We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,100
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Insecticides and Parasitoids

Toshiharu Tanaka and Chieka Minakuchi

Graduate School of Bio-Agricultural Sciences, Nagoya University, Japan

1. Introduction

More than 1,000,000 of insect species live on the earth with close association to each other. The population density of living organisms is regulated by abiotic and biotic factors during growth and development processes of each organism within some fluctuation, depressing the outbreak of some species. Abiotic factors like Flood or Dry involves in fluctuation of population. Biotic-regulation factors like deficiency of foods, predation and parasitism are important to depress the outbreak of population. In insects, parasitoids live over 200,000 species (Askew, 1971). Especially in agro-environment, planting monopolized by single crop in a wide area makes suitable condition for multiplication of some pest insect species and their outbreaks. Chemical control using pesticides for depression of pest population had been considered as one of better choice because of its immediate efficacy when outbreak happened. It has already clarified, however, that use of non-selective insecticides makes resurgence of insect pests caused by rapid decreasing of natural enemies. Agro-chemicals with selective toxicity have recently been developed, but it is not enough to examine their effects on natural enemies yet. To obtain agro-crops with secure and low price, we have to understand both specificities of natural enemies like parasitoids and of insecticides. Many parasitoid species works well to regulate the population density of pest insect in a well-conditioned cultivated space. Effective utilization of parasitoids and pesticides based on the various characteristics on each local region produce low density of pest population constantly. Simplified interaction between pest insects and natural enemies had made many unfortunate consequence of pest control like case of introduced natural enemies to invasion pests. Banker plants (Trap crops) are used for keeping the population of natural enemies permanently in constant density when natural enemies are multiplied and released artificially. It is developed as useful methods that ‘companion plants’ for supplying the foods like nectar to natural enemies or ‘refuge’ as hiding place to prevent them from leaving and so on. However, devotion only to biological control is not adequate for regulation of pest population density corresponding to climate change year after year. When population of some pest insect breaks out to high density unexpected, natural enemies including parasitoid will lose to control for the population density of the pests. We will be forced to use chemical control temporarily. However, exclusive devotion to biological control with no pesticides or to chemical control ignoring biotic regulation seems not to produce the good results.

Although pest-control by IPM has been recommended recently, susceptibility of insecticides to parasitoids is not examined enough from various viewpoints. It is well known that parasitoids are one of important natural enemies to many pest species and are used...
<table>
<thead>
<tr>
<th>Pest species</th>
<th>parasitoid</th>
<th>effects</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bt-toxin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choristoneura fumiferana</td>
<td>Apanteles fumiferanae</td>
<td>high % of parasitism to</td>
<td>Nealis, VG et al., 1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aged host</td>
<td></td>
</tr>
<tr>
<td>Praysia serrae</td>
<td>Three species</td>
<td>growth effect</td>
<td>Valdez, S et al. 1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choristoneura fumiferana</td>
<td>A. fumiferanae</td>
<td>spray-timing</td>
<td>Sabogal, SL et al. 1995</td>
</tr>
<tr>
<td>Plutella xylostella</td>
<td>Diadegma insulare</td>
<td>no effect</td>
<td>Upjohn, S et al. 1996</td>
</tr>
<tr>
<td>P. xylostella</td>
<td>D. insulare</td>
<td>no effect</td>
<td>Xingeng, W & Shuixiang, L., 1998</td>
</tr>
<tr>
<td>P. xylostella</td>
<td>Coleosia plutella</td>
<td>no effect on oviposition</td>
<td>Chidick, CP & Tabashnik, BE, 1999</td>
</tr>
<tr>
<td>Phyllostreta interpunctella</td>
<td>Caporosa cristicolor</td>
<td>reduced parasitism</td>
<td>Lin et al., 2001</td>
</tr>
<tr>
<td>Linomyza trifoli</td>
<td>Diglyphus resea, Dactysa oblica</td>
<td>no effect</td>
<td>Osawa A et al., 2001</td>
</tr>
<tr>
<td>Mamestra brassicae</td>
<td>Trichogramma dendrolimi</td>
<td>no effect</td>
<td>Takada, Y et al., 2001</td>
</tr>
<tr>
<td>Spilomelina rosularis</td>
<td>Trichogramma chlorivora</td>
<td>no effect</td>
<td>Steinhage & J. et al., 2005</td>
</tr>
<tr>
<td>Plutella xylostella</td>
<td>Dipsepsia rhopalosoma</td>
<td>no effect</td>
<td>Morck, V et al. 2003</td>
</tr>
<tr>
<td>Nicotiana</td>
<td>parasitoid complex</td>
<td>small effect</td>
<td>Schoenly, KG et al., 2003</td>
</tr>
<tr>
<td>Heliothis armigera</td>
<td>Microplitis mediator</td>
<td>negative effect</td>
<td>Xu, YY et al., 2004</td>
</tr>
<tr>
<td>Plutella xylostella</td>
<td>C. plutellae</td>
<td>negative effect</td>
<td>Ameri, J & Basedow, T, 1997</td>
</tr>
<tr>
<td>Plutella xylostella</td>
<td>Diadegma insulare</td>
<td>negative effect</td>
<td>Wang, Y et al., 2004</td>
</tr>
<tr>
<td>Plutella xylostella</td>
<td>Coleosia plutella</td>
<td>small effect</td>
<td>Potterosh, BE & Tabashnik, BE, 2005</td>
</tr>
<tr>
<td>E. saccharina, B. fusca, S. calaminis</td>
<td>Coleosia sesamiae</td>
<td>positive effect</td>
<td>Bhati, MA et al., 2005</td>
</tr>
<tr>
<td>Plutella xylostella</td>
<td>Diadegma fenestrata, C. plutella</td>
<td>less effective</td>
<td>Bhurawaj, V et al., 2005</td>
</tr>
<tr>
<td>Plutella xylostella</td>
<td>Colisa pubiliae, Macromanion orientale, Diadromus collaris, Brachymeria exaracina</td>
<td>small impact</td>
<td>Reyes, SG et al, 2005</td>
</tr>
<tr>
<td>Tuba absoluta</td>
<td>Trichogramma montanae bactrae</td>
<td>harmless</td>
<td>Riquezine Virgili, MB et al., 2002</td>
</tr>
<tr>
<td>Anganagasta kuehniella</td>
<td>Trichogramma praticusellae</td>
<td>no effect on wasp</td>
<td>Prassolls, D, et al., 2005</td>
</tr>
<tr>
<td>Chilo partellus</td>
<td>Trichogramma praticusellae, T. pretiosum</td>
<td>no effect on wasp</td>
<td>Prassolls, D, et al., 2006</td>
</tr>
<tr>
<td>Anagasta kuehniella</td>
<td>Trichogramma chilenis</td>
<td>no effect</td>
<td>Sabat, SK & Singh, SP 2006</td>
</tr>
<tr>
<td>Heliothis armigera</td>
<td>Trichogramma chilenis, Challeranea secranulata</td>
<td>no effect</td>
<td>Basappa, H, 2007</td>
</tr>
<tr>
<td>Plutella xylostella</td>
<td>Diadegma semiacausum, Diadromus collaris</td>
<td>significant reduction</td>
<td>Sharma, HC et al., 2008</td>
</tr>
<tr>
<td>Plutella xylostella, Phana rapae</td>
<td>Diadegma insulare</td>
<td>less than chemical</td>
<td>Varga, L et al., 2004</td>
</tr>
<tr>
<td>Heliothis armigera</td>
<td>Campodeus chloridodeae</td>
<td>high mortality</td>
<td>Michal, M et al, 2008</td>
</tr>
<tr>
<td>Plutella xylostella</td>
<td>Habrobracon hebetor</td>
<td>fewer parasitoid emerged</td>
<td>Oluwalumi, A et al., 2008</td>
</tr>
<tr>
<td>Phana rapae</td>
<td>Euproctis larvarum</td>
<td>weak effect</td>
<td>Marchetti, L et al., 2009</td>
</tr>
<tr>
<td>Plutella xylostella</td>
<td>Trichogramma montanae bactrae</td>
<td>no effect</td>
<td>Wang, D-S et al, 2010</td>
</tr>
</tbody>
</table>

