We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,800
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Zanthoxylum Genus as Potential Source of Bioactive Compounds

L. Oscar Javier Patiño, R. Juliet Angélica Prieto and S. Luis Enrique Cuca
Laboratorio de Productos Naturales Vegetales, Universidad Nacional de Colombia, Colombia

1. Introduction

Natural products have been used for thousands of years for the benefit of mankind, as important sources of food, clothing, cosmetics, building materials, tools, medicines and crop protection agents. They have made enormous contributions to human health through compounds such as quinine, morphine, aspirin (a natural product analog), digitoxin and many others. Researches in this field are becoming more numerous, to the point of getting about half of pharmaceuticals and pesticides from natural sources (Newman & Cragg, 2007). The main reasons because natural products are so important to undertake research are that they can be a source of new compounds because they produce many bioactive secondary metabolites that are used as a chemical defense against predators. Also, in the past, they have provided many new drugs, some of which can’t be obtained by other sources and because they can provide the necessary templates to design new products in the future (Colegate and Molyneux, 2008; Kaufman et al., 2006; Cragg et al., 2005).

Dissatisfied therapeutic needs in the treatment of bacterial, parasitic, viral and fungal infections, cancer, Alzheimer’s and AIDS, among other diseases, have led to the search of new substances with therapeutic applications. Although for most diseases there is a treatment, many of them have begun to be ineffective due to the development of resistance to medicaments that were initially effective and to the low security that they exhibit for patients. Consequently, the development of effective and safe therapeutic alternatives is essential to ensure the availability of new products that reduce mortality and morbidity due to diseases (Pan et al., 2010; Nwaka & Hudson, 2006; Segal & Elad, 2006; Waldvogel, 2004).

The search for new phytosanitary agents to control plant pests and diseases that affect many plant sources of food and/or industrial use is also of great interest, because the indiscriminate and permanent use of agrochemicals has led to the emergence of resistant pests and phytopathogenic microorganisms, that can cause partial or complete loss of crops (Agrios, 2005; Strand, 2000).

Research in plants represents an invaluable source discovering new substances, considering that each of these can contain hundreds or even thousands of secondary metabolites. From the 250,000 to 300,000 plant species reported, only a small part has been the subject of phytochemical and biological activity studies (Tringali, 2001).
This chapter shows information about the importance of ethnobotany, phytochemistry and biological activities of species of the genus *Zanthoxylum*, information that can be the base for undertaking future research.

2. Overview of *Zanthoxylum* genus

Zanthoxylum genus belongs to the Rutaceae family. It is economically important because of their alimentary, industrial and medicinal applications (Seidemann, 2005; Chase et al., 1999). *Zanthoxylum* comes from the word *Xanthoxylum* which derives from Greek: "xantho xylon" that means "yellow wood", hence the use of the terms *Xanthoxylum* or *Zanthoxylum* by some authors. The genus *Zanthoxylum* was created by Linné in 1757 and since its inception has been confused with the genus *Fagara*. In 1896, Engler made the distinction between the two genera by the following characteristics: species of the genus *Zanthoxylum* have a simple perianth, while in species of the genus *Fagara* is twofold. Brizicky in 1962, discovered some species with intermediate perianth, which showed that simple perianth of *Zanthoxylum* drift from the *Fagara* due to failure of some sepals, and concluded that *Fagara* and *Zanthoxylum* genus are the same. Finally, in 1966, Hartley grouped *Zanthoxylum* and *Fagara* under the name of *Zanthoxylum*. However, some authors still use the term *Fagara* (Chaib, 2004).

Zanthoxylum comprises about 549 species distributed worldwide mainly in tropical and temperate regions (Global Biodiversity Information Facility, 2010). This genus includes trees and shrubs, usually dioecious. The trees have leafy crown, with few branches and reach up to 20 meters. The species of this genus are characterized by the presence of recurved spines on its trunk and branches. The leaves are varied, may be alternate or opposite, simple or composed, imparipanadas or parimpanadas with up to 15 pairs of leaflets. The inflorescences are usually in form of panicles or umbels compound, axillary or terminal of small flowers. The flowers are actinomorphic, hermaphrodite and unisexual, rarely bisexual, usually white or green. The fruits are follicles or esquizocarp, contains from one to five carpels usually aromatic, and the are ordinarily bivalve with a single red or black, shiny seeds (Melo & Zickel, 2004; Silva & Paoli, 2004).

The genus *Zanthoxylum* has great importance due to its ethnobotanics, phytochemistry and biological activity, and it is a promising source of various secondary metabolites including benzophenanthridine alkaloids.

3. Ethnobotanical uses

Species of this genus are of economic importance as sources of edible fruits, oils, wood, raw materials for industries, medicinal plants, ornamentals, culinary applications, and are characterized by a satin wood commonly used in woodworking (Yang, 2008; Da Silva et al., 2006; Adesina, 2005; Seidemann, 2005). For example in Africa is used the wood of *Z. gillettii*, *Z. tessmannii*, *Z. lemairei* and *Z. leprieurii* for houses, buildings, drums and ships construction, and for decorative woodwork, carpentry, and paper industry. In some countries of this continent, root bark and stem of many species of *Zanthoxylum* used as a vermifuge, febrifuge and piscicides (Adesina, 2005).

Zanthoxylum species are also used in the field of perfumery and food industry because of its essential oils from leaves, fruits and inflorescences. The most used essential oils are obtained
from *Z. xanthoxyloides* (Ngassoum et al., 2003), *Z. gillettii* (Jirovetz et al., 1999) and *Z. simulans* (Chyau et al., 1996).

A common feature of almost all species of the genus *Zanthoxylum* is the ability to produce tires, which could be used in the pharmaceutical industry as encapsulants, emulsifying agents or diluents. Some investigations have been conducted on the rubber collected on the bark of *Z. tessmannii* (Adesina, 2005). For example, the bark of *Z. integrifolium* is used in traditional medicine by Ya-Mei and Lanyu indigenous tribes in Taiwan, as a remedy for snakebite, dyspepsia and as an aromatic tonic for fever. The bark of *Z. liebmannianum*, is used in Mexico for the treatment of stomach pains, amebiasis, intestinal parasites and as a local anesthetic agent (Ross et al., 2004). Some species are used for the treatment of malaria, such is the case of *Z. rhoifolium* (Jullian et al., 2006; Bertani et al., 2005), *Z. acutifolium* (Arruda et al., 1992), *Z. chalybeum* (Jullian et al., 2006) and *Z. usambarensis* (Kirira et al., 2006). Venezuelan traditional medicine is known to use *Z. monophyllum* in the treatment of runny nose or nasal mucosal inflammation, jaundice, ophthalmia and as an anesthetic (Gomez et al., 2007; Diaz & Ortega, 2006). Another use has been given as a textile dye (De Garcia et al., 1989).

According to reports of ethnobotanical properties of the *Zanthoxylum* genus, in general it is emphasized that the most commonly used extraction methods are infusion and decoction, using mainly water as solvent. In Table 1 are summarized the main ethnobotanical uses of 45 species of the genus *Zanthoxylum*, as well as the plant part used and method of preparation. The major ethnobotanical properties attributed to these plant species are: relief of dental problems, treatment of malaria, gastrointestinal disorders, gonorrhea and lung diseases, antidiarrheal use in animals and humans, emmenagogue action, effective for rheumatism, anthelmintic use in animals and humans, aphrodisiac, analgesic, action against various skin diseases, febrifuge, antihemorrhagic, effective for genitourinary diseases, anticancer, diuretic, stomachic, anti-convulsive, tonic and stimulant. In addition to the medicinal properties, some species are also used as pesticides, building materials and textile dyes.

Some plants have been used as components of natural medicines, because of the important ethnomedical properties of *Zanthoxylum* genus species. *Z. tingoassuiba* has been marketed since 1923 by Flora Medicinal J. Monteiro da Silva Laboratory, as part of herbal medicinal product called Uva do Mato®, which is prescribed for muscle cramps and spasms (Da Silva et al., 2008). *Z. rhoifolium* also has been commercialized in Brazil as a component of herbal tea mixtures sold in drugstores, supermarkets and popular markets (Pereira et al., 2010; Da Silva et al., 2007a).

4. Phytochemistry

Phytochemical studies carried out on species of the genus *Zanthoxylum*, alkaloids of various types, lignans, coumarins amides are commonly secondary metabolites reported and have chemotaxonomic importance to the genre. Also, other metabolites have been isolated such as flavonoids, sterols and terpenes, among others (Adesina, 2005; Páitão, 2004, Waterman & Grundon, 1983).
4.1 Alkaloids

The alkaloids are most important compounds for the genus *Zanthoxylum*, because they are present in most species and have been found in all plant organs, being abundant in the trunk and root bark (Dieguez et al., 2004). The main isolated alkaloids from the genus are of two types: isoquinolines (benzophenanthridine, benzylisoquinoline, aporphine, protoberberine and berberine) and quinolines (Krane et al. 1984; Waterman & Grundon, 1983; Cordell, 1981). Other types of alkaloids have also been found in some species of the genus.

4.1.1 Isoquinoline alkaloids

The benzophenanthridines are the most frequently reported type of alkaloid in the genus *Zanthoxylum* and have great interest due to important and varied biological activity that they present, among which highlights the antitumor activity (Maiti & Kumar, 2009; Tillequin, 2007; Maiti & Kumar, 2007; Dvorak et al., 2006; Nyangulu et al., 2005; Eun & Koh, 2004; Tang et al. 2003; Slaninová et al., 2001; Simeon et al., 1989). Representatives of these alkaloids have exhibited antimalarial (Nyangulu et al., 2005; Ross et al., 2004), antileukemic (Dupont et al., 2005), antioxidant (Pérez et al., 2003), nematicide (Matsuhashi et al., 2002), HIV (Chang et al., 2003), antibacterial (Gonzaga et al., 2003), antimicrobial (Nissanka et al., 2001) and antifungal activities (Queiroz et al., 2006), among others. Their distribution is very limited in plants, and only they have been isolated from some genera belonging to the families Papaveraceae, Rutaceae and Fumariaceae mainly, where they are considered chemotaxonomic markers. In Rutaceae family they are present in species of the genera *Phellodendron*, *Fagaropsis*, *Tetradium*, *Toddalia* and *Zanthoxylum* (including *Fagara*), the latter with a majority presence of these alkaloids from the others (Krane et al., 1984; Cordell, 1981). The main representatives of this type of alkaloids are fagaronine 1, nitidine 2, chelerythrine 3 and sanguinarine 4. Compounds with similar chemical structure to iowamide 5 and integriamide 6, isolated from various species of the genus *Zanthoxylum*, have been classified by different authors within benzophenanthridine alkaloids (Krane et al., 1984).

![Chemical structures of alkaloids](https://www.intechopen.com)
<table>
<thead>
<tr>
<th>PLANT SPECIES</th>
<th>PART USED</th>
<th>POPULAR USES</th>
<th>FORM OF ADMINISTRATION</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. acanthopodium DC.</td>
<td>Fruits</td>
<td>As spice. Also has been used to heal stomach ache and toothache.</td>
<td>Oral route (dried fruits, decoction powder).</td>
<td>Suryanto et al., 2004</td>
</tr>
<tr>
<td>Z. ailanthoides Siebold. & Zucc.</td>
<td>Bark and fruits</td>
<td>Epigastric pain, vomiting, diarrhea, abdominal pain, colds, snake bites.</td>
<td>Local and oral routes (decoction or ointment).</td>
<td>Sheen et al., 1994</td>
</tr>
<tr>
<td></td>
<td>Steam</td>
<td>Myocardium disorder attenuation, cold resistance and bone-injury alleviation.</td>
<td>Oral route (macerated or decoction powder).</td>
<td>Chou et al., 2011</td>
</tr>
<tr>
<td>Z. alatum Roxb.</td>
<td>Fruits, branches and thorns</td>
<td>Used as carminative, stomachic and as a remedy for toothache.</td>
<td>Local and oral routes (macerated or decoction).</td>
<td>Batool et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Seeds</td>
<td>Spice, aromatic tonic, stomachic and for fever, dyspepsia, cholera.</td>
<td>Oral route (powdered seeds, macerated powder).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bark</td>
<td>Skin diseases, abdominal pain, anorexia, worm infestation.</td>
<td>Oral route (macarated or decoction powder).</td>
<td>Ramanujam & Ratha, 2008</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>Mixed with salt for dyspepsia and headache.</td>
<td>Oral route (dry fruit).</td>
<td></td>
</tr>
<tr>
<td>Z. americana Mill.</td>
<td>All parts of the plant</td>
<td>To treat rheumatic conditions, toothaches, sore throats and burns, and as a tonic for various ailments.</td>
<td>Local and oral routes (macerated or decoction powder, paste, sticks).</td>
<td>Bafi-Yeboa et al., 2005</td>
</tr>
<tr>
<td>Z. armatum DC.</td>
<td>Fruits and seeds</td>
<td>Piscicide, aromatic tonic in fever, dyspepsia, and for expelling roundworms.</td>
<td>Oral route (Powder and decoction).</td>
<td>Ranawat et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Bark, branches</td>
<td>Carminative, stomachic and</td>
<td>Oral route (Infusion).</td>
<td>Ramanujam & Ratha, 2008</td>
</tr>
<tr>
<td>Plant</td>
<td>Part Used</td>
<td>Uses</td>
<td>Administration</td>
<td>Reference</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Z. avicennae (Lam.) DC.</td>
<td>Branches and stems</td>
<td>Stomach tonic, to treat snake bites.</td>
<td>Oral route (Infusion).</td>
<td>Thuy et al., 1999</td>
</tr>
<tr>
<td>Z. beecheyanum K. Koch</td>
<td>Leaves</td>
<td>For treat bellyache and skin diseases.</td>
<td>Local and oral routes (macerated or decoction).</td>
<td>Cheng et al., 2004</td>
</tr>
<tr>
<td>Z. budrunga Wall.</td>
<td>Leaves</td>
<td>Used for treating dysentery and some forms of diarrhea.</td>
<td>Oral route (aqueous extract of the leaves)</td>
<td>Islam et al., 2001</td>
</tr>
<tr>
<td></td>
<td>Stem bark</td>
<td>Dysentery, coughs and headache.</td>
<td>Oral route (bark juice).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. bungeanum Maxim.</td>
<td>Pericarps</td>
<td>Food condiment and seasoning in China. Treatment of vomiting, toothache, stomach ache and abdominal pain owing to roundworm.</td>
<td>Oral route (dried pericarps, macerated or decoction powder).</td>
<td>Gong et al., 2009</td>
</tr>
<tr>
<td>Z. capense (Thunb.) Harv.</td>
<td>Leaves</td>
<td>Treat fever, stomachache, flatulent colic, toothache and epilepsy.</td>
<td>Oral route (infusion)</td>
<td>Amabeoku & Kinyua, 2010</td>
</tr>
<tr>
<td>Z. caribeum Lam.</td>
<td>Leaves and stem bark</td>
<td>For asthma, spasm, fever, herpes and skin ulcers.</td>
<td>Oral route (macerated or decoction powder).</td>
<td>Schnee, 1984</td>
</tr>
<tr>
<td>Z. chalybeum Engl.</td>
<td>Leaves</td>
<td>Treating severe colds and pneumonia. Malaria, colds, coughs, and dizziness. Chewed to alleviate toothaches. The Masai and Sonjo use this for small children by adding its juice to milk to give a better appetite. The decoction is given to sick goats, especially those suffering from diarrhoea.</td>
<td>Local and oral routes (decoction powder, paste, sticks, juice).</td>
<td>Kamikawa et al., 1996, Matu & Staden, 2003, Nguta et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Bark</td>
<td></td>
<td>Local and oral routes (macerated or decoction powder, paste, sticks, juice).</td>
<td></td>
</tr>
<tr>
<td>Z. chalybeum Engl</td>
<td>Roots</td>
<td>Malaria, colds, coughs, toothache, sores, wounds and headache.</td>
<td>Local and oral routes (macerated or)</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Parts Used</td>
<td>Uses</td>
<td>Routes</td>
<td>Authors, Year</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Z. chiloperone var.</td>
<td>Fruits</td>
<td>Used in treatment of coughs.</td>
<td>Decoction powder, paste, sticks, juice.</td>
<td>Ferreira et al., 2007</td>
</tr>
<tr>
<td>angustifolium Engl.</td>
<td>Root bark</td>
<td>As antimalaric, emmenagogue and antirheumatic properties.</td>
<td>Oral route</td>
<td></td>
</tr>
<tr>
<td>Z. davji (I. Verd.) Waterm.</td>
<td>Leaves</td>
<td>To treat snakebite, severe coughs and colds and chest pains.</td>
<td>Local and oral routes (macerated or decoction)</td>
<td>Tarus et al., 2006</td>
</tr>
<tr>
<td></td>
<td>Spines</td>
<td>Used for infected wounds.</td>
<td>Local routes (infusion or decoction material, paste).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stem bark</td>
<td>Treat boils, pleurisy and toothache.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Root</td>
<td>Used for mouth ulcers, sore throats and as aphrodisiac.</td>
<td>Local and oral routes (macerated or decoction).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Root bark</td>
<td>Tonic both for man and animals and to treat toothache.</td>
<td>Local route (Root-bark decoctions)</td>
<td></td>
</tr>
<tr>
<td>Z. dipetalum H. Mann</td>
<td>Leaves and pericap</td>
<td>Insecticide – ovicidal.</td>
<td>Local route</td>
<td>Marr & Tang, 1992</td>
</tr>
<tr>
<td>var. tomentosum</td>
<td></td>
<td></td>
<td>(decoction).</td>
<td></td>
</tr>
<tr>
<td>Z. dugandii Standl.</td>
<td>Bark</td>
<td>Diuretic and sudorific.</td>
<td>Oral route</td>
<td>Schnee, 1984</td>
</tr>
<tr>
<td>Z. ekmanii (URB.) ALAIN.</td>
<td>Leaves and roots</td>
<td>For malaria, in vaginal washes and to relieve toothache.</td>
<td>Local and oral routes (decoction).</td>
<td>Facundo et al., 2005</td>
</tr>
<tr>
<td>Z. fagara (L.) Sarg.</td>
<td>Leaves, fruits and seeds</td>
<td>Used as sedative and sudorific.</td>
<td>Oral route</td>
<td>Amaro et al., 1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(decoction).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wood</td>
<td>Used in house and boat-building, decorative paneling, joinery, construction of talking drums and in the paper and pulp industry.</td>
<td>Wood</td>
<td>Jirovetz et al., 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adesina, 2005</td>
</tr>
<tr>
<td>Z. hawaiiense Hbd.</td>
<td>Leaves and pericap</td>
<td>Insecticide – ovicidal.</td>
<td>Local route</td>
<td>Marr & Tang, 1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(decoction).</td>
<td></td>
</tr>
<tr>
<td>Z. hyemale A. St. Hil.</td>
<td>Leaves</td>
<td>As painkiller, sudorific, emetic and</td>
<td>Oral route (tea of leaves).</td>
<td>Guy et al., 2001</td>
</tr>
<tr>
<td>Species</td>
<td>Part</td>
<td>Uses</td>
<td>Routes</td>
<td>References</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Z. lemairie (De Wild) Waterm.</td>
<td>Wood</td>
<td>House and boat-building, decorative paneling, joinery, construction of talking drums and in the paper and pulp industry.</td>
<td>Wood.</td>
<td>Adesina, 2005</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>Used for traditional treatment of stomatitis, gingivitis, bilharzia.</td>
<td>Oral route (macerated or decoction powder).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roots</td>
<td>As antiulcerative, antiseptic, urinary antiseptic, anti-sickler, antibacterial.</td>
<td>Local and oral routes (macerated powder, paste).</td>
<td>Ngane et al., 2000</td>
</tr>
<tr>
<td></td>
<td>Stem barks</td>
<td>Used as antimicrobial, digestive aid, anti-inflammatory, anti-cancerous, anti-odontologic and parasiticide.</td>
<td>Local and oral routes; rectal injection (macerated or decoction powder, sticks).</td>
<td>Ngoumfo et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>Used as spices.</td>
<td>Oral route (dried fruits).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wood</td>
<td>Used in house and boat-building, decorative paneling, joinery, construction of talking drums and in the paper and pulp industry.</td>
<td>Wood.</td>
<td>Adesina, 2005</td>
</tr>
<tr>
<td>Z. liebmanianum (Engler.) P. Wilson</td>
<td>Bark</td>
<td>Used to treat amebiasis, intestinal parasites, and as a local anesthetic.</td>
<td>Local and oral routes (decoction powder, sticks)</td>
<td>Navarrete, 1996 Arrieta et al., 2001</td>
</tr>
<tr>
<td>Z. macrophylla Engl.</td>
<td>Bark and seeds</td>
<td>Used for toothache, colds, fever, malaria, stomachache, rheumatism and urogenital affections,</td>
<td>Local and oral routes (macerated or decoction powder, paste, sticks).</td>
<td>Kuete et al., 2011 Tringali et al., 2001</td>
</tr>
<tr>
<td>Zanthoxylum Genus as Potential Source of Bioactive Compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. monophyllum (Lam.) P. Wilson</td>
<td>Bark</td>
<td>Used as a colorant and to treat runny nose, jaundice, ophthalma and as an anesthetic.</td>
<td>Local and oral routes (macerated or decoction powder, paste, sticks).</td>
<td>Patiño & Cuca, 2011</td>
</tr>
<tr>
<td>Z. naranjillo Griseb.</td>
<td>Leaves</td>
<td>Preparations have been used to treat illness associated with inflammatory process.</td>
<td>Oral route (tea of leaves).</td>
<td>Bastos et al., 2001</td>
</tr>
<tr>
<td>Z. nitidum (Roxb.) DC</td>
<td>Fruits</td>
<td>Spice and in to treat stomachache, vomiting, diarrhea, cough, colic, and paresis and as an aromatic, stimulant and piscicide.</td>
<td>Oral route (dried fruits, infusion or decoction material).</td>
<td>Chen et al., 2011</td>
</tr>
<tr>
<td>Z. nitidum (Roxb.) DC</td>
<td>Root</td>
<td>Used in toothache, stomachache, fever, rheumatism, paresis, boils and as an insecticide and piscicide. Used in fever, diarrhea and cholera.</td>
<td>Oral route (infusion or decoction material).</td>
<td>Bhattacharya et al., 2009</td>
</tr>
<tr>
<td>Z. piperitum DC.</td>
<td>Pericarp</td>
<td>Commonly used as a spice in Japan. Used to heal vomiting, diarrhea, and abdominal pain.</td>
<td>Oral route (ground pericarp)</td>
<td>Lee & Lim, 2008</td>
</tr>
<tr>
<td>Z. piperitum DC.</td>
<td>All parts of the plant</td>
<td></td>
<td>Oral route (macerated or decoction powder).</td>
<td>Yamazaki et al., 2007</td>
</tr>
<tr>
<td>Z. rhetsa Roxb.</td>
<td>Spines</td>
<td>Applied on the breast to give relief from pain and increase lactation in nursing mothers. Used as antiseptic, disinfectant, and for treat asthma, toothache and rheumatism.</td>
<td>Local route (paste prepared by rubbing the hard spines on a rock along with water).</td>
<td>Lalitharani et al., 2010</td>
</tr>
<tr>
<td>Z. riedelianum Engl.</td>
<td>Seeds</td>
<td></td>
<td>Local and oral routes (seeds oil, infusion or decoction material, paste).</td>
<td>Reddy & Jose, 2011</td>
</tr>
<tr>
<td>Z. rigidum Humb. & Bonpl.</td>
<td>Wood</td>
<td>Used in different types of inflammations, rheumatism and skin stains.</td>
<td>Oral route (decoction)</td>
<td>Fernandes et al., 2009</td>
</tr>
</tbody>
</table>

www.intechopen.com
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Part Used</th>
<th>Uses</th>
<th>Route</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. rhoifolium</td>
<td>Leaves</td>
<td>Used for toothache</td>
<td>Local route (ointment)</td>
<td>Schnee, 1984</td>
</tr>
<tr>
<td></td>
<td>Root bark</td>
<td>Used as a tonic, a febrifuge, against inflammatory and microbial processes, and in the treatment of malaria.</td>
<td>Oral route (infusion or decoction of roots bark).</td>
<td>Pereira et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Bark</td>
<td>Used to treat toothache and earache, also is used as an anti-venom serum, anti-tumor and in the treatment of hemorrhoids.</td>
<td>Oral route (decoction bark)</td>
<td>da Silva et al., 2007a</td>
</tr>
<tr>
<td>Z. schinifolium</td>
<td>Leaves and ripe</td>
<td>Used as culinary applications and drugs for epigastric pain.</td>
<td>Oral route (macerated or decoction powder, crushed material).</td>
<td>Cao et al., 2009 Cui et al., 2009 Chang et al., 1997</td>
</tr>
<tr>
<td></td>
<td>pericarp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. simulans</td>
<td>Roots</td>
<td>Used for snake bites and gastrointestinal disorders</td>
<td>Oral route (macerated powder).</td>
<td>Chen et al., 1994a Chen et al., 1994b</td>
</tr>
<tr>
<td>Z. tessmannii</td>
<td>Stem bark</td>
<td>Used for treat tumors, swellings, inflammation and gonorrhea.</td>
<td>Oral route (macerated or decoction powder).</td>
<td>Mbaze et al., 2007</td>
</tr>
<tr>
<td></td>
<td>Root bark</td>
<td>Used as a toothbrush House and boat-building, joinery, decorative paneling and in the paper and pulp industry.</td>
<td>Cleaning the teeth.</td>
<td>Adesina, 2005</td>
</tr>
<tr>
<td></td>
<td>Wood</td>
<td></td>
<td>Wood</td>
<td></td>
</tr>
<tr>
<td>Z. tetraspermum</td>
<td>Stem bark</td>
<td>Used for the treatment of dyspepsia, rheumatism and some forms of diarrhea.</td>
<td>Oral route (decoction).</td>
<td>Nissanka et al., 2001</td>
</tr>
<tr>
<td>Z. tingoassuiba</td>
<td>Stem bark</td>
<td>Antispasmodic, muscle relaxant, analgesic, sudorific, antifungal, diuretic, antiplatelet, antiparasitic and antihypertensive.</td>
<td>Oral route (teas or infusions).</td>
<td>Da Silva et al., 2008</td>
</tr>
<tr>
<td>Z. usambarense</td>
<td>Bark</td>
<td>Used to treat rheumatism.</td>
<td>Oral route (infusion or decoction powder).</td>
<td>Matu & Staden, 2003</td>
</tr>
<tr>
<td></td>
<td>Young</td>
<td>Used as</td>
<td>Local route (cleaning)</td>
<td></td>
</tr>
</tbody>
</table>

www.intechopen.com
Benzylisoquinoline alkaloids have a restricted distribution in plants similar to that of benzophenanthridines. In the Rutaceae family they are present in a group of five genera named proto-Rutaceae (Phellodendron, Fagaropsis, Tetradium, Toddalia and Zanthoxylum) (Ling et al., 2009; Waterman, 2007). In the genus Zanthoxylum they are not the most common but have been found in some species, such as quaternary alkaloids \((\pm)\)-isotembetarine 7 and \((\pm)\)-xylopinidine 8 that have been isolated from the bark of Z. quinduense (Patiño & Cuca, 2010).

Berberine and protoberberine alkaloids have been reported in several species of the genus Zanthoxylum, for example tetrahydroberberines such as N-methyltetrahydrocolumbamine 9 and N-methylytetrahydropalmatine 10, have been isolated from the bark of Z. quinduense (Patiño & Cuca, 2010). Berberine 11 is characterized by its significant leishmanicidal and antimicrobial activities and is usually the responsible for the yellowing observed in wood and bark of some species of this genus, as in the case of Z. monophyllum that is used as a dye (Patiño & Cuca, 2011).

In the genus Zanthoxylum, aporphine alkaloids there are not the most representative, but they have been isolated from various species and are of great importance because several have antitumoral activity (Adesina, 2005). For example, N,N-dimethylindicarpine 12, obtained from the root bark of Z. zanthoxyloides (Queiroz et al., 2006).

Table 1. Main ethnobotanical uses of some species of the Zanthoxylum genus.
4.1.2 Quinoline alkaloids

Quinoline alkaloids are very common in the genus Zanthoxylum, usually have been found two types: furoquinolines and pyranoquinolines. Many of them are characterized by contain a carbonyl group in position 2 of the simple quinolinic nucleus and are called 2-quinolones (Waterman & Grundon, 1983). Alkaloids of this type have been isolated from the bark of Z. budrunga founding two pyranoquinoline: N-methylflindersine 13 and zanthobungeanine 14, together with two furoquinolines dictamine 15 and skimmianine 16 (Rahman et al., 2005). From Z. simulans also have been isolated pyranoquinoline alkaloids as zhantosimulin 17 and huajiaosimulin 18, with cytotoxic activity (Chen et al., 1997).

4.1.3 Other alkaloids

Bishoderninyl terpene, indolopyridoquinazoline, canthin-6-one, quinazoline and carbazole alkaloids, among others, are not very common in the genus Zanthoxylum, they have been found in some particular species. Bishoderninyl terpene alkaloids such as 19 have been isolated from the leaves of Z. integrifolium (Liu et al., 2000). Indolopyridoquinazoline alkaloids with significant antiplatelet activity as 1-hydroxyrutaecarpine 20, rutaecarpine 21, and 1-methoxyrutaecarpine 22 have been obtained from the fruits of Z. integrifolium (Sheen
et al., 1996). Canthin-6-one alkaloids of importance for its leishmanicidal activity are rare in the family Rutaceae, are found in a few genders including *Zanthoxylum*. For example from *Z. rugosum* (Diehl et al., 2000), *Z. chiloperone* (Ferreira et al., 2002) and *Z. budrunga* (Rahman et al., 2005), have been isolated canthin-6-one \(23\) and 5-methoxycanthin-6-one \(24\). Quinazoline alkaloids have been isolated from *Z. budrunga*, as is the case lunacridina \(25\) (Ahmad et al., 2003). Carbazole alkaloids such as 3-methoxy-9-methyl-9H-carbazol-2-ol \(26\) were obtained from the wood of *Z. rhoifolium* (Taborda & Cuca, 2007). Recently, from the bark of *Z. monophyllum* was isolated an alkaloid derived from proline, called monophyllidin \(27\) with antibacterial activity against *Enterococcus faecalis* (Patiño & Cuca, 2011).

4.2 Lignans

Lignans are also widely distributed in higher plants and have numerous biological activities among which include the antimicrobial, antioxidant, antitumor, antiviral, antihepatotoxic, antituberculous, insecticides and inhibit specifically certain enzymes. At the ecological level, there is the evidence that lignans play a role in plant-fungus, plant-plant and plant-insect interactions. Some lignans are toxic to fungi and insects. They are biogenetically derived by the oxidative dimerization of two C6-C3 units, that is, two characteristic phenylpropanoid units. The degree of oxidation and types of substituents determine the emerging lignan structure. There are also naturally occurring dimers that exhibit peculiar-type linkages. Different types of lignans has been described in a large number of plants from the Rutaceae family, but in the genus *Zanthoxylum* the lignans most reported have been of two types, diarylbutirolactones and 2,6-diaryl-3,7-dioxabicyclo[3.3.0]octanes. Neo-lignans also have been reported in some species of *Zanthoxylum* (Adesina, 2005; Waterman & Grundon, 1983).

Furofuranic lignans as syringaresinol \(28\) were obtained from *Z. quinduense* and *Z. monophyllum* (Patiño and Cuca, 2010; 2011). From *Z integrifoliolum* (Chen et al., 1999), *Z. culantrillo* (Cuca et al., 1998) and *Z. naranjillo* (Bastos et al., 1999) ha been isolated (+)-sesamin \(29\). Diarylbutirolactonic lignans such as (-)-cubebin \(30\) with trypanocidal activity has been isolated from *Z. monophyllum* (Cuca et al., 1998) and *Z. naranjillo* (Bastos et al., 1999). A nor-neolignan, ailanthoidol \(31\), was isolated from the wood of *Z. ailanthoides*, as tree used in folk medicine in Taiwan for the treatment of snake bite and the common cold (Sheen et al., 1994).
4.3 Coumarins

Biologically, coumarins are very useful and many of them have exhibited antibacterial, anti-tumour, vasodilatory (in coronary vessels) and anticoagulant activities. It was long noted that most coumarins are free from toxic side effects and may be given for years without side effects; overdose, however, causes haemorrhages (Murray et al., 1989). Coumarins are widespread in the Angiosperms but they are rather rare in Gymnosperms and lower plants. They occur in great structural variety especially in the Apiaceae and Rutaceae and are additionally found in many other plants families like the Asteraceae, Poaceae and Rubiaceae (Ribeiro & Kaplan, 2002). The family Rutaceae belongs to the order Rutales characterized by the occurrence of coumarins in all families that comprise it. Coumarins, although are very frequent in the family as a whole, are confined to four sub-families (Aurantioidae, Flindersioideae, Toddalioideae and Rutoideae). In the subfamily Rutoideae is present the genus Zanthoxylum, which is characterized by the presence of different types of coumarins (simple, linear, dihydrofurocoumarins, furocoumarins and pyranocoumarins). The linear and angular dihydrofurocoumarins and precursors have been identified in several species of the genus, but angular dihydrofurocoumarins are not common in other species of the family Rutaceae, so it can be chemotaxonomic value for the genus Zanthoxylum. The fact that prenyl substitution at C-8 is much less frequent than that at C-6 could explain why angular furanocoumarins are rather rare in the Rutaceae (Murray et al., 1989; Waterman & Grundon, 1983).

From stem of Z. schinifolium was isolated larcinatin 32, a terpenylcoumarin with significant inhibitory activity against the enzyme monoamine oxidase (MAO), which is one of the two isozymes, MAO-B is associated with Parkinson's disease (Jo et al., 2002). In studies done on this species, from the bark of Z. schinifolium were isolated auraptene 33 and collinine 34, terpenylcoumarins with antiplatelet activity and inhibitory activity of DNA replication in hepatitis B virus (Tsai et al., 2000). Furanocoumarins with cytotoxic activity against human tumor cells have been found in berries of Z. americanum, for example psoralen 35 (Saquib et al., 1990).
4.4 Amides

Amides are compounds that have chemotaxonomic importance for the genus *Zanthoxylum* and have been found mainly in the pericarp of the fruit, stems and roots of these species. The genus *Zanthoxylum* is characterized chemically by the frequent accumulation of olefinic alkamides (unsaturated aliphatic acid amides) and biogenetic capacity derived from the condensation of fatty acids such as linolenic and linoleic acids with isobutyl amines. Biologically, the isobutyl amides have been shown to have strong insecticidal properties. Alkamides have been used medicinally since ancient times as sialogogues, antitussive and analgesic and their presence in the *Zanthoxylum* genus may be of immense benefit to medicine (Adesina, 2005; Chaaib, 2004). An example of such amides is provided by the α-sanshool 36, isolated from *Z. liebmannianum* and is known for its anthelmintic properties (Navarrete & Hong, 1996).

Other types of amides encountered in the *Zanthoxylum* genus are the aromatic amides described occasionally also as alkaloids or trans-cinnamoylamides. A typical example is the active antiplasmodial syncarpamide 37, isolated from *Z. syncarpum* (Ross et al., 2004).

4.5 Flavonoids

Flavonoids are phenolic compounds widely available in this genus. They are present in almost all plant organs and play an important role in the antioxidant defense system. These secondary metabolites are known for their diverse biological properties, such as antioxidants, antiinflammatory, antithrombotic, antibacterial, antihepatotoxic, antitumor, antihypertensive, antiviral, antiallergic and estrogenic (Andersson et al. 1996; Harborne & Williams, 2000).

In *Zanthoxylum* genus, flavonoids are mainly represented by glycosides of flavones, flavonols and flavanones. Flavonoids found in the genus *Zanthoxylum*, like those isolated in other genera of the Rutaceae family are characterized to be polymethoxylated (Waterman & Grundon, 1983). Research carried out on fruits of *Z. integrifolium* lead to the isolation of 3,5-diacetyltambuline 38, with significant antiplatelet activity (Chen et al., 1999).
4.6 Terpenes and sterols

Most species belonging to the family Rutaceae contain glands that secrete volatile substances in different organs of plants such as fruits, leaves, bark, wood, roots, rhizomes and seeds. The essential oils obtained are often complex mixtures of monoterpenes and sesquiterpenes. Zanthoxylum genus accumulates volatile oils in leaves, flowers and fruits. Recently was determined the chemical composition of essential oils isolated from fruits of Z. monophyllum, Z. rhoifolium and Z. fagara by steam distillation, as well as were testing their antifungal and insecticidal activities. Gas chromatography-mass spectrometry (GC/MS) analysis allowed identified 57 compounds. The main constituents in Z. rhoifolium oil were β-myrcene 39 (59.03%), β-phellandrene 40 (21.47%), and germacrene D 41 (9.28%), the major constituents of Z. monophyllum oil were sabinene 42 (25.71%), 1,8-cineole 43 (9.19%), and cis-4-thujanol 44 (9.19%), whereas fruit oil of Z. fagara mainly contained germacrene D-4-ol 45 (21.1%), elemol 46 (8.35%), and α-cadinol 47 (8.22%). Z. fagara showed the highest activity on Colletotrichum acutatum (EC₅₀ 153.9 µL L-1 air), and Z. monophyllum was the most active against Fusarium oxysporum f. sp. lycopersici (EC₅₀ 140.1 µL L-1 air). Z. monophyllum essential oil showed significant fumigant activity against Sitophilus oryzae (Prieto et al., 2011).

Sterols are common components of many plants and have been isolated from virtually all plants. Whereas β-sitosterol 48 appears ubiquitous in nature, the triterpene lupeol 49 appears restricted to the Zanthoxylum genus. Lupeol, β-sitosterol, usually associated with stigmasterol 50, campesterol 51 and β-amyrin 52 have been isolated from the various morphological parts of the main species of Zanthoxylum studied (Adesina, 2005).
5. Biological activity of *Zanthoxylum* genus

As noted in previous sections, *Zanthoxylum* genus is well known for their chemical diversity and ethnobotanical properties, characteristics that have been the basis for developing various biological activity studies, which have helped to find new bioactive extracts and compounds, some of which have good potential for the development of new drugs and different industrial products.

The biological activities for certain species of the genus *Zanthoxylum* are mainly associated with the evaluation of antimicrobial, insecticidal, anti-inflammatory, antioxidant, antiparasitic, antitumor, antihelmitic, antinociceptive and antiviral activities, as well as studies of enzyme inhibition and effects on the central nervous system and cellular components of blood. The information in this section is organized by type biological activity, including the most representative results found for the genus *Zanthoxylum*.

5.1 Allelopathic activity

There are few reports on allelopathic activity of *Zanthoxylum* species. One report shows a bioguided fractionation of the ethyl acetate extract of the *Z. limonella* fruits led to the isolation of xanthoxyline, a substance with allelopathic effects on Chinese amaranth (*Amaranthus tricolor* L.) and Barnyardgrass (*Echinochloa crus-galli* (L.) Beauv.). At a concentration of 2500 µM, xanthoxyline completely inhibited seed germination and growth of Chinese amaranth, and showed a significantly inhibitory effect on seed germination of Barnyardgrass by 43.59% (Charoenying et al., 2010).

5.2 Analgesic activity

Studies of analgesic activity in the genus *Zanthoxylum* have been focused mainly to validate its traditional uses. An example is the study of analgesic activity made with the aqueous extract of root bark of *Z. xanthoxyloides*. This study showed that the extract induced analgesia, probably, by inhibiting prostaglandin production, because some isolated and
purified alkaloids of the root bark of *Z. xanthoxyloides* have anti-prostaglandin synthetase activity (Prempeh & Mensah-Attipoe, 2008).

5.3 Anticonvulsant activity

The reports on anticonvulsant activity of *Zanthoxylum* species are few. A recent study of anticonvulsant activity was carried out with the methanol and aqueous extracts from leaves of *Z. capense*. In this report was investigated the effect of both extracts on seizures induced by pentylenetetrazole, bicuculline, picrotoxin, N-methyl-DL-aspartic acid and strychnine in mice. Both extracts showed significant activity in the tests carried out with the five seizures inducing agents, finding that these substances in some cases delay seizures and in some cases act as agonists (Amabeoku & Kinyua, 2010).

5.4 Antihelmitic activity

Antihelmitic activity studies have been advanced mainly in the specie *Z. xanthoxyloides*. Two recent studies reveal that acetone: water (70:30) and ethanol extracts from leaves of *Z. xanthoxyloides* showed promising activity against *Asaris lumbricoides*, *Haemonchus contortus*, *Trichostrongylus colubriformis*, three nematodes that of these nematodes provokes production losses, clinical signs and even can lead to deaths in sheep or goats worldwide (Azando et al., 2011; Barnabas et al., 2011).

5.5 Anti-inflammatory activity

The anti-inflammatory effects of the extracts and isolated compounds of some *Zanthoxylum* species have been evaluated employed mainly four methods: 1) paw edema induced by carragenin in rats; 2) ear edema induced by phorbol myristate acetate (PMA), arachidonic acid (AA) and 12-o-tetradecanoyl-phorbol acetate (TPA) in mice; 3) inhibition of superoxide anion generation and 4) elastase release in fMLP/CB-activated human neutrophils in a concentration-dependent manner. In different studies, ethanolic extracts of bark from *Z. elephantiasis*, *Z. fagara*, *Z. martinicense* and *Z. coriaceum*, and hexane, ethyl acetate and ethanolic extracts of leaf from *Z. chiloperone* have presented promising results of anti-inflammatory activity (Villalba et al., 2007; Márquez et al., 2005; Bastos, 2001). Other studies involving phytochemical and biological activity reported the isolation of various secondary metabolites with anti-inflammatory activity. From the hexane extract of *Z. naranjillo* was isolated a dibenzylbutirolactonic lignan (cubebin) with antiinflammatory properties (Bastos et al., 2001). In the methanol extract of stem wood from *Z. nitidum* were identified benzophenanthridine alkaloids, quinolone alkaloids, lignans and coumarins with promising anti-inflammatory activity (Chen et al., 2011). For the methanol extract of stem wood of *Z. integrifoliolum* and *Z. avicennae* have been reported the presence of phenylpropenoids, lignans, coumarins, quinolone alkaloids and quinoline alkaloids with anti-inflammatory potential (Chen et al., 2008; Chen et al., 2007).

One compound which has gained wide attention of medical professionals, pharmaceutical marketers and researchers all around the world is a dietary triterpene known as lupeol. This compound is found in most species of the genus presented *Zanthoxylum*, and has been...
extensively studied for its inhibitory effects on inflammation under in vitro and in animal models of inflammation (Saleem, 2009).

5.6 Antimicrobial activity

Most reports of biological activity of the *Zanthoxylum* genus are related to the evaluation of antimicrobial activity. This activity has been evaluated mainly using human pathogenic strains, with few cases in which phytopathogenic strains are used. Most studies of antimicrobial activity have been made using disk diffusion method. Here are some examples of antimicrobial activity studies performed with species of the genus *Zanthoxylum*.

The antifungal and antibacterial activities of some compounds isolated from *Z. tessmannii* were determined against *Bacillus subtilis*, *Escherichia coli*, *Staphylococcus aureus*, *Streptomyces viridochromogenes*, *Mucor miehei*, *Candida albicans*, *Chlorella vulgaris*, *Chlorella sorokiniana* and *Scenedesmus subspicatus*. 2,6-dimethoxy-1,4-benzoquinone showed activities against seven of the nine strains employed, while 3β-acetoxy-16β-hydroxybetulinic acid showed weak activities against *Bacillus subtilis* and *Escherichia coli*, and 3β, 16β-hydroxybetulinic acid showed weak activities against *Bacillus subtilis* and *Candida albicans* (Mbaze et al., 2007).

The fruits extract of *Z. armatum* has been tested for their antibacterial activity against *S. aureus*, *E. coli*, *Pseudomonas aeruginosa* and *Shigella boydii*. This ethanolic extract was inactive against *P. aeruginosa*, while showed positive activity on the other three strains. These results indicate that the ethanolic extract from fruits of *Z. armatum* may have broad spectrum antibacterial activity because it shows activity against Gram-positive and Gram-negative bacteria (Panthi & Chaudhary, 2006).

The essential oils of *Z. xanthoxyloides* and *Z. leprieurii*, two Cameroonian plants used as spices in local food, showed antibacterial and antifungal activity against *E. coli*, *S. aureus*, *Klebsiella pneumoniae*, *Enterococcus faecalis*, *Corynebacterium glutamicum*, *B. cereus*, *B. subtilis* and *Aspergillus flavus* (Tatsadjiue et al., 2003).

Aqueous, hexane and methanol extracts of leaves, roots and stem bark obtained from *Z. chalybeum* and *Z. usambarense* were screened for in-vitro antibacterial activity using Gram-positive bacteria (*B. subtilis*, *Micrococcus luteus* and *S. aureus*). The root and stem-bark extracts of the two *Zanthoxylum* species showed high antibacterial activity (Matu & Staden, 2003).

Aqueous, hexane and methanol extracts of leaves, roots and stem bark obtained from *Z. chalybeum* and *Z. usambarense* were screened for in vitro antibacterial activity using Gram-positive bacteria (*B. subtilis*, *Micrococcus luteus* and *S. aureus*). The root and stem-bark extracts of the two *Zanthoxylum* species showed high antibacterial activity (Matu & Staden, 2003).

Ethanolic extracts of bark of *Z.fagara*, *Z. elephantiasis* and *Z.martinicense* were evaluated against *C. albicans*, *Saccharomyces cerevisiae*, *Aspergillus niger*, *A. flavus*, *Microsporum canis* and *Trichophyton mentagrophytes* to determined their antifungal activity. All of the extracts assayed showed activity against common dermatophytes of domestic animals, the one being most significant is that exhibited by the ethanolic extract of the bark of *Z. fagara* (Diéguez-Hurtado et al, 2003).

Leaf, fruit, stem, bark and root extracts of *Z. americanum* were investigated for antifungal activity with 11 strains of fungi. All extracts demonstrated a broad spectrum of antifungal activity and inhibited at least eight fungal species, being the fruit and leaf extracts the most
active in general. The results provide a basis for the very widespread use of *Z. americanum* in indigenous North American ethnomedical tradition for conditions that may be related to fungal infections (Bafi-Yeboa et al., 2005).

Chelerythrine, N-methyltetrahydrocolumbamine, N-methyltetrahydropalmatine and berberine, four alkaloids isolated from *Z. quinduense*, have exhibited promising antibacterial activity against different Gram-positive and Gram-negative bacteria, being chelerythrine the most active compound, showing an antibacterial activity comparable to that of the antibiotics kanamycine, tetracycline and anthracycline (Patiño et al., 2011).

5.7 Antinociceptive activity

In order to contribute towards the pharmacological knowledge about *Zanthoxylum* genus, as well as demonstrate the popular uses of some species as a painkiller, have been advanced antinociceptive activity studies with extracts of hexane, ethyl acetate and ethanol obtained from leaves of *Z. chilipirone* and with stem bark ethanolic extract (EtOH), its fractions of partition (hexane, ethyl acetate, aqueous) and lupeol obtained of *Z. rhoifolium*, employing animal models of chemically induced acute pain. The study carried out with *Z. chilipirone* shows that with doses of 100 and 200 mg/kg of each extract is possible to detect significantly inhibition in the paw lick, results that suggest that the extracts from *Z. chilipirone* possess constituents with antinociceptive activity (Villalba et al., 2007). Moreover, the study with extracts of *Z. rhoifolium* sought to confirm its popular use, and shows for the first time that ethanol extract of *Z. rhoifolium* stem bark, its fractions and one of the major constituents (lupeol) have antinociceptive activity when administered orally in different models of chemical nociception in mice (Pereira et al., 2010).

5.8 Antioxidant activity

To determine the antioxidant activity of substances isolated from species of *Zanthoxylum* genus have been used more than ten methods, most based on the determination of free radical scavenging activity. The most common methods are: 1) Total phenolic content; 2) DPPH radical scavenging assay; 3) ABTS radical scavenging activity and 4) superoxide anion scavenging assay.

Studies of antioxidant activity of *Zanthoxylum* species have been advanced mainly extracts from fruits and seeds. For example, the essential oil of seeds of *Z. bungeanum* (Xia et al., 2011), the ethanol extract of fruits of *Z. alatum* (Batool et al., 2010); extracts of hexane, ethyl ether, ethyl acetate and methanol obtained from fruits of *Z. piperitum* (Lee & Lim, 2008; Hisatomi et al., 2000), as well as extracts of hexane, acetone and ethanol from fruits of *Z. achanthopodium* (Suryanto et al., 2004), have demonstrated an interesting antioxidant power.

In a study made by Yamazaki and co-workers shows the isolation of two glycosylated flavonoids (hyperoside and quercitrin) of methanol extract from fruits of *Z. piperitum*, these substances scavenged DPPH radical strongly with IC$_{50}$ values of 16 and 18 µM, respectively (Yamazaki et al., 2007).

5.9 Antiparasitary activity

In the frame of the search for new leads against the most neglected parasitic diseases, it is of particular interest to evaluate the antimalarial, trypanocidal and antileishmanial potential of some of the most frequently traditional drugs used.

www.intechopen.com
The information on the frequently utilized antimalarial plant species is an important lead to the species that can be targeted for pharmacological, toxicological and phytochemical tests. The most important antimalarial properties have been observed in alkaloids, sesquiterpene lactones, coumarins, triterpenoids and limonoids. Z. chalybeum, Z. syncarpum, Z. zanthoxyloides, Z. gilletii, Z. limonella, Z. rhoifolium and Z. usambarense, among others, are some of the species of Zanthoxylum genus that have showed interesting antimalarial properties.

Zanthoxylum chalybeum root bark (IC\textsubscript{50} of 4.2µg/ml) and some quinoline alkaloids isolated from this species have been exhibited strong antiplasmodial activity on chloroquine resistant Plasmodium falciparum strain (Nguta et al., 2010). Syncarpamide and decarine, two compounds isolated from Z. syncarpum have showed strong in vitro antiplasmodial activity against D6 (chloroquine sensitive clone) and W2 (chloroquine resistant clone) P. falciparum strains, having IC\textsubscript{50} values lower than 6.1 µM (Kaur et al., 2009; Ross et al., 2005; Ross et al., 2004). The crude alkaloid extract obtained from the bark of Z. zanthoxyloides and fagaronine, a benzophenanthridine alkaloid derived from the root extract of Z. zanthoxyloides; inhibited P. falciparum growth in vitro at low IC\textsubscript{50} (Adebayo & Krettli, 2011; Gansane et al., 2010). Also have been reported positive results of antimalarial activity for the ethanolic extract from stem bark of Z. guilletti (Zirihi et al, 2009) and for the chloroform crude extract from fruits of Z. limonella (Charoenying et al., 2008).

Anti-plasmodial activity of stem bark extracts from Z. usambarense was performed against P. knowlesi and P. berghei. The aqueous extract was remarkably active against the two parasites, while all organic solvents extracts being inactive. These results suggest that the antiplasmodial activity of Z. usambarense is due mainly to polar substances (Were et al., 2010).

A study of antimalarial properties of Z. rhoifolium bark carried out in order to validate its use and confirm the previously detected in vivo activity, lead to the isolation of antimalarial compounds. The antiplasmodial activity of Z. rhoifolium bark was concentrated in the alkaloid fractions showed approximately 44% inhibition of P. falciparum growth at 10µg/mL, using LDH micromethod. Three of the seven isolated compounds from alkaloidal fraction displayed antiplasmodial activity, ranging from good (nitidine, the most potent compound) to moderate (avicine and fagaridine) (Jullian et al., 2006). In other research of the antiplasmodial activity of Z. rhoifolium was determined that the water infusion from bark inhibited more than 50% the P. falciparum development with doses higher than 500 mg/kg (Bertani et al, 2005).

Recently, has been reported the trypanocidal effect of ethanolic extracts of leaves, fruits, stem bark and root bark, canthin-6-one alkaloids and some of its analogs obtained from Z. chiloperone, using in vitro methods and the mouse model of acute or chronic infection to evaluate the trypanocidal activity. These results demonstrate the anti-Trypanozona activity of canthinones. Additionally, considering the low toxicity of canthin-6-one, is possible to propose this natural product as a possible advantageous phytotherapeutic compared to the current chemotherapy of Chagas disease (Ferreira et al., 2011; Ferreira et al., 2007). In a study carried out with the hexane extract from leaves of Z. narajillo seven lignans were isolated and evaluated as trypanocidals. Four of the seven lignans showed trypanocidal activity in an in vitro assay, being (-)-methylpluviatolide the most active compound (Bastos et al., 1999).
Canthin-6-one alkaloids have exhibited interesting antileishmanial activity. For example, in a study carried out with the alkaloidal extract of *Z. chiloperone* stem bark reported that this extract inhibited the growth of *Leishmania braziliensis*, *L. amazonensis* and *L. donovani* at 100 µg/mL and mentioned that the compounds canthin-6-one and 5-methoxy-canthin-6-one were the two major active constituents (Ferreira et al., 2002). Also has been reported that meglumine antimonate isolated from *Z. chiloperone* showed activity against *L. amazonensis* at dose of 28 mg/kg (Sen & Chatterjee, 2011).

5.10 Antiplatelet activity

The methanolic extract of the stem of *Z. beecheyanum* showed strong antiplatelet activity in vitro using the turbidimetric method. In washed rabbit platelets, thrombin (0.1 U/mL), arachidonic acid (AA 100 M), collagen (100 g/mL), and PAF (2 ng/mL) all caused about 90-95% aggregation.

5.11 Antiviral activity

Zanthoxylum species were used in experiments to test their influence on inhibition of multiplication of porcine epidemic diarrhea virus (PEDV). The extracts of *Z. coreanum* root, *Z. planispinum* leaf and stem, *Z. schinifolium* leaf exhibited antiviral activity with the IC\(_{50}\) of 1.0, 6.4, 7.5 and 3.7 µg/mL against PEDV, respectively.

In an anti-HIV screening program, three *Zanthoxylum* species, including the root bark of *Z. ailanthoides*, the root wood of *Z. integrifoliolum*, and the stem bark of *Z. scandens* showed anti-HIV activity. The anti-HIV principles of *Z. ailanthoides* have already been proved to be two alkaloids (decarine and fagarine) and an aromatic amide ((+)-tembamide). Thus, the former two constituents, decarine and fagarine, also isolated of *Z. integrifoliolum*, can be considered as the anti-HIV constituents of the root wood of this species.

5.12 Citotoxic activity

Cancer is the leading cause of death worldwide. Finding a cure for this disease is always an important objective for human endeavor. Natural products have long been considered as potential drug candidates for cancer prevention and treatment (Chou et al., 2011). *Zanthoxylum* species are potential sources for find new antitumor agents, because diverse substances obtained from some of this species have showed strong citotoxic activity against different tumor cell lines. Following are some examples of reports about citotoxic activity of some species of *Zanthoxylum* genus.

The anti-tumor properties of the volatile oil from *Z. rhoifolium* leaves and some terpenes (α-humulene, β-caryophyllene, α-pinene and β-pinene) were investigated in vitro and in vivo using the Ehrlich ascites tumor model. Volatile oil and β-caryophyllene exhibited little direct activity against Ehrlich tumor cells in vitro, while α-humulene, α-pinene and β-pinene did not such activity. Additionally, volatile oil exhibits anti-tumor efficacy and significative immunomodulatory action in vivo, which may be related to β- caryophyllene associated to the synergism of other natural compounds presented in volatile oil from *Z. rhoifolium* leaves (Da Silva et al., 2007a). Other study about the citotoxic activity of essential oil from leaves of
Z. rhoifolium permitted to confirm that the essential oil is cytotoxic against tumoral cells ($CD_{50} = 82.3$, 90.7 and 113.6 μg/ml for A-549 (human lung carcinoma), HeLa (human cervical carcinoma) and HT-29 (human colon adenocarcinoma) cell lines, respectively), while it did not show cytotoxicity against non-tumoral cells (Vero and mice macrophages). Thus, the essential oil from Z. rhoifolium leaves seems to present a possible therapeutic role due to its selective cytotoxic activity against tumoral cell lines (Da Silva et al., 2007b).

The chloroform-soluble fraction of the crude extract of leaves from Z. ailanthoides showed cytotoxic activity against human promyelocytic leukemia (HL-60) and myelomonocytic leukemia (WEHI-3) cells with IC$_{50}$ values of 73.06 and 42.22 μg/mL, respectively. From this fraction were obtained four pheophorbide derivatives, where three of these compounds showed cytotoxic activities against both leukemia cells with IC$_{50}$ value in the range of 46.76–79.43 nM (Chou et al., 2011).

The chemical investigation carried out with roots and fruits of Z. leprieurii led to the isolation of four acridone derivatives alkaloids were found to be moderately active against lung carcinoma cells (A549), colorectal adenocarcinoma cells (DLD-1) and normal cells (WS1) with IC50 values ranging from 27 to 77 μM (Kuete et al., 2011; Ngoumfo et al., 2010).

Benzophenanthridine alkaloids are secondary metabolites commonly isolated from species of Zanthoxylum genus and are characterized by their potent antitumor activity, being fagaronine and nitidine the most active substances (Tillequin, 2007). Hexahydrobenzophenanthridine alkaloids are also of interest for its cytotoxic activity. Currently the alkaloid chelidonine is used in experimental oncology as the main component of Ukrain®, an anti-cancer medicament (McManus, et al., 2007).

6. Conclusions

Zanthoxylum genus has proven to be a very valuable genus to the discovery and utilization of medicinal and agrochemical natural products. The collected information provides a means to understand the latest developments in the biological activity and phytochemistry of the genus. The potential for development of leads from Zanthoxylum continues to grow, particularly in the development of new antiparasitary, antitumor and antimicrobial agents. The information summarized here is intended to serve as a reference tool to people in all fields of ethnobotany, pharmacology and natural products chemistry.
7. References

Bioactive Compounds in Phytomedicine

Zanthoxylum Genus as Potential Source of Bioactive Compounds

Zanthoxylum Genus as Potential Source of Bioactive Compounds

Newman, D. J., Cragg, G. M. (2007). Natural Products as Sources of New Drugs over the Last 25 Years. Journal of Natural Products, 70, 461-477. ISSN: 0163-3864.

Zanthoxylum Genus as Potential Source of Bioactive Compounds

Tringali, C., Spatafora, C., Cali, V., Simmonds, M. S. J. (2001). Antifeedant constituents from Fagara macrophylla. Fitoterapia, 72, 538-543. ISSN 0367-326X.

www.intechopen.com

There are significant concerns regarding the potential side effects from the chronic use of conventional drugs such as corticosteroids, especially in children. Herbal therapy is less expensive, more readily available, and increasingly becoming common practice all over the world. Such practices have both their benefits and risks. However, herbal self-therapy might have serious health consequences due to incorrect self-diagnosis, inappropriate choice of herbal remedy or adulterated herbal product. In addition, absence of clinical trials and other traditional safety mechanisms before medicines are introduced to the wider market results in questionable safe dosage ranges which may produce adverse and unexpected outcomes. Therefore, the use of herbal remedies requires sufficient knowledge about the efficacy, safety and proper use of such products. Hence, it is necessary to have baseline data regarding the use of herbal remedies and to educate future health professionals about various aspects of herbal remedies.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:
