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1. Introduction  

It is very well known that the use of robotics in the industry increases productivity and 

quality in many aspects. It is also well known that some adjustments have to be made to 

grant payback for the investment and to reach the expected results. Today, the robotization 

is known as an alternate technique for production, increasing qualitative and quantitative 

competence of its industries. One point that has been observed in some applications is that 

inadequate procedure for robot application in welding process reflects in insatisfactory 

results. These procedures are excessive time expending for implementation, material loss, 

reworking and poor weld quality. 

The main problem detected is that the number of experts in welding “and” robotics is still 

reduced and some industries are investing in robot without any planning or orientation, 

believing that the robot will solve all their problems. The results have been disastrous. In 

many cases even though the weld appearance is acceptable and the welding time is 

significantly reduced, the weld quality is poor. The experts in robotics know very well what 

they are doing. However, many of them do not have experience in welding to understand 

that many features related to welding physics and metallurgy have to be considered when a 

welding procedure has to be implemented. Because of this, some small and medium 

industries with large potential for robotization are holding investment and/or postponing it 

until its adaptation to implement the robot in their production line. It is believed however 

that very soon many small industries will have their own robot. 

2. The paradigm of welding automation  

Since the beginning, welding is a process that depends on the welder skills. This relation is 

so direct that the classification, according to the application methods, is based on the degree 

of control of the activities related to welding that depends on the human interference. These 

application methods are classified as manual, semi-automatic, mechanized, automatic, 

robotic and with adaptive control, according to American Welding Society (AWS). 

This classification can be better understood when an agent is established (Table 1) to execute 

the normal activities involved to realize arc welding (Cary, 1994).  

The manual welding is defined, according to the American Welding Society (AWS, 2001) as 

“welding where the torch or the electrode holder are carried or manipulated by human 

hands”. In other words when the tasks, related with the execution and continuous control of 

the welding, are made by the hands of the human and are under responsibility of him. 

www.intechopen.com



 
Arc Welding 

 

48

 Manual 
Semi-

automatic 
Mechanized Automatic Robotic 

Adaptive 
control 

Activities 

 
Arc start and 
maintenance 

Human Machine Machine Machine Machine 
Machine 

(with sensor) 

Wire feeding Human Machine Machine Machine Machine 
Machine 

(with sensor) 

Heat control to 
obtain 
penetration 

Human Human Machine Machine Machine 
Machine 

(with sensor) 

Arc motion 
along the joint 

Human Human Machine Machine 
Machine 
(robot) 

Machine 
(with sensor) 

Guide the arc 
along the joint 

Human Human Human 

Machine 
(with pre 

programed 
track) 

Machine 
(robot) 

Machine 
(with sensor) 

Torch 
manipulation to 
direct the arc 

Human Human Human Machine 
Machine 
(robot) 

Machine 
(with sensor) 

Arc corrections 
to compense 
erros 

Human Human Human 
Do not 
occours 

Do not 
occours 

Machine 
(with sensor) 

Table 1. Application methods of welding process, adapted from (Welding Handbook, 2001). 

Semi-automatic welding is defined as “manual welding with equipment that automatically 
control one or more welding conditions”. The welder manipulates the torch while the 
wire/electrode is automatically fed by the machine. 
Mechanized welding is defined as “welding with equipment that requires manual 
adjustments in response to visual observation during welding, with the torch or electrode 
holder carried by a mechanical system”. The welder participation in this process consist in 
adjusting the parameters as he observe the operation. 
Automatic welding is defined as “welding with equipment that only requires occasional 

observation and/or no observation of the weld and no manual adjustments”. The function 

of the welder is only turn the machine on to begin the welding cycle and occasionally check 

the procedure.  