Table 1-1. Effect of Bt-toxin on parasitoid species.
<table>
<thead>
<tr>
<th>Bt-crops</th>
<th>Hosts affected</th>
<th>Parasitoids affected</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bt-corn</td>
<td>Helicoverpa armigera, Helicoverpa zea</td>
<td>Cotesia congregata, Trichogramma spp.</td>
<td>Negative</td>
</tr>
<tr>
<td>Bt-soybeans</td>
<td>Glycine max</td>
<td>Trichogramma spp.</td>
<td>Positive</td>
</tr>
<tr>
<td>Bt-sugarbeets</td>
<td>Beta vulgaris</td>
<td>Trichogramma spp.</td>
<td>Positive</td>
</tr>
<tr>
<td>Bt-cabbage</td>
<td>Brassica oleracea</td>
<td>Trichogramma spp.</td>
<td>Positive</td>
</tr>
<tr>
<td>Bt-maize</td>
<td>Zea mays</td>
<td>Trichogramma spp.</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Table 1-2. Effect of Bt-crops on parasitoids.
Insecticides – Advances in Integrated Pest Management

extensively in biological and integrated pest control. More than 810 research papers related with insecticide and parasitoid in IPM have been accumulated during this decade from 2000 to 2010 for examining the impact of insecticides on introduced or native parasitoids and/or predators in laboratory condition or agro-fields, resulting that parasitoids are very high susceptibility to non-selective insecticides like pyrethroids, organophosphates, and carbamates except Bt toxin.

Recently Bt-toxin or Bt-transgenic crops have been developed and the susceptibility to parasitoids and/or predators (32 of Bt-toxin spray and 42 of Bt-crops in total 74 research papers, Table 1) was examined, resulting small impact on parasitoid and predator or on their communities.

Many reviews have already discussed about the side effect or the risk assessment of transgenic plants on non-target insects (Schuler et al. 1999; Groot & Dicke 2002; Dutton et al. 2003; Lövei & Arpaia 2005; Sisterson & Tabashnik 2005; Wolfenbarger et al., 2008; Lövei et al. 2009; Grzywacs et al. 2010; Gurr et al. 2010). However, severe problems have occurred also in Bt-transgenic crops that pest insects had gained the resistance to Bt-toxin just like development of the insecticide-resistance to many chemical insecticides. Approach like 'high dose/refuge strategy' (Chilcut & Tabashnik, 2004) or pyramid by expression of two genes have been tried to prolong the effectiveness of Bt-crops (Kumar et al. 2008, Ives et al., 2011).

Although many chemical insecticides produced until present are toxic to natural enemies, we may be able to use them effectively by knowing the risk of chemical insecticides to maintain the predator and parasitoid communities sustainably.

In natural fields including agro-fields, parasitoids grow and develop mostly as eggs or larvae in/on their hosts and a few adult wasps stay with searching the hosts. Examination only on adult stage is insufficient for clarifying the susceptibility of parasitoid to insecticides. It is one of important points to examine the effect of chemical insecticides on the parasitized hosts in the developmental stages from oviposition to adult-emergence for evaluating the critical dosage to parasitoids. Effective usage of natural enemies like parasitoids in the agro-fields controlled by pesticides causes a decrease in the dosage of insecticides and brings agricultural crops with safety for human. Both ecological and physiological researches will be required for control of pest-population density. In this chapter, first as example, we tested effect of neonicotinoids on parasitoid along with the growth and development, for considering the characteristics of parasitoids.

1.1 Effect of insecticide on parasitoid

1.1.1 Direct and indirect effects of neonicotinoids on endoparasitoid along with the development

Recently although there are some researches published about the effect of neonicotinoids on egg parasitoids, there are a few papers on larval parasitoids (Table 2). These results showed variety from harmless to toxic impact.

However, the different results should be rearranged by difference of nutritional strategy between egg and larval parasitoids. Egg parasitoid ingests egg-yolk of the host soon after hatch as nutritional resource for growth, resulting become distended larval shape (Takada et al., 2000; Jarjees et al., 1998; Hutchison et al., 1990). Egg parasitoids are able to avoid the toxic effect of insecticides through the chorion of the host, using a protective role that is essential to normal development of the host embryo, and can circumvent the accumulation of toxic substance by sucking almost all egg-yolk from host egg at once after hatch. On the other hand, larval parasitoids have many chances to be exposed to insecticides during
Table 2. Effect of neonicotinoids on parasitoids.

<table>
<thead>
<tr>
<th>Parasitoid</th>
<th>Target Pest Insect</th>
<th>Chemicals</th>
<th>Effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonicotinoids</td>
<td>Eremocerus enricus, Earias formosa, Gonotecoris amstelodei</td>
<td>Imidacloprid</td>
<td>No significant impact</td>
<td>Marquini, F. et al., 2002</td>
</tr>
<tr>
<td>Neonicotinoids</td>
<td>Aphidius melinus, A. colemani, A. sibiricus</td>
<td>Imidacloprid</td>
<td>No toxic</td>
<td>Piesschaert, K. N. et al., 2007</td>
</tr>
<tr>
<td>Neonicotinoids</td>
<td>Aphidius colemani, A. aculeatus, A. fraterculus</td>
<td>Imidacloprid</td>
<td>A little susceptible</td>
<td>Komai, J. D., et al., 2008</td>
</tr>
<tr>
<td>Neonicotinoids</td>
<td>Diaeretiella rapae, Liriomyza trifolii, L. huidobrensis</td>
<td>Imidacloprid</td>
<td>Toxic</td>
<td>Komai, J. D., et al., 2010</td>
</tr>
<tr>
<td>Neonicotinoids</td>
<td>Aphidius colemani, A. aculeatus, A. fraterculus</td>
<td>Imidacloprid</td>
<td>Moderate impact</td>
<td>Freemen, C. et al., 2010</td>
</tr>
<tr>
<td>Neonicotinoids</td>
<td>Aphidius colemani, A. aculeatus, A. fraterculus</td>
<td>Imidacloprid</td>
<td>Adverse impact</td>
<td>Oliver, J. B. et al., 2005</td>
</tr>
<tr>
<td>Neonicotinoids</td>
<td>Aphidius colemani, A. aculeatus, A. fraterculus</td>
<td>Imidacloprid</td>
<td>Adverse impact</td>
<td>Oliver, J. B. et al., 2006</td>
</tr>
</tbody>
</table>

Table 2. Effect of neonicotinoids on parasitoids.

devolutional period (from egg to larval stages) and are dead together with the host when it is killed by insecticides, because Neonicotinoid have a strong effect on lepiopteran larvae. So in this chapter, to consider how to regulate the use of insecticide like neonicotinoid to larval parasitoid, it is necessary to examine the susceptibility of larval parasitoid to insecticide along with development. We use oriental armyworm *Mythimna separata* (Walker) as host and its endoparasitoid *Cotesia kariyai* (Watanabe) as a model system. *Mythimna separata* is a big pest for Poaceae plants and sometime make a big surge of population density. However, ecological population of *M. separata* is regulated with many kinds of parasitoids, major 5 species of endoparasitoids, *Pseudaletia chloridrae* Uchida, *Microplitis sp.*, *C. kariyai*, *C. ruficrus* (Haliday), *Meteorus pulchricornis* (Wesmael), and an ectoparasitoid *Euplectrus separatae* Kamijo, and was normally kept low density under a local stable condition. *Cotesia kariyai* is a major gregarious endoparasitoid to oviposit from 30 to over 100 eggs in a *M. separata* host at once and can parasitize 2nd to 6th (last) host instar successfully (Tanaka et al., 1987).

1.1.2 Parasitoid wasps attack and oviposit the host *M. separata* treated previously with insecticides

To determine the sub-lethal dose activity of various neonicotinoids to unparasitized control, the unparasitized hosts 1, 2, 3 d after last ecdysis (D1L6, D2L6, D3L6, 6th larval stage is last instar) were used. Unparasitized hosts reach at the maximum weight 3 d after last ecdysis and become wandering stage to prepare pupation at D5L6. D2L6 larvae showed a low susceptibility to neonicotinoids, especially Thiamethoxam (Thm) and Dinofos (Dnt), but high susceptibility to pyrethroid Permethrin (Per), organophosphate Fenitrothion (MEP), and Pyridalyl (Pyr) was observed, comparing to label rate (Table 3).
From these results, concentration of each insecticide treatment was determined. These values means different susceptibility of *M. separata* even on the same instar at sub-lethal dose, and it is hard to be generalized.

The emergence rate of parasitoid from host parasitized after insecticide treatment (post-treatment) informs us if parasitoids oviposit the host larvae treated by insecticides. Oviposition was performed within 2 hrs post-treatment of insecticide. Stinging behavior for oviposition was assured in every case. For example, Acetamiprid (Act), Thiacloprid (Thc) and Pyr treatments produced high larval emergence rate of parasitoid when parasitized post-treatment compared to pre-treatment, suggesting that oviposition was not disturbed by insecticide treatment (Fig. 1).

On the other hands, high pupation rate of hosts after Imidacloprid (Imd) treatment shows the possibility that parasitoid wasps may hesitate to inject the eggs though they stung the hosts. On the other hands, high emergence rate in insecticide treatment post-parasitization at sub-lethal dose means that the host or the parasitoid larvae possessed the detoxification ability to each insecticide and acquired some degree of tolerance to insecticides.

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>D1L6</th>
<th>D2L6</th>
<th>D3L6</th>
<th>Concentration of each chemical (ppm)</th>
<th>Label rate (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetamiprid (Act)</td>
<td>309.3</td>
<td>391.1</td>
<td>505.6</td>
<td>320</td>
<td>100</td>
</tr>
<tr>
<td>Thiamethoxam (Thm)</td>
<td>1163.8</td>
<td>1185.3</td>
<td>1158.3</td>
<td>400</td>
<td>50</td>
</tr>
<tr>
<td>Dinotefuran (Dnt)</td>
<td>1695.6</td>
<td>3116.6</td>
<td>1508.6</td>
<td>1200</td>
<td>100</td>
</tr>
<tr>
<td>Clothianidin (Clt)</td>
<td>204.6</td>
<td>1930.6</td>
<td>384.0</td>
<td>960</td>
<td>80</td>
</tr>
<tr>
<td>Thiacloprid (Thc)</td>
<td>702.5</td>
<td>640.2</td>
<td>780.3</td>
<td>640</td>
<td>150</td>
</tr>
<tr>
<td>Permethrin (Per)</td>
<td>160.7</td>
<td>57.5</td>
<td>247.2</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>Fenitrothion (MEP)</td>
<td>192.0</td>
<td>169.2</td>
<td>131.7</td>
<td>24</td>
<td>500</td>
</tr>
<tr>
<td>Pyridalyl (Pyr)</td>
<td>0.7</td>
<td>4.0</td>
<td>0.3</td>
<td>0.8</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3. LC50 value (ppm) of various insecticide to unparasitized host *Mythimna separata*.

<table>
<thead>
<tr>
<th>Chemicals1</th>
<th>D1L6**</th>
<th>D1L6P**</th>
<th>D3L6</th>
<th>D3L6P</th>
<th>D5L6P</th>
<th>D > L6P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act</td>
<td>309.3</td>
<td>608.4</td>
<td>505.6</td>
<td>176.1</td>
<td>786.9</td>
<td>377</td>
</tr>
<tr>
<td>Thm</td>
<td>1163.8</td>
<td>139.9</td>
<td>1158.3</td>
<td>40</td>
<td>49.9</td>
<td>436.3</td>
</tr>
<tr>
<td>Dnt</td>
<td>1695.6</td>
<td>1189</td>
<td>1508.6</td>
<td>1194.7</td>
<td>1102.6</td>
<td>1043.7</td>
</tr>
<tr>
<td>Clt</td>
<td>204.6</td>
<td>962</td>
<td>384.0</td>
<td>96</td>
<td>205.5</td>
<td>20.2</td>
</tr>
<tr>
<td>Thc</td>
<td>702.5</td>
<td>639.2</td>
<td>780.3</td>
<td>120</td>
<td>483.9</td>
<td>8563.3</td>
</tr>
<tr>
<td>Per</td>
<td>160.7</td>
<td>24</td>
<td>247.2</td>
<td>40.8</td>
<td>78.8</td>
<td>62.4</td>
</tr>
<tr>
<td>MEP</td>
<td>192.0</td>
<td>456</td>
<td>131.7</td>
<td>132</td>
<td>134.5</td>
<td>49.6</td>
</tr>
<tr>
<td>Pyr</td>
<td>0.7</td>
<td>3.5</td>
<td>0.3</td>
<td>4.4</td>
<td>3.9</td>
<td>2.5</td>
</tr>
</tbody>
</table>

*2: day1-6 instar of unparasitized control

*3: day1-6 instar of parasitized host *Mythimna separata*

Table 4. LC50 value of various neonicotinoids to unparasitized and parasitized hosts 1, 3, 5, 7 days after parasitization.
Insecticide treatment after parasitization made no impact on oviposition of parasitoid wasp. The parasitoid larvae emerged from the host treated successfully when the parasitized hosts were not killed by insecticide treatment. Total number of hosts treated with each insecticide was about 30 [ten for each, 3 replicates]. Imidacloprid (Imd), Acetamipri (Act), Thiamethoxam (Thm), Dinotefuran (Dnt), Clothianidin (Git), Thiacloprid (The), Permethrin (Per), fenitrothion (MEP), Pyridalyl (Pyr).
However, Clothianidin (Clt) treatment made low emergence rate of parasitoid causing by high mortality of host. Especially no emergence of parasitoid from parasitized hosts was observed also after day 3 post-parasitization (Fig. 2). Eggs of *C. kariyai* hatch and become 1st instar at 3.5 days after oviposition, and become 2nd instar on 5-6 days after oviposition. Insecticide treatment after parasitization was performed on each developmental point, on egg stage (day 1; D1), just before hatch (day 3; D3), on first instar (day 5; D5), on 2nd instar of parasitoid (day 7; D7). Parasitized hosts showed high susceptibility (meaning lower LC50 value) than that of unparasitized control, in treatment on every developmental days (Table 4), especially Clt treatment affect the larval emergence, meaning that parasitoid larva has no tolerance to Clt during larval stages. Further, Clt affect the adult eclosion heavily (Table 5).

![Fig. 2. Effect of treatment of insecticides along with development of the parasitoid on the parasitoid emergence rate sub-lethal dose. *Cotesia kariyai* hatches at 3.5 days post oviposition, 1st instar ecdyses to 2nd instar at 5 to 6 days, finally 3rd instars emerge from the host after ecdysis to 10 days after oviposition at 25 ± 1°C. Insecticide treatment was performed on 1, 3, 5, 7 days after parasitization. Total number of hosts treated with each insecticide was about 30 [ten per each, 3 replicates]. Imidacloprid (Imd), Acetamiprid (Act), Thiamethoxam (Thm), Dinotefuran (Dnt), Clothianidin (Clt), Thiacloprid (Thc), Permethrin (Per), Fenitrothion (MEP), Pyridalyl (Pyr).](www.intechopen.com)
Table 5. Adult eclosion rate from cocoon of parasitoid emerged from parasitized host treated by various insecticides.

For susceptibility of adult wasp to insecticide, ten female wasps was released in a 15 ml grass tube inside coated with active ingredients of various insecticide diluted in various concentration for 24 hrs with two replication (Table 6), resulting that parasitoid female wasps showed very high susceptibility to all insecticides. Even insecticides diluted than commercial label killed almost all wasps (Table 6).

![Table 5. Adult eclosion rate from cocoon of parasitoid emerged from parasitized host treated by various insecticides.](image)

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>No of insects tested per each days</th>
<th>Adult eclosion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D1</td>
<td>D3</td>
</tr>
<tr>
<td>Imid</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Act</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Thm</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Dnt</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Cht</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Thc</td>
<td>12</td>
<td>75</td>
</tr>
<tr>
<td>Per</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>MEP</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Pyr</td>
<td>12</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6. Susceptibility of parasitoid female wasp to neonicotinoid insecticides.

![Table 6. Susceptibility of parasitoid female wasp to neonicotinoid insecticides.](image)

<table>
<thead>
<tr>
<th>Insecticide*1</th>
<th>Commercial Label recommended conc (ppm)</th>
<th>Concentration used (ppm)</th>
<th>Mortality of wasp (%)*2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imd</td>
<td>100</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Act</td>
<td>100</td>
<td>3.2</td>
<td>40</td>
</tr>
<tr>
<td>Thm</td>
<td>50</td>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>Dnt</td>
<td>100</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>Cht</td>
<td>80</td>
<td>9.6</td>
<td>100</td>
</tr>
<tr>
<td>Thc</td>
<td>150</td>
<td>12</td>
<td>95</td>
</tr>
<tr>
<td>Per</td>
<td>100</td>
<td>0.24</td>
<td>59</td>
</tr>
<tr>
<td>MEP</td>
<td>500</td>
<td>2.4</td>
<td>100</td>
</tr>
<tr>
<td>Pyr</td>
<td>100</td>
<td>0.08</td>
<td>20</td>
</tr>
</tbody>
</table>

*2 Susceptible test for each insecticide was performed releasing 10 females in a 15 ml glass tube coated with active ingredients of each insecticide and dead wasps were counted 24 hrs later

Table 6. Susceptibility of parasitoid female wasp to neonicotinoid insecticides.
However, about 10 times diluted neonicotinoids like Thm, Clt, and Thc to LC50 value on D3L6 parasitized hosts made 80-100% mortality, in contrast to Permethrin diluted 50-100 times showed similar mortality. These results suggest that the neonicotinoids made slightly severe effect on larval parasitoid responsible for strong insecticidal potency to the death of lepidopteran hosts although they are less toxic than pyrethroids or organophosphates to parasitoid.

1.2 Parasitoid
Parasitoids are grouped in two categories as idiobiont and koinobiont based on nutritional strategy (Haeselbarth, 1979, Askew & Shaw, 1986). Parasitoids categorized as idiobiont that attack egg, pupal adult host stages, and paralyze or kill the hosts by venom preceding oviposition, thus develop in non-growing hosts and utilize the host resource existed at the time of parasitization for the growth and development. On the other hand, koinobiont can exploit the host resource increased after parasitization, because the parasitized hosts continue to grow and metamorphose during at least the initial stage of parasitism (Fig. 3). These include egg-larval and larval-pupal parasitoids or larval parasitoids that do not permanently paralyze their hosts at oviposition (Godfray, 1994).

1.2.1 Egg parasitoids as idiobiont
Idiobionts include many ectoparasitoids and egg or pupal endoparasitoids, and their venoms have characteristics to paralyse or kill the hosts and contain many kinds of enzymes to digestive most of host tissues with many variety (Moreau and Guillot, 2005). Venom of idiobionts as larval ectoparasitoids like Bracon spp. shows permanently paralyzing activity to the host (Beard, 1978, Quicke, 1997, Weaver et al. 1997). Venom is virulent and toxic potency to the host. Pupal ectoparasitoids also have to paralyze and fix the host to avoid consumption of food resource by growth of the host after parasitization with venom. On the other hands, *Nasonia vitripennis* as pupal endoparasitoid has non-paralysing venom that causes developmental arrest by 13 to 200.5 kDa proteins (Rivers et al., 2006), but venom shows PO (Phenol oxidase) activity and may induce apoptosis in host tissues (Abt & Rivers, 2007). *Mellitobia* wasp shows different mode of action in developmental arrest to different host species (Deyrup et al., 2006). These means that apoptotic tissues induced by venom are used for parasitoid development with time lag, with condition that their available resource is kept by developmental arrest. Idiobiont venom acts to arrest the host development and to ensure the food resource while preventing the unregulated decomposition by bacteria. Many kinds of venom in *Pimpla hypochondriaca* has already been reported and well reviewed by Moreau & Guillot (2005). In pupal endoparasitoid *Pimpla hypochondriaca*, many functional proteins in venom have been analysed; 28 k and 30 kDa proteins as serine protease (Parkinson et al. 2002a), 22 kDa as pimplin of paralytic peptide (Parkinson et al. 2002b), 39.9 kDa as repelysin type metalloprotease (Parkinson et al. 2002c), 74 kDa with antibacterial and proteolytic activity (Dani et al., 2003).

Venom components of egg parasitoids is not clarified although a few case is analyzed; *Telenomus heliothidis* (Strand et al., 1983, 1986, Strand, 1986), *Trichogramma pretiosum* (Strand, 1986), *T. dendrolimi* (Takada et al., 2000), *T. australicum* (Darjees & Merritt, 2004). Venoms (female-derived factor or acid gland) are injected into the host eggs with parasitoid egg and arrest the host development. Darjees & Merritt (2004) suggested that venom was responsible for host die and degeneration of host tissues using sterile female.
Egg parasitoid ingests the host contents like yolk at once after hatch for growth and development (Takada et al., 2000) and consumes the contents of the host killed or decomposed by venom as nutritional resource for growth and development in the host. Rapid ingestion of the host yolk absorbed insecticides enhances the possibility of disturbance to the growth and development of the parasitoid. The difference of susceptibility of egg parasitoids to insecticides may be attributed from direct effect on the larval and pupal development and from the difference of food intake speed of the host contents, though it is further possibility that the residual insecticides outside of egg-shell disturb the emergence from host egg.

1.2.2 Larval endoparasitoid as koinobiont
Larval endoparasitoids have many chances to be affected during a long larval period indirectly through the host physiological action by insecticide. Koinobionts let the hosts survive and exploit nutrient from hosts during development of parasitoid associating with invasion in host hemocoel and are demanded both avoidance of host immune response and acquisition of nutrition from the host with minimal damage. Severe damage of the host during early development may lead to precocious death of the parasitoid. If they give severe damage to the hosts to get nutrients from hosts, parasitoids are exposed to risk for death.

Fig. 3. Nutritional strategy of parasitoids.

www.intechopen.com
Endoparasitoids develop the convenient tools like polydnaviruses (PDVs) plus venom and/or teratocytes to get nutrients without severe damage in evolutional process. Mutualistic relationship between PDVs and the endoparasitoids are estimated before about 70-73 ± 10 million years ago by calibration using fossil data (Whitfield, 2002, Drezen et al., 2003). Endoparasitoids seem to incorporate a nudivirus-related gene from ancestral Nudivirus and enable to produce the particles delievering in the host tissue cells for successful parasitism (Bézier et al., 2009a, b). PDV enables to regulate the physiological state of the host by penetration into each host tissue heterogeneously, especially in hemocytes and fat body. Viral genes expression alters the immune system and development of the host (Drezen et al., 2003, Beckage & Gelman, 2004, Kroemer & Webb, 2005, Webb & Strand, 2005, Gill et al., 2006, Asgari, 2006, Pennacchio & Strand, 2006, Kim et al., 2007). Hemocytes penetrated by PDV may lose ability to recognize and to encapsulate the foreign substances like eggs. Peptides or small proteins expressed from genes encoded in PDV play a role in physiological suppression of host immune response. Many suppression factors as PDV gene products are found. For example, protein tyrosine phosphatase (PTP) which known to play a critical role in the control of cellular events like proliferation, differentiation, and metabolism, and are a group of enzymes that remove phosphate groups from phosphorylated tyrosine residues on protein, then its expression affects the cellular PTP activity of the host (Espagne et al., 2004, Provost et al., 2004, Falabella et al., 2006, Gundersen-Rindal & Pedroni 2006, Ibrahim et al., 2007, Pruijssers & Strand, 2007, Ibrahim & Kim, 2008, Suderman et al., 2008, Shi et al., 2008), Cystatin which has inhibitory activity to cysteine proteases (Serbielle et al., 2008, Espagne et al., 2005), IxB-like (vankyrin) genes play a role in suppressing NF-kB activity in immune response (Kroemer & Webb, 2005, Bae
Insecticides and Parasitoids

&Kim, 2009), and more Cysteine-rich domain products (Strand et al., 1997, Barandoc & Kim, 2009) and EP-1 like gene (Harwood & Beckage, 1994, Harwood et al., 1994, Kwon & Kim, 2008) including numerous hypothetical genes (Kroemer & Webb, 2004) may suppress the host immune response.

Venoms seem to change with evolution from ectoparasitoids to endoparasitoids (Whitfield, 2003), because venom may change from virulent action like killing the hosts to temperate action to lose toxic potency (Sclenke et al., 2007). Venoms of endoparasitoids contain many proteins in large molecular weight (Leuk et al., 1989) that lose the permanent paralytic function and promote of PDV expression in the host cells (Asgari, 2006).

Teratocytes are released and developed from serosal cell of parasitoid egg and produce some kind of regulatory protein along with the development (Fig. 4). Endoparasitoids, on evolutionary process of having invaded from outside to inside, are required both to depress the host immune response specifically mentioned above and to get enough food and duration for growth and development at minimum damage to the host. Teratocytes play a role for extending larval stage of the host for getting enough nutrient required for their own growth and development. In case of Braconidae or Chalcidoidea, teratocytes function as one of factors to maintain the larval state (Dahlman et al., 2003). Elongation of larval state in parasitized hosts may increase the chance of contact with insecticides under natural condition. However, there is no information about detoxifying ability of teratocytes during late parasitism.

On the other hands, braconid endoparasitoids use teratocytes to take nutrients from host for avoiding severe damage to the host (Fig. 4). The most endoparasitoids seem to be assumed as hemolymph feeders (Thompson et al., 2001, 2002, Kaeslin et al., 2005), but In C. kariyai-M. separata association, second instars began to take fat body of host as food with help of teratocytes to ensure the big growth during 2nd instar stage (Nakamatsu et al, 2002, Tanaka et al. 2006). Cotesia kariyai also fed the host hemolymph as nutrient during first instar. Teratocytes attached on the surface and removed the outer membrane like cell matrix of the fat body with enzyme digestion locally, resulting that the second parasitoid larvae were easy to take the contents of the fat body as food. However, it is essential that the actin filaments in the fat body cells were broken previously by function of PDV plus venom (Tanaka et al., 2006). Although amount of consumption of the host fat body depend on the number of parasitoid larvae in a host, more than 100 parasitoid larvae consume almost all fat bodies (Nakamatsu & Tanaka, 2004). It was predicted that the larval endoparasitoids like C. kariyai might lower the susceptibility to insecticide during later parasitism by losing the fat body of the host.

1.2.3 Physiological regulation of endoparasitoid to insecticide

Koinobiont parasitoids that leave the host to continue growing after parasitization similar to unparasitized one are protected negatively through physiological action of the hosts from direct effect. Physiological milieu of the parasitized host is altered by PDV plus venom function from immediately after parasitization. Immune depression made us predict the lowering of resistance activity against the foreign substances penetrated into the body including xenobiotics and the detoxification ability of the host decreased with progressive ingestion of host fat body. However, in Plutella xylostella -Cotesia vestalis (=plutellae), Glutathion-s-transferase (GST) was enhanced the activity by PDV plus venom stimulation, because GST activity in egg stage was enhanced by oviposition or artificial injection of PDV

www.intechopen.com
Fig. 5. Glutathion-s-transferase (GST) activity of the *Plutella xylostella* enhanced by parasitization of *Cotesia vestalis* (=*plutellae*). Data from Takeda et al. (2006). GST activity was measured with two enzyme substrates, individually (DCNB and CDNB). High GST activity of the hosts containing parasitoid larva was observed in later stage of parasitism.

plus venom (Takeda et al. 2006). Especially during late stage of parasitization while parasitoid larva consumed the host fat body, a low susceptibility to organophosphate (diazinon and fenitrothion) was detected. It was clarified that enhancement of CYP and GST enzymes of both parasitoid larva in parasitized hosts and the host itself causes the low susceptibility to insecticides with high enzyme activity (Fig. 5 from Takeda et al., 2006). *Cotesia vestalis*, solitary endoparasitoid did not consume absolutely and remained the host fat body of the host. Further, endoparasitoid larva contributed to the detoxification of the
host after treatment of insecticide. Amount of fat body remained in the host after parasitization seemed to be determined by two factors, the degree of inhibition to the host growth after parasitization and amount of fat body consumed by the parasitoid larva. These suggested that the parasitized hosts are able to acquire the resistance to insecticides when parasitoids do not consume all the host fat body. The spraying of organophosphates may make small impact on the surviving of parasitoids under agro-fields though the difference in susceptibility of parasitoids is not examined.

2. Conclusion
Parasitoids have different nutritional strategy. This difference seems to affect the susceptibility to insecticide. Idiobiont like egg parasitoid can utilize the dead host as nutritional resource. Normally idiobiont parasitoids kill or paralyze the host and stop the development of the host using venom. Many reports inform us a little effect of insecticides on the egg parasitoids. If insecticide hard to penetrate inside the host egg, parasitoid wasps can emerge from the parasitized eggs except that residual effect on the egg-shell kill the wasps at the emergence. On the other hands, koinobiont parasitoids utilize the host that continues to grow after parasitization, and are kept under physiological depression, especially in immune response by PDV plus venom. These mean the high susceptibility to insecticides during larval development. After all, larval parasitoids cannot develop in and emerge from hosts killed by insecticide treatment during their development even if the parasitoid larvae have resistance against the pesticide chemicals. Sub-lethal dose did not make severe effect on emergence rate of parasitoid even when insecticide treatment was performed during late parasitism except some neonicotinoids, though the susceptibility of the hosts treated with insecticides before parasitization or of the hosts treated with insecticides after parasitization along with growth and development was different between insecticides. On the other hands, parasitoid wasps had a high susceptibility to insecticides. When the insecticide spray in the agro-fields should be performed using place to escape for wasps like refuge, companion or banker plants. If transgenic crops will be used with methods or techniques that constrain the development of resistance strain, it may be valid and useful to depress the pest insect population. The parasitoid larvae were successfully emerged from the parasitized hosts at sub-lethal dose anytime during larval development, though the emergence rate is low. The parasitoids emerged from the hosts may lead to the potential to regulate the population density of pest insect.

3. Acknowledgment
We thank Zen-Noh Co. Ltd and Sumitomo Chemical Co. Ltd for providing insecticides. This work was supported in a part by a grant-in-aid for Scientific Research Work of Ministry of Education, Science and Culture, Japan.

4. References
Amend, J; Basedow, T. (1997) Combining release/establishment of Dialegma semiclausum (Hellen) (Hym., Ichneumonidae) and Bacillus thuringiensis Berl. for control of
Plutella xylostella (L.) (Lep., Yponomeutidae) and other lepidopteran pests in the Cordillera Region of Luzon (Philippines). *Journal of Applied Entomology* 121, 337-342

Ashouri, A; Michaud, D; Cloutier, C. (2001) Recombinant and classically selected factors of potato plant resistance to the Colorado potato beetle, Leptinotarsa decemlineata, variously affect the potato aphid parasitoid Aphidius nigripes. *BioControl* (Dordrecht) 46, 401-418

Balog, A; Kiss, J; Szekeres, D; Szenasi, A; Marko, V. (2010) Rove beetle (Coleoptera: Staphylinidae) communities in transgenic Bt (MON810) and near isogenic maize. *Crop Protection* 29, 567-571

Barracough, EI; Burgess, EPD; Philip, RA; Wohlers, MW; Malone, LA (2009) Tritrophic impacts of Bt-expressing transgenic pine on the parasitoid *Meteorus pulchricornis* (Hymenoptera: Braconidae) via its host *Pseudocoremia suavis* (Lepidoptera: Geometridae). *Biological Control* 49, 192-199

Baur, ME; Boethel, DJ (2003) Effect of Bt-cotton expressing Cry1A(c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. *Biological Control* 26, 325-332

Insecticides and Parasitoids

Bézier, A; Annaheim, M; Herbinière, J; Wetterwald, C; Gyapay, G; Bernard-Samain, S; Wincker P; Roditi, I; Heller, M; Belghazi, M; Pfister-Wilhem, R; Periquet, G; Dupuy, C; Huguet, E; Volkoff, AN; Lanzrein, B; Drezen, JM (2009b) Polydnaviruses of braconid wasps derive from an ancestral nudivirus. *Science* 323, 926-930

Bhardwaj, V; Devi, N; Raj, D (2005) Toxicity of some insecticides and biopesticides to *Diadegma fenestralis* Himage and *Cotesia plutellae* (Kurdyumov), two parasitoids of diamondback moth. *Journal of Entomological Research* (New Delhi) 29, 27-30

Bhatti, MA; Duan, J; Head, GP; Jiang, C; McKee, MJ; Nickson, TE; Pilcher, CI; Pilcher, CD (2005) Field evaluation of the impact of corn rootworm (*Coleoptera: Chrysomelidae*)-protected Bt corn on foliage-dwelling arthropods. *Environmental Entomology* 34, 1336-1345

Bourguet, D; Chaufaux, J; Micoud, A; Delos, M; Naibo, B; Bombarde, F; Marque, G; Eychenne, N; Pagliari, C (2002) *Ostrinia nubilalis* parasitism and the field abundance of non-target insects in transgenic Bacillus thuringiensis corn (*Zea mays*). *Environmental Biosafety Research* 1, 49-60

Cadogan, BL; Nealis, VG; Van Frankenhuysen, K (1995) Control of spruce budworm (*Lepidoptera: Tortricidae*) with Bacillus thuringiensis applications timed to conserve a larval parasitoid. *Crop Protection* 14, 31-36

Carvalho, GA; Godoy, MS; Parreira, DS; Lasmar, O; Souza, JR; Moscardini, VF (2010) Selectivity of growth regulators and neonicotinoids for adults of *Trichogramma pretiosum* (Hymenoptera: Trichogrammatidae). *Revista Colombiana de Entomologia* 36, 195-20

Chen, M; Liu, Z-C; Ye, G-Y; Shen, Z-C; Hu, C; Peng, Y-f; Altosaar, I; Shelton, AM (2007) Impacts of transgenic cry1Ab rice on non-target planthoppers and their main predator *Cyrtorhinus lividipennis* (Hemiptera: Miridae) - A case study of the compatibility of Bt rice with biological control. *Biological Control* 42, 242-250

Chen, M; Zhao, JZ; Collins, HL; Earle, ED; Cao, J; Shelton, AM (2008) A critical assessment of the effects of Bt transgenic plants on parasitoids. *PLoS One* 3, e2284

Chen, M; Zhao, JZ; Shelton, AM; Cao, J; Earle, ED (2008) Impact of single-gene and dual-gene Bt broccoli on the herbivore *Pieris rapae* (Lepidoptera: Pieridae) and its pupal endoparasitoid *Pteromalus puparum* (Hymenoptera : Pteromalidae). *Transgenic Research* 17, 545-555

Chilcutt, CF; Tabashnik, BE (1999) Effects of Bacillus thuringiensis on adults of *Cotesia plutellae* (Hymenoptera: Braconidae), a parasitoid of the Diamondback moth, *Plutella xylostella* (Lepidoptera: Plutellidae). *Biocontrol Science and Technology* 9, 435-440

Cordero, RJ; Bloomquist, JR; Kuhar, TP (2007) Susceptibility of two diamondback moth parasitoids, *Diadegma insulare* (Cresson) (Hymenoptera: Ichneumonidae) and *Oomyzus sokolowskii* (Kurdjumov) (Hymenoptera: Eulophidae), to selected commercial insecticides. *Biological Control* 42, 48-54

www.intechopen.com
Dahlman, DL; Rana, RL; Schepers, EJ; Schepers, T; DiLuna, FA; Webb BA (2003) A teratocyte gene from a parasitic wasp that is associated with inhibition of insect growth and development inhibits host protein synthesis. *Insect Molecular Biology* 12, 527–534

Davidson, MM; Butler, RC; Wratten, SD; Conner AJ (2006) Impacts of insect-resistant transgenic potatoes on the survival and fecundity of a parasitoid and an insect predator. *Biological Control* 37, 224-230

Desneux, N; Ramirez-Romero, R; Bokonon-Ganta, AH; Bernal, JS (2010) Attraction of the parasitoid *Cotesia marginiventris* to host (Spodoptera frugiperda) frass is affected by transgenic maize. *Annals of the Entomological Society of America* 99, 1199-1205

Dively, GP (2005) Impact of transgenic VIP3A x Cry1Ab lepidopteran-resistant field corn on the nontarget arthropod community. *Environmental Entomology* 34, 1267-1291

Drezen, JM; Provost, B; Espagne, E; Cattolico, L; Dupuy, C; Poirié, M; Periquet, G; Huguet, E (2003) Polydavirus genome: integrated vs. free virus. *Journal of Insect Physiology* 49, 407-417

Erb, SL; Bourchier, RS; van Frankenhuyzen, K; Smith, SM (2001) Sublethal effects of *Bacillus thuringiensis* Berliner subsp. kurstaki on *Lymantria dispar* (Lepidoptera: Lymantriidae) and the tachinid parasitoid *Compsilura concinnata* (Diptera: Tachinidae). *Environmental Entomology* 30, 1174-1181

Espagne, E; Catherine Dupuy, C; Huguet, E; Cattolico, L; Prevost, B; Martins, N; Marylene Poirié, M; Periquet, G; Drezen, JM (2004) Genome sequence of a polydnavirus: insights into symbiotic virus evolution. *Science* 306, 286-289

Falabella, F; Cacciapuoti, P; Varricchio, P; Carla Malva, C; Pennacchio, F (2006) Protein tyrosine phosphatases of *Taxoneuron nigriceps* Bracovirus as potential disruptors of host thoracalic gland function. *Archives of Insect Biochemistry and Physiology* 61:157-169

Faria, CA; Waeckers, FL; Pritchard, J; Barrett, DA; Turlings, TCJ (2007) High susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteran pests. *PLoS One* 2, e600

Furlong, MJ; Kh; Su, PW; Chol, JK; Il, RC; Zalucki, MP (2008) Integration of endemic natural enemies and *Bacillus thuringiensis* to manage insect pests of Brassica crops in North Korea. *Agriculture Ecosystems & Environment* 125, 223-238
Gao, M-Q; Hou, S-P; Pu, D-Q; Shi, M; Ye, G-Y; Chen, X-X (2010) Multi-generation effects of Bt rice on Anagrus nilaparvatae, a parasitoid of the nontarget pest Nilapavarta lugens. *Environmental Entomology* 39, 2039-2044

Gill, T; Angelika Fath-Goodin, A; Maiti, II; Webb, BA (2006) Potential uses of cys-motif and other polydnavirus genes in biotechnology. *Advances in Virus Research* 68, 393-426

Grzywacz, D; Rossbach, A; Rauf, A; Russell, DA; Srinivasan, R; Shelton, AM (2010) Current control methods for diamondback moth and other brassica insect pests and the prospects for improved management with lepidopteran-resistant Bt vegetable brassicas in Asia and Africa. *Crop Protection* 29, 68–79

Gurr, GM; Liu, J; Read DMY; Catindig, JLA; Cheng, JA; Lan, LP; Heong, KL (2010) Parasitoids of Asian rice planthopper (Hemiptera: Delphacidae) pests and prospects for enhancing biological control by ecological engineering. *Annals of Applied Biology* 158, 149–176

Harwood, SH; Beckage, NE (1994) Purification and characterization of an early-expressed polydnavirus-induced protein from the hemolymph of Manduca sexta larvae parasitized by Cotesia congregata. *Insect Biochemistry and Molecular Biology* 24, 685-698

Harwood, SH; Grosovsky, AJ; Cowles, EA; Davis, JW; Beckage, NE (1994) An abundantly expressed hemolymph glycoprotein isolated from newly parasitized Manduca sexta larvae is a polydnavirus gene product. *Virology* 205, 381-392

Hofs, J-L; Schoeman, At; Mellet, M; Vaissayre, M (2005) Impact of genetically-modified cotton plants of the biodiversity on entomologic fauna: The case of Bt cotton in South Africa. *International Journal of Tropical Insect Science* 25, 63-72

Ibrahim, AMA; Choi, JY; Yeon Ho Je; Kim, Y (2007) Protein tyrosine phosphatases encoded in *Cotesia plutellae* bracovirus: Sequence analysis, expression profile, and a possible biological role in host immunosuppression. *Developmental and Comparative Immunology* 31, 978-990

Ives, AR; Glaum, PR; Ziebarth, NL; Andow, DA (2011) The evolution of resistance to two-toxin pyramid transgenic crops. *Ecological Applications* 21, 503-515

Jacas, JA; Pen, JÈ; Duncan RE (2009) Morphology and development of the immature stages of *Brachyufens osborni* (Hymenoptera: Trichogrammatidae), an egg parasitoid of broad-nosed weevil species (Coleoptera: Curculionidae). *Annals of the Entomological Society of America* 102, 112-118

Jalali, SK; Singh, SP (2006) Biological control of *Chilo partellus* using egg parasitoid *Trichogramma chilonis* and *Bacillus thuringiensis*. *Indian Journal of Agricultural Research* 40, 184-189

Jarjees, EA; Merritt, DJ (2004) The effect of parasitization by *Trichogramma australicum* on *Helicoverpa armigera* host eggs and embryos. *Journal of Invertebrate Pathology* 85, 1-8

Kim, Y; Choi, JY; Je, YH (2007) *Cotesia plutellae* bracovirus genome and its function in altering insect physiology. *Journal of Asia-Pacific Entomology* 10, 181-191

Kumar, S; Chandra, A; Pandey, KC (2008) Bacillus thuringiensis (Bt) transgenic crop: An environment friendly insect-pest management strategy. *Journal of Environmental Biology* 29, 641-653

Lavoie, NC.; Wackers, FL.; Romeis, J (2009) Indian Bt cotton varieties do not affect the performance of cotton aphis. *PLoS One* 4, e4804

Liu, X-X; Zhang, Q-w; Cai, Q-N; Li, J-C; Dong, J (2004) Effect of Bt protein on development of different strains of the cotton bollworm, *Helicoverpa armigera* (Hubner) and the parasitoid, *Microplitis mediator* (Haliday) *Acta Entomologica Sinica* 47, 461-466

Liu, X-x; Zhang, Q-w; Zhao, J-Z; Li, J-C; Xu, B-I; Ma, X-m (2005) Effects of Bt transgenic cotton lines on the cotton bollworm parasitoid *Microplitis mediator* in the laboratory. *Biological Control* 35, 134-141

Lozza, GC (1999) Biodiversity and structure of ground beetle assemblages (Coleoptera Carabidae) in Bt corn and its effects on nontarget insects. *Bollettino di Zoologia Agraria e di Bachicoltura* 31, 37-58

Marchetti, E; Alberghini, S; Battisti, A; Squartini, A; Baronio, P; Dindo, ML (2009) Effects of conventional and transgenic *Bacillus thuringiensis* galleriae toxin on *Exorista larvarum* (Diptera: Tachinidae), a parasitoid of forest defoliating Lepidoptera. *Biocontrol Science and Technology* 19, 463-473

Mellet, MA; Schoeman, AS; Broodyk, SW; Hofs, J (2004) Bollworm (Helicoverpa armigera (Hubner), Lepidoptera: Noctuidae) occurrences in Bt- and non-Bt-cotton fields, Marble Hall, Mpumalanga, South Africa. *African Entomology* 12, 107-115

Mohan, M; Sushil, SN; Bhatt, J-C; Gujar, GT; Gupta, HS (2008) Synergistic interaction between sublethal doses of *Bacillus thuringiensis* and *Campositis chlorideae* in managing *Helicoverpa armigera*. *BioControl* (Dordrecht) 53, 375-386

Moreau, SJ M; Guillot, S (2005) Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. *Insect Biochemistry and Molecular Biology* 35, 1209-1223

www.intechopen.com

Naveed, M; Salam, A; Saleem, MA; Rafiq, M; Hamza, A (2010) Toxicity of thiamethoxam and imidacloprid as seed treatments to parasitoids associated to control *Bemisia tabaci*. *Pakistan Journal of Zoology* 42, 559-565.

Nealis, VG; Van Frankenhuyzen, K; Cadogan, BL (1992) Conservation of spruce budworm parasitoids following application of *Bacillus thuringiensis* var. *kurstaki* Berliner. *Canadian Entomologist* 124, 1085-1092.

Oliver, JB; Mannion, CM; Klein, MG; Moyseenko, JI; Bishop, B (2005) Effect of insecticides on *Tiphia vernalis* (Hymenoptera: Tiphidiidae) oviposition and survival of progeny to cocoon stage when parasitizing *Popillia japonica* (Coleoptera: Scarabaeidae) larvae. *Journal of Economic Entomology* 98, 694-703.

Oluwafemi, AR; Rao, Q; Wang, X-Q; Zhang, H-Y (2009) Effect of *Bacillus thuringiensis* on *Habrobracon hebetor* during combined biological control of *Plodia interpunctella*. *Insect Science* 16, 409-416.

Orr, DR; Landis, DA (1997) Oviposition of european corn borer (Lepidoptera: Pyralidae) and impact of natural enemy populations in transgenic versus isogenic corn. *Journal of Economic Entomology* 90, 905-909.

Parkinson, N; Richards, EH; Conyers, C; Smith, I; Edwards, JP (2002a) Analysis of venom constituents from the parasitoid wasp *Pimpla hypochondriaca* and cloning of a cDNA encoding a venom protein. *Insect Biochemistry and Molecular Biology* 32, 792-735.

Parkinson, N; Smith, I; Audsley, N; Edwards, JP (2002b) Purification of pimplin, a paralytic heterodimeric polypeptide from venom of the parasitoid wasp *Pimpla hypochondriaca*, and cloning of the cDNA encoding one of the subunits. *Insect Biochemistry and Molecular Biology* 32, 1769-1773.

Parkinson, N; Conyers, C; Smith, I (2002c) A venom protein from the endoparasitoid wasp *Pimpla hypochondriaca* is similar to snake venom reprolysin-type metalloproteases. *Journal of Invertebrate Pathology* 79, 129-131.

Pilcher, CD; Rice, ME; Obrycki, JJ (2005) Impact of transgenic *Bacillus thuringiensis* corn and crop phenology on five nontarget arthropods. *Environmental Entomology* 34, 1302-1316.

Pons, X; Stary, P (2003) Spring aphid-parasitoid (Hom., Aphididae, Hym., Braconidae) associations and interactions in a Mediterranean arable crop ecosystem, including Bt maize. *Anzeiger fuer Schaedlingskunde* 76, 133-138

Prabhaker, N; Morse, JG; Castle, SJ; Naranjo, SE; Henneberry, TJ; Toscano, NC (2007) Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests. *Journal of Economic Entomology* 100, 1053-1061

Pratissoli, D; Polanczyk, RA; Rodrigues Vianna, U; Santos Andrade, G; Santos Oliveira, RG dos (2006) *Trichogramma pratissolii* Querino & Zucchi (Hymenoptera, Trichogrammatidae) performance in *Anagasta kuehniella* (Zeller) (Lepidoptera, Pyralidae) eggs affected by *Bacillus thuringiensis* Berliner. *Ciencia Rural* 36, 369-377

Provost, B; Varricchio, P.; Arana, E; Espagne, E; Falabella, P; Huguet, E; Scaleia, RL; Cattolico, L; Poirié, M; Malva, C; Olszewski, JA; Pennacchio, F; Drezen, JM (2004) Bracoviruses contain a large multigene family coding for protein tyrosine phosphatases. *Journal of Virology* 78, 13090–13103

Pruetz, G; Brink, A; Dettner, K (2004) Transgenic insect-resistant corn affects the fourth trophic level: effects of *Bacillus thuringiensis*-corn on the facultative hyperparasitoid *Tetrastichus howardi*. *Naturwissenschaften* 91, 451-454

Ramirez-Romero, R; Bernal, JS; Chauffaux, J; Kaiser, L (2007) Impact assessment of Bt-maize on a moth parasitoid, *Cotesia marginiventris* (Hymenoptera: Braconidae), via host exposure to purified Cry1Ab protein or Bt-plants. *Crop Protection* 26, 935-962

Raposo, F; Oliveira, L; P. Garcia, P (2003) Susceptibility to insecticides of *Glyptapanteles militaris* (Hymenoptera: Braconidae), a parasitoid of *Pseudaelia unipuncta* (Lepidoptera: Noctuidae). *Biocontrol Science and Technology* 13, 261-26

Reyes, SG (2005) Wet season population abundance of *Microsiph discolor* (Fabr.) (Coleoptera:Coccinellidae) and *Trichomma euphalexocoris* Uchida (Hymenoptera: Ichneumonidae) on three transgenic corn hybrids in two sites in the Philippines. *Asia Life Sciences* 14, 217-224

Riquelme V; Maria B; Botto, EN; Lalalice, C (2006) Efficacy of insecticides against the tomato moth *Tuta absoluta* (Lepidoptera: Gelechiidae) and their residual effects on the parasitoid *Trichogrammatidea bactrae* (Hymenoptera: Trichogrammatidae). *Revista de la Sociedad Entomologica Argentina* 65, 57-65

Rowell, B; Bunsong, N; Satthaporn, K; Phithamma, S; Doungsa-Ard, C (2005) Hymenopteran parasitoids of diamondback moth (Lepidoptera: Yponomutidae) in northern Thailand. *Journal of Economic Entomology* 98, 449-456

Sanders, CJ; Pell, JK; Poppy, GM; Raybould, A; Garcia-Alonso, M; Schuler, TH (2007) Host-plant mediated effects of transgenic maize on the insect parasitoid *Campoletis sonorensis* (Hymenoptera : Ichneumonidae). *Biological Control* 40, 362-369

Schoenly, KG; Cohen, MB; Barrion, AT; Zhang, W; Gaolach, B; Viajante, VD (2003) Interaction of resistant plants and wasp parasitoids of tobacco budworm (Lepidoptera: Noctuidae). *Environmental Biosafety Research* 2, 181-206

Schuler, TH; Potting, RPJ; Denholm, I; Clark, SJ; Clark, AJ; Stewart, CN; Poppy, GM (2003) Tritrophic choice experiments with Bt plants, the diamondback moth (*Plutella xylostella*) and the parasitoid *Cotesia plutellae*. *Transgenic Research* 12, 351-361.

Serbielle, C; Chowdhury, S; Pichon, S; Dupas, S; Lesobre, J; Purisma, EO; Drezen, JM; Huguet, E (2008) Viral cystatin evolution and three-dimensional structure modelling: A case of directional selection acting on a viral protein involved in a host-parasitoid interaction. *BMC Biology* 6:38

Sharma, HC; Arora, R; Pampapathy, G (2007) Influence of transgenic cottons with *Bacillus thuringiensis* cry1Ac gene on the natural enemies of *Helicoverpa armigera*. *BioControl* (Dordrecht) 52, 469-489

Sharma, HC; Dhillon, MK; Arora, R (2008) Effects of *Bacillus thuringiensis* delta-endotoxin fed *Helicoverpa armigera* on the survival and development of the parasitoid *Campoletis chloridae*. *Entomologia Experimentalis et Applicata* 126, 1-8

Strand, MR; Ratner, S; Vinson, SB (1983) Maternally induced host regulation by the egg parasitoid *Telenomus heliothidis*, *Physiological Entomology* 8, 469-475.

Tounou, A-K; Gounou, S; Borgemeister, C; Goumedzoe, YMD.; Schulthess, F (2005) Susceptibility of *Eldana saccharina* (Lepidoptera: Pyralidae), *Busseola fusca* and *Sesamia calamistis* (Lepidoptera: Noctuidae) to *Bacillus thuringiensis* Cry toxins and potential side effects on the larval parasitoid *Cotesia sesamiae* (Hymenoptera: Braconidae). *Biocontrol Science and Technology*. 15, 127-137

Ulph, S; Kok, LT (1996) Interrelationship of *Bacillus thuringiensis* Berliner to the diamondback moth (Lepidoptera: Noctuidae) and its primary parasitoid, *Diodogma insulare* (Hymenoptera: Ichneumonidae). *Journal of Entomological Science* 31, 371-377

Vojtech, E; Meissle, M; Poppy, GM (2005) Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera : Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera : Braconidae). Transgenic Research 14, 133-144

Walker, GP; Cameron, P; MacDonald, FM; Madhusudhan, VV; Wallace, AR (2007) Impacts of Bacillus thuringiensis toxins on parasitoids (Hymenoptera : Braconidae) of Spodoptera litura and Helicoverpa armigera (Lepidoptera : Noctuidae). Biological Control 40, 142-151

Weaver, RJ ; Marris, GC; Olieff, S; Moson, JH; Edwards, JP (1997) Role of ectoparasitoid venom in the regulation of haemolymph ecdy steroid titers in a host noctuid moth. Archives of Insect Biochemistry and Physiology 35, 169-178

Wei, W.; Schuler, TH; Clark, SI; Stewart, CN, Jr.; Poppy, GM (2008) Movement of transgenic plant-expressed Bt Cry1Ac proteins through high trophic levels. Journal of Applied Entomology 132, 1-11

Xu, Y-Y; Liu, T-X; Leibee, GL; Jones, WA (2004) Effects of selected insecticides on Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of Plutella xylostella (Lepidoptera: Plutellida). Biocontrol Science and Technology 14, 713-723

Xu, Y-Y; Liu, T-X; Leibee, GL; Jones, WA (2004) Effects of selected insecticides on Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of Plutella xylostella (Lepidoptera: Plutellida). Biocontrol Science and Technology 14, 713-723

Zhang, N; Ren, Q; Liu, XX; Zhao, ZW; Zhang, QW (2010) Behavioral responses of female Microplitis tuberculifer to volatiles from cotton plants induced by herbivores (Hymenoptera: Braconidae). Entomologia Generalis 32, 201-210
Insecticides - Advances in Integrated Pest Management
Edited by Dr. Farzana Perveen

Hard cover, 708 pages
Publisher InTech
Published online 05, January, 2012
Published in print edition January, 2012

This book contains 30 Chapters divided into 5 Sections. Section A covers integrated pest management, alternative insect control strategies, ecological impact of insecticides as well as pesticides and drugs of forensic interest. Section B is dedicated to chemical control and health risks, applications for insecticides, metabolism of pesticides by human cytochrome p450, etc. Section C provides biochemical analyses of action of chlorfluazuron, pest control effects on seed yield, chemical ecology, quality control, development of ideal insecticide, insecticide resistance, etc. Section D reviews current analytical methods, electroanalysis of insecticides, insecticide activity and secondary metabolites. Section E provides data contributing to better understanding of biological control through Bacillus sphaericus and B. thuringiensis, entomopathogenic nematodes insecticides, vector-borne disease, etc. The subject matter in this book should attract the reader's concern to support rational decisions regarding the use of pesticides.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

© 2012 The Author(s). Licensee IntechOpen. This is an open access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.