AND f.StoreId = s.StoreId AND
f.DateId = d.DateId AND i.ItemName = ‘TV’ AND s.StoreZipCode >= 45000 and
s.StoreZipCode <= 46000 AND i.ItemPrice < 300 AND d.Year between 2003 and 2005 AND
CONTAINS(description, ‘promotion’)

Query 6. SQL All Fields Selection

To contrast, now consider the SQL/XML queries, supported by an XRDBMS, illustrated
below in Query 7 and Query 8. Query 7 shows the usage of XQuery in the select list to
selectively project out fields from the original stored XML to construct new XML objects.
Query 8 illustrates the capability in XQuery to transform the original XML object into a new
object by deleting the sale_comment node.

In comparison to Query 6, Query 7 and 8 illustrate the following advantages of an XRDBMS
and XQuery over RDBMS and SQL:

 The XML support in XRDBMS frees the user from figuring out exactly what tables to
join which depends on how the transaction object has been normalized into relational
tables. XML preserves the abstraction of the entity object, and enables the user to issue a
query based on this abstraction using XQuery, which is then efficiently processed by the
XRDBMS using XEIIX l and MPPSMJ process.

 XRDBMS allows users to construct new object or transform objects declaratively using
XQuery instead of programmatically constructing or transforming the object in the mid-
tier by issuing a relational SQL query in a plain RDBMS, The I/O efficiency in an
XRDBMS is realized by storing XML in a compressed binary form that can be loaded into
memory using a smaller amount of I/O. Then all XQuery evaluation in the select list is
performed on the in-memory XML object. This is in contrast to the columnar storage of an
RDBMS where various pieces of the column values need to be fetched from disk and
assembled in the end. In this regard, it may be argued that it is a better option for the
RDBMS to use columnar store as an index rather than as a persistence mechanism,
thereby taking advantage of the columnar layout of data for efficient evaluation of
predicates while avoiding the overhead of piecing the columns together by going to the
row storage for retrieving the entire row. Therefore, we think columnar index instead of
columnar storage is the ideal way to bridge row store and column store. In this way, not
only row filtering that leverages the disk I/O friendly columnar layout of columns and
invisible bitmap joins can be done efficiently, but also full row retrieval can be done
efficiently without unnecessary assembly from columnar storage as well!

www.intechopen.com

Towards Business Intelligence over Unified Structured and Unstructured Data Using XML

73

SELECT XMLQUERY(
‘<TVTransaction>
(
<Customer @id = {$doc/Transaction/Customer/@id}>
 <CName>{$doc/Customer/CustomerName/text()}</CName>
</Customer>
,
<transactionDate>{$doc/Transaction/poDate/text()}</transactionDate>
<zip>{$doc/Transaction/Store/StoreZipCode/text()}</zip>
,
$doc/<sale_comment>
)
</TVTransaction>’
PASSING description AS “doc”)
FROM Transactions
WHERE XMLExists(‘$doc/Transaction[Item/ItemName = “TV” and fn:year-from-
dateTime(poDate) >= 2003 and fn:year-from-dateTime(poDate) <= 2005 and
xs:integer(StoreZipCode) >=45000 and xs:integer(StoreZipCode) <= 46000 and saleComment
contains text “promotion” ftand “independence”]’ PASSING description AS “doc”)

Query 7. SQL/XML Query with XML Construction

SELECT XMLQUERY(
‘copy $cpy := $doc modify
 delete nodes $cpy/sale_comment
 return $cpy’
PASSING description AS “doc”)
FROM Transactions
WHERE XMLExists(‘$doc/Transaction[Item/ItemName = “TV” and fn:year-from-
dateTime(poDate) >= 2003 and fn:year-from-dateTime(poDate) <= 2005 and
xs:integer(StoreZipCode) >=45000 and xs:integer(StoreZipCode) <= 46000 and saleComment
contains text “promotion” ftand “independence”]’ PASSING description AS “doc”)

Query 8. SQL/XML Query with XML Transformation

6. Challenges and future directions

In this section, we discuss the challenges and future work for Data Warehousing and

business intelligence.

6.1 Domain specific object type handling

So far, we have discussed the rationale for extending DWH technology to cover both
structured and unstructured data,with integrated search over both data. However, we
focused on only data of scalar and text data types. There are domain specific data, such as
spatial, image, etc. that can be embedded inside XML documents. There is valuable
information stored in these domain specific objects that need to be semantically queried and
analyzed together with scalar and text data to assist making intelligent business decisions.
ORDBMS (Stonebraker et al., 1998) framework enables the addition of user defined types to

www.intechopen.com

Business Intelligence – Solution for Business Development

74

model domain specific objects, user defined functions on user defined types to manipulate
such objects, and user defined index (domain index) with user defined operators to speed
up queries over such objects. The end result is that ORDBMS appears to understand domain
specific object types as if they were native built-in types with built-in functions, operators
and indices. For example, an ORDBMS may be extended to support management of Multi-
media data, images, and handle queries over such data with matching and resemblance
operators that are efficiently evaluated using domain indexes created over such data
(Candan & Sapino 2010). Modern ORDBMS also manage spatial objects that are built on the
domain index and extensibility framework (Kanth et al., 1999, Kanth et al., 2002). The one
point to highlight is that the domain index probes in a typical ORDBMS return ROWIDs that
are then used to map and merge with the rest of the SQL query evaluation and execution.

Built on the same principle of ORDBMS and Object Relational SQL, XRDBMS and XQuery
have built-in extensibility to support user defined type and user defined functions. This
enables queries over structured, unstructured and domain specific object instances all
together using XQuery and SQL/XML. However, the key difference is that in an XRDBMS,
the XEIIX returns a set of DOCIDs instead of ROWIDs. Whereas the domain index described
return a set of ROWIDs. One way to handle this is to convert DOCIDs into ROWIDs and
then join them together. However, ROWID joins are slower than DOCIDs and also incur the
cost of conversions between DOCIDs and ROWIDs. Pre-sorted merge join techniques on
sorted DOCID is much faster than general purpose ROWID joins. Future work is needed to
investigate the best way of joining domain specific index results with inverted text index
results, that is, whether MPPSMJ can be extended to cover domain indices. An even more
fundamental question is whether the inverted style index that we described handling both
text content and structured data can be extended to cover domain specific indexing as well.

6.2 XML in text mining, enterprise document search and information extraction

Enterprise search crawls document data from various data sources, builds inverted text
index to facilitate keyword search based on classical I/R techniques (Salton & McGill, 1983).
Structured data within the documents, such as document authors, types, publishing dates
etc, are extracted out to provide facet navigational search. Text mining does statistical
analysis of document content to derive concepts and topics contained in the document
collection. Entity and relationship extraction from documents provide foundation for text
mining and pattern discovery. All of the derivative data from these unstructured content
analysis and discovery process need to be captured and persisted so that they could be
queried and analyzed. These derivative data can be retained in context of the document they
were discovered in via XML. Future work is needed to investigate how XML can be
effectively used as a data model to facilitate text mining and analytical work.

6.3 Real-time DWH support

So far we have seen that DWH assumes read-only batch update model where decisions are
made based on relatively stale data. The challenge is to support near real-time DWH given
that all index and data layout in DWH do not favor in-place updates of the data. We think
that the timestamp based consistent read query semantics and in-memory indexing with
batch index merges is the direction worth exploring.

www.intechopen.com

Towards Business Intelligence over Unified Structured and Unstructured Data Using XML

75

First, data is not in place updated. Instead updating data implies a new version of the data is

inserted and old version of the data is marked for deletion. Queries run with an implicit

timestamp so that the query results are consistent, although it may not always correspond to

the latest timestamp. With timestamp based data version technique, the database would

essentially allow time traversal query where history could be queried. Consistent read is

well-practiced in RDBMS (Bamford 1992), so is time traversal query capability (Gawlick

2004).

Second, index for new version of data is built in memory and periodically merged with on-

disk index structures. Such incremental index maintenance is discussed in inverted text

index implementations (Zobel & Moffat 2006). The challenge is how such technique can be

applied to other domain specific indexing structures. We believe that for DWH

environment, data may never fit in memory, but index in compressed form can fit in

memory resulting in fast query and search.

7. Generic star schema and star query

Classical DWH practices develop schema first and then load data later. In this chapter, we
have shown we can do data store first via XML persistency and exploit schema later via
different XML indexing methods. The XML Index can be a relational projection of XML to
facilitate relational modeling over XML - this is the idea of the XMLTable based XMLIndex
discussed in section 4.3.2. The XML Index can be keyword and tag extractions to facilitate
context aware text search over XML - this is the idea of XML extended inverted text index
discussed in section 5.2. The XML Index can also project out domain specific object instances
embedded in XML to facilitate domain object specific query as discussed in section 6.1.
Therefore, generalizing all this, we think the future DWH practice is going to be a more
generic star-schema where the fact table is a collection of XML documents, each of which is
identified by a DOCID. Different dimensional tables represent different dimension values
extracted from the base XML document, and thus a dimensional table serves as the role of a
dimension index into the XML document collection. The dimension value can be as simple
as well-typed relational data or can be as complex as domain specific data. Text keywords
and XML tags are default dimensional index. The dimensional index maps a dimensional
value to a set of pre-sorted DOCIDs that satisfy a relationship with the dimensional values.
That relationship is essentially an operator that can be evaluated via the dimensional index.
The generic star-query is on the single fact table with where clauses of a set of boolean
predicates, each of which specifies a domain index specific operator searching on some
dimension values. The generic star-query is first processed via probing different
dimensional indexes, followed by computing the set of common DOCIDs using pre-sorted
merge joins among sets of pre-sorted DOCIDs obtained from dimension index lookup. The
DOCIDs are then used to retrieve base XML document upon which further data extraction,
transformation and aggregation operations in the query select list are performed. All of
these phases of processing can be executed in parallel, and may exploit specific hardware
accelerations when feasible. New dimensional index can be added as new dimensions are
discovered for the underlying data. Dimensional index can be dropped when such
dimension search is not needed. Thus this generic star-schema/query model fully embraces
the concept of data first, schema later.

www.intechopen.com

Business Intelligence – Solution for Business Development

76

8. Conclusion

In this chapter, we have shown that XML is flexible enough to handle both structured and
unstructured data. Declarative XQuery language with SQL/XML can be used to effectively
build and query data warehouses comprising of all enterprise data. Both structured data
and unstructured content can be managed by one XRDBMS – an XML enabled RDBMS with
XQuery and SQL/XML. This obviates the need to migrate relational data into a pure XML
database; instead an XML view over relational data can be defined. Unstructured and semi-
structured data can be stored natively as XML, without relational shredding, in the
XRDBMS. All XML data can be uniformly queried via XQuery using SQL/XML. XML
extended inverted text index can be used to efficiently support XQuery processing.
SQL/XML bridges the structured and unstructured world: relational data can be viewed as
XML via SQL/XML view, and XML data can be cast as relational data via XMLTable
construct. This provides for a very flexible system that enables all relational tools and
application to access XML Data while new XML tools and applications can access both XML
and relational data.

Various industries are defining XML Schemas for data exchange, transformation and
reporting. Domain specific object instances can be embedded in XML. Such XML data can be
persisted as native XML in XRDBMS and then queried using XQuery, or relationally using
SQL/XML via the XMLTable construct. The management of XML in an extended Relational
Database Management system is benefitted by the leverage of secular DBMS technologies,
such as data partitioning, parallel query execution, clustered server operating environments,
etc. all of which are generally available in a contemporary RDBMS.

To efficiently support DWH query over any data, the design has to realize the significant
performance gap between disk I/O and CPU speed. Therefore, I/O friendly data and index
layout and pre-sorted multi-way merge join processing remain to be the two key strategies
to deliver superior query performance over large volume of data. This really leads to the
confluence of inverted text index and its query processing strategies from SIGIR community
and columnar oriented data/index layout and its query processing strategies from DBMS
SIGMOD community. The integration of the two shall deliver high performance of query
that spans structured data and context aware full text search together.

XML and XQuery efforts have led us to explore a new post-relational world where business
intelligence over structured, semi-structured and unstructured data is becoming feasible.
This post-relational world requires us to embrace the concept of data first, schema later
model and to provide declarative query that integrates structure and content search,
transformation together. This genuine spirit from post-relational world shall empower
business to access and make decisions over any type of data in a unified way.

9. References

Abadi, D.J.; Madden, S; Hachem, N : Column-stores vs. row-stores: how different are they
really? SIGMOD Conference 2008: 967-980

Abadi, D.J; Myers, D.S; , DeWitt, D.J.; Madden, S: Materialization Strategies in a Column-
Oriented DBMS. ICDE 2007: 466-475

Bamford, R: Using Multiversioning to Improve Performance Without Loss of Consistency.
SIGMOD Conference 1992: 164

www.intechopen.com

Towards Business Intelligence over Unified Structured and Unstructured Data Using XML

77

Bjørklund, T.A; Grimsmo, N; Gehrke, J; Torbjørnsen, Ø: Inverted indexes vs. bitmap indexes
in decision support systems. CIKM 2009: 1509-1512

Brewer E.: Combining Systems and Databases: A Search Engine Retrospective In readings in
Database Systems. The MIT Press, 4th edition, 2005.

Candan, K. S; Sapino, M.L: Data Management for Multimedia Retrieval, Cambridge
University Press, ISBN-10: 0521887399, ISBN-13: 978-0521887397 May 31, 2010

Chen P.: The Enity-Relationship Model: Toward a Unified View of Data. VLDB 1975: 173
Codd, E. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13(6): 377-387

(1970)
DeWitt, D.J; Gray, J: Parallel Database Systems: The Future of High Performance Database

Systems. Commun. ACM 35(6): 85-98 (1992)
Gawlick, D: Querying the Past, the Present, and the Future. ICDE 2004: 867
Kanth, K.V.R; Ravada, S; Abugov, D: Quadtree and R-tree indexes in oracle spatial: a

comparison using GIS data. SIGMOD Conference 2002: 546-557
Kanth, K.V.R; Ravada, S; Sharma, J; Banerjee, J: Indexing Medium-dimensionality Data in

Oracle. SIGMOD Conference 1999: 521-522
Krishnaprasad, M; Liu, Z.H; Manikutty, A; Warner, J.W; Arora, V: Towards an Industrial

Strength SQL/XML Infrastructure. ICDE 2005: 991-1000
Liu, Z.H; Chandrasekar, S; Baby, T; Chang, H.J: Towards a physical XML independent

XQuery/SQL/XML engine. PVLDB 1(2): 1356-1367 (2008)
Liu, Z. H; Krishnaprasad, M; Chang, H.J.; Arora, V: XMLTable Index An Efficient Way of

Indexing and Querying XML Property Data. ICDE 2007: 1194-1203
Milenova, B.L; Yarmus, J; Campos, Marcos: SVM In Oracle Database 10g: Removing the

Barriers to Widespread Adoption of Support Vector Machines. VLDB 2005; 1152-1163
Myers, D: (1986) Psychology, Worth Publishers, Inc, ISBN: 0-87901-311-7, New York, New

York 10003
O’Neil, P.; Graefe, G. Multi-Table Joins Through Bitmapped Join Indices. SIGMOD Record, Vol.

24, No.3, Sep 1995
Salton, G; McGill, M: (1983) Introduction To Modern Information Retrieval, McGraw-Hill, Inc.

ISBN: 0-07-054484-0, U.S.A
SQL/XML: I.O. for Standardization (ISO). Information Technology-Database Language

SQL-Part 14: XML-Related Specifications
Seshadri, P; Hellerstein, J.M; Pirahesh, H; Leung, T.Y, C; , Ramakrishnan, R; Srivastava, D;

Stuckey, P; Sudarshan, S: Cost-Based Optimization for Magic: Algebra and
Implementation. SIGMOD Conference 1996: 435-446

Stonebraker, M.; Abadi, D; Batkin, A.; Chen, X.; Cherniack, M; Ferreira, M.; Lau, E.; Lin, A.;
Madden, S; O’Neil, E.; O’Neil, P.; Rasin, A.; Tran, N.; Zdonik, S. C-Store: A Column-
oriented DBMS. VLDB 2005: 553-564

Stonebraker, M; , Brown, P; Moore, D. Object-Relational DBMSs, Second Edition Morgan
Kaufmann 1998

Stonebraker, M.; Hellerstein, J. What Goes Around Comes Around. In readings in Database
Systems. The MIT Press, 4th edition, 2005.

XQuery. http://www.w3.org/TR/xquery/
XQuery and XPath Full Text. http://www.w3.org/TR/xpath-full-text-10/
Yates, R.; Navarro, G. Integrating Contents and Structure in Text Retrieval. SIGMOD Record,

Vol.25, No.1, Mar 1996

www.intechopen.com

Business Intelligence – Solution for Business Development

78

Zhang, C.; Naughton, J; DwWitt, D; Luo, Qiong; Lohman, G. On Supporting Containment
Queries in Relational Database Management Systems. SIGMOD Conference 2001: 425-
436

Zobel, J; Moffat, A. Inverted files for text search engines. ACM Comput. Surv. 38(2): (2006)

www.intechopen.com

Business Intelligence - Solution for Business Development

Edited by Dr. Marinela Mircea

ISBN 978-953-51-0019-5

Hard cover, 108 pages

Publisher InTech

Published online 01, February, 2012

Published in print edition February, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The work addresses to specialists in informatics, with preoccupations in development of Business Intelligence

systems, and also to beneficiaries of such systems, constituting an important scientific contribution. Experts in

the field contribute with new ideas and concepts regarding the development of Business Intelligence

applications and their adoption in organizations. This book presents both an overview of Business Intelligence

and an in-depth analysis of current applications and future directions for this technology. The book covers a

large area, including methods, concepts, and case studies related to: constructing an enterprise business

intelligence maturity model, developing an agile architecture framework that leverages the strengths of

business intelligence, decision management and service orientation, adding semantics to Business

Intelligence, towards business intelligence over unified structured and unstructured data using XML, density-

based clustering and anomaly detection, data mining based on neural networks.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Zhen Hua Liu and Vishu Krishnamurthy (2012). Towards Business Intelligence over Unified Structured and

Unstructured Data Using XML, Business Intelligence - Solution for Business Development, Dr. Marinela Mircea

(Ed.), ISBN: 978-953-51-0019-5, InTech, Available from: http://www.intechopen.com/books/business-

intelligence-solution-for-business-development/towards-business-intelligence-over-unified-structured-and-

unstructured-data-warehouse-using-xml

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