Robotic welding is defined as “welding that is executed and controlled by a robotic 
equipment”. In robotic welding and automatic welding the function of the welder is to 
guarantee the weld quality by performing periodic inspections of the results identifying 
weld discontinuities. When those are find, maintenance and programming must be done to 
fix such problems.  
Welding with adaptive control is defined as “welding with equipment that has a control 
system that automatically determine changes in welding conditions and act under the 
equipment with appropriated action to do adjustments”. In this process, sensors are used to 
detect problems and the controller performs the necessary changes in welding parameters, 

www.intechopen.com



 
Arc Welding Automation 

 

49 

in real time, to produce sound welds. This type of welding is performed without 
intervention and supervision of the human. 
Accord to the classification presented, the stick electrode welding is a manual process since 
the welder is responsible for all the activities, while GMAW is a semi-automatic process. 
This is so because the arc start and maintenance and wire feeding is made by the machine 
while the torch manipulation is made by the welder. When this manipulation is made by a 
mechanical device the processes is classified as mechanized.  
Independent of the automation degree, its focus is costs reduction by reducing the number 
of people involved in the production and increasing productivity and quality of the final 
product by the rational control of the process parameters. An automatic equipment may be 
projected and programmed to perform a unique task (fix automation) or may be projected 
for multitasks, by programming, allowing to perform distinct tasks accord with the 
manufactured product (flexible automation) (Welding Handbook, 2001; Romano, 2002). 
In manufacturing area, the term “automation” means that all the functions or steps of an 
operation are executed or controlled, in sequence, by mechanical and/or electronics devices 
replacing the human efforts, observation and decision.  
The automation involves more than equipments or control by computer and may or may 
not include charge or discharge of components in an operation. The automation may be 
partial, with some functions or steps executed manually or may be total, where all the 
functions or steps are executed by the equipment, in a certain sequence without any 
adjustment by the operator (Romano, 2002).  
To properly classify the automation level of a given process, the first step is to define the 
activities related to it. The responsible for the execution (execution agent), for the control 
(control agent) and for the sequence of activities (sequential agent) must be defined. 
Additionally, it is necessary to define which activities need to be treated as isolated and 
which must be included in the process operational cycle.  
In the arc welding processes, the first activity to execute a weld is to specify which welding 
procedure must be used. This definition is also known as WPS – Welding Procedure 
Specification. Considering used material and the weld morphology wanted, the welding 
parameters related to the process may then be determined. The executor, controller and 
sequence specification agent of a WPS is the human. Even with a help of a computational 
program to choose the best parameters or the ones that will be used for the self adjustment 
of the machine, the final decision for the WPS is the human decision. Between the WPS 
elaboration and the welding beginning, a time interval for procedure preparation is 
necessary. Nowadays, this preparation occurs independent of the application method to be 
used and human direct interference are often necessary. 
There is still a lack of a good system to automatically prepare the WPS and, from its 
preparation, immediately initiate the welding. Of course this system must be universal, 
since among the parameters to be chosen for the WPS there are the welding processes.  It is, 
however, expected that such activities (WPS and welding start) be treated as isolated 
activities, because of the human involvement on them. The activities related to the welding 
cycle, the ones that will define the degree of automation of the process, must be the ones 
that allows the instantaneous sequence of the process.  
The easiest way to relate such activities is to associate them to a welding process. It is 
unquestionable to say that welding with covered electrode (SMAW) is manual. To start the 
arc, the welder must approximate the tip of the electrode to the base metal, touch it and 
slowly and gently pull up such that the arc is established. After, he must translate and feed 
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the electrode, such that the distance between the electrode tip and the weld pool is constant 
(arc length) until the end. To finish, he must smoothly pull the electrode, getting it apart 
from the base metal, extinguishing the arc. Spiral movements some times are also used to fill 
the crater. As observed, in this operation the execution and control agent is the human. All 
of the described tasks may, however, be made automatic, if needed, not necessarily for 
productivity improvement, but for security reasons, as hot tapping of tubes and underwater 
welding. Section 3 shows some results of the robotic SMAW. 
According to the classification shown in Table 1, a typical semiautomatic process is the 
GMAW. To begin the welding, after some preparation, the welder must place the torch close 
to the base metal and after pushing the trigger, start the wire feeding. As the wire touches 
the base metal, the arc is established and the welder must translate the torch. As the welder 
translates it, the machine feeds the wire into the weld pool. To stop the welding, the welder 
needs only to release the trigger. The machine stops to feed the wire and the arc is 
extinguished. The arc opening and extinguishing are associated to the wire feeding by the 
machine (execution agent). However, who decides the feeding start and finishing moment is 
the human (controller and sequence agent), since he needs to push the trigger.  
GMAW is the most suitable arc welding process to be carried by the robot. If the robot 

substitutes the human welder by translating the torch with a predefined trajectory (been 

classified as automatic welding according to Table 1), the improvement on repeatability is 

huge, as the robot will always make the same trajectory. However, to improve the quality, 

the trajectory needs to be programmed at least as good as the human does it. If the trajectory 

is not well programmed, the robotic weld will never be better than the human weld. Section 

4 shows a case where the trajectory study was crucial to improve the welding quality for the 

robotic welding. 

The execution of torch movement with a mechanical device with mechanical or electronic 

control (as the robot) is a necessary condition, but no sufficient, to a welding be automatic. 

In this case, the easiest way to differentiate a mechanized system from an automatic system 

is to base on the concept of automatic equipment. It is either an equipment designed and 

programmed to execute an unique task (fix automation) or a flexible equipment that, with 

reprogramming, allows the performing distinct tasks accord to the product to be 

manufactured (flexible automation) (Welding Handbook, 2001; Romano, 2002).  

An industrial robot is an example of a flexible automatic system. Accord to RIA (Robotic 

Industries Association), “a robot is a reprogrammable manipulator, multifunctional, 

projected to move materials, parts, tools and specialized devices by programmed 

movements to perform many tasks” (Rivin, 1988). The development of this type of machine 

introduced an elevated degree of flexibility to the production environment. 

The main condition for a welding equipment to be robotic is that it should be 

programmable. The most used industrial robots for welding are the anthropomorphic with 

six degrees of freedom. They are reprogrammable and multifunctional. This means that 

these robots may be used to weld different parts, needing only the reprogramming for the 

new part to be welded. 

There are also robots designed for specific tasks. These robots are not multifunctional. A 

typical case is a robot used for welding, designed to execute an unique type of weld. An 

example is the robot developed to weld pipelines and will be presented in Section 5. This 

robot has its movements limited to rotate around the pipe while it stays stopped. Only pipes 

can be welded with this type of robot. This robot is then called “a dedicated robot”.  
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Finally, to differentiate automatic system from mechanized system is a hard task. This is 
because the automation may be partial or total and there is not a 100% automatic yet. 
Regarding to welding systems what can be said is related to a flexible or dedicated (fix) 
system. 
As general rule an automatic process is more productive than a mechanized process which 
is more than the manual. In welding, the gain in productivity many times is related to the 
reduction in time with reworking, close arc time and preparation to begin the welding cycle. 
On the other hand, also as general rule, the cost for implementation increases from manual 
welding to automatic welding. Allowing to say that one disadvantage of the automatic 
welding is its initial cost. Detailed studies of economical viability show that the benefits 
against costs to implement such systems are becoming satisfactory.  
In general, if a welding process can be mechanized it can be automatized. The question is 
when a process should be mechanized and when it should be automatized. Additionally, if 
this automation needs or not a robot, i.e., it is a fix or a flexible automation. 
Many factors must be considered to define the best execution method for a welding process, 
as type of process, part geometry, weld complexity, amount of welds and desired weld 
quality. 
All these factors must be considered and also the advantages and disadvantages of each 
method. The more dependable way to define the appropriate method to produce a 
determined part is studying the economic viability. This should be done because, 
independent of the automation degree, what is seen is the reduction of manufacturing costs. 
Using automatic systems this can be reached by reducing the number of people involved in 
the welding, the increase in productivity and the increase in quality, through the use of 
more rational process parameters. Also, with automatic systems, the history of the welding 
and all the preparation also can be stored. This, together with the repeatability, allows the 
traceability of welded parts. 
The following sections show some examples of welding automation in different levels for 
different applications. 

3. Robotic shielded metal arc welding 

One of the main problems with the shielded metal arc welding process is the bead weld 
quality, related to its microstructure homogeneity and its physical and dimensional aspect. 
These factors are directly related to the fact of such process to be, currently and 
predominantly manual and even the best welder is incapable to weld with absolute 
repeatability all the weld beads. This process mechanization already exists and increases the 
repeatability. However it has limits with bead geometry, which is determined by the 
mechanism assembly. In Figure 1 is shown a device which uses gravity to move the 
electrode holder (a) along a fixed trajectory (b) as the electrode (c) is melted. 
There are many applications for the manual SMAW process but two of them are more 
specific and there is no other process that can be used. One application is underwater 
welding, as shown in Figure 2. For a long time many tries have been made to replace coated 
electrode in this type of welding, without success. It is easy, versatile and the chemical 
control of the weld metal is the most acceptable. Another application is hot tapping of tubes 
as shown in Figure 3. In this application, the welder has to weld a tap tube to the main line 
with inflammable fluids passing inside. As the main line cannot be emptied, this is a 
dangerous procedure to the welder, however it is the only way acceptable nowadays. 
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Fig. 1. Device used for gravity welding with covered electrode. 

 

 

Fig. 2. Underwater welding with SMAW. 

 

 

Fig. 3. Hot tapping with SMAW. 

Aiming the improvement of the weld quality allied to the repeatability proportionated by 
the mechanization and the manual process flexibility, the process robotization appears as a 
solution. However, the robotization brings the problem that, depending on the electrode 
diameter and the weld current, the melting rate is not constant during all the electrode 
length. This is because the welding current crosses all the electrode length, causing its 
heating by Joule effect. This heating facilitates the melting of the electrode, which increases 
as the electrode is consumed. Thus, if the weld is made using a constant feed speed, it will 
obtain a bead with non homogeneous dimensional characteristics (Bracarense, 1994). Its 
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morphology (width and reinforcement) increases as the material is deposited, since the 
melting rate, and consequently the material deposition rate increases as the weld is 
performed. Experimental results (Oliveira, 2000) had shown that, beyond of getting an 
irregular bead and without penetration, a constant feed speed can cause the electric arc 
extinction just after the beginning of the weld. 

3.1 Trajectory generation 
Due to this melting rate variation, this welding process cannot be programmed with the 
simple teaching of an initial and a final point to the electrode holder, as in this case it would 
be obtained a constant feed speed. Moreover, it is not possible to precisely calculate, before 
starting the welding, the melting rate behavior, as it depends on a number of process 
variables, as the electrode temperature, welding current, air flow etc. 
So, to robotize the shielded metal arc welding, it is not sufficient to follow a predefined 
trajectory over the groove, as in the GMAW and FCAW processes, in which the wire feeding 
is automatic. In SMAW, it is necessary to make the feeding movement, in order to maintain 
constant the electric arc length. As the melting rate is not constant, the feeding speed has to 
be regulated during execution time. 
The methodology presented by Lima II and Bracarense (2009) allows the Tool Center Point 
(TCP) movement programming in a similar way as in GMAW and FCAW, in a transparent 
way to the user. So, it is only necessary to program the weld bead geometry or trajectory 
over the groove without caring about the electrode melting. 
The electrode is considered as a prismatic joint of the robot. Considering the joint length 
given by the electrode length, the TCP moves on the programmed trajectory and, at each 
sampling period, the new joint displacement is calculated and updated in the robot 
kinematics model. So, the diving movement of the electrode-holder is made independently 
of the welding movement. 
Considering the initial and final electrode holder positions shown in Figure 4 and melting 
rate experimentally obtained by Batana and Bracarense (1998), Figure 5(a) shows the TCP 
and electrode holder trajectories during welding. The electrode tip moves along 
predetermined trajectory while the electrode holder makes the diving movement. In this 
case, as the electrode is parallel to the Z0 axis, the electrode holder diving movement is made 
in this direction, as it moves in X0 direction. The independence among the TCP advance 
movement and the electrode holder diving movement is easily stated. However, considering 
now a welding angle of 45o, these movements are not independent (Figure 5(b). 
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0Ẑ

0X̂

0Ẑ
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Ŷ

0Ẑ
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Fig. 4. Initial (a) and final (b) robot positions during shielded metal arc welding for a 90o 
welding angle. 
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(a) 

 
(b)

Fig. 5. Tool Center Point and electrode holder trajectories for welding angles of (a) 90o and 
(b) 45o. 

This methodology can be extended to non linear trajectories, as in the orbital welding or 
welding for hot tapping in pipelines. The operator only has to program the welding 
trajectory in the same way as it is done in welding processes with continuous wire feeding. 
Figure 6(a) shows the programmed TCP trajectory on the tube and the electrode holder 
trajectory for 90o of welding angle and Figure 6(b) shows those trajectories for 45o of 
welding angle. More complex welding trajectories may be programmed by using a sequence 
of linear and circular movements as in other welding processes. 
 

 
(a)

 
(b)

Fig. 6. Tool Center Point and electrode holder trajectories for 90o (a) and 45o (b) welding 
angles in orbital welding. 

3.2 Electric arc length control 
Previous works (Oliveira (2000); Batana & Bracarense (1998); Quinn et al. (1997)) seeking the 
robotization of the welding process with covered electrodes suggested the development of 
models for electrode melting rate considering current and temperature, to determine the 
speed of the electrode holder diving. Thus, making the diving movement at speeds equal to 
the melting rate, the arc length should remain constant throughout the welding. However, 
imperfections in the models, errors in current and in temperature measurements and other 
disturbances cause small differences between the value of the calculated melting rate and 
real melting rate. These differences, even if small, can cause great variation in the arc length, 
since it depends on the integral of the instantaneous difference. This shows that an “open 
loop control”, as used by Oliveira (2000) is not suitable for the system. 
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The solution used here is to make a measurement of the arc length to determine the diving 
speed and use it in a “closed loop controller”. In this case, a reference value for the arc 
length is given and the error is calculated as the difference between the reference and the 
actual arc length measured from the electric arc. 
One solution for the problem of measuring the arc length would be to measure the voltage 
in electric arc (Varc), since they are directly related. In the process a constant current power 
source is used. The problem is that it is not possible to directly measure the arc voltage, 
because, during welding, the electrode tip, near the melting front, is not accessible. It is 
possible, however, to measure the voltage supplied by the power source (Vsource) through the 
entire electrical circuit, as shown in Figure 7, which includes the voltage drop in the cable, in 
the holder, in the base metal (Vc1+Vc2) and, mainly, along the extension, not yet melted, of 
the electrode, Velectr. 
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Fig. 7. Electrical circuit of covered electrode welding 

It may be considered that the sum of the voltage drop in the cable, in the electrode holder 
and in the base metal (Vc1+Vc2) are constant along the welding  since the welding current is 
kept constant by the power source. However, the voltage drop along the electrode that has 
not yet been melted, Velectr, is not constant, due to the reduction on its length and due to the 
increase of its electrical resistivity with temperature. Thus, even if the controller keeps the 
Vsource constant through the control of the diving speed, it does not guarantee that Varc is 
constant throughout the process, which does not guarantee, therefore, a constant arc length. 
In this study, a model of the electrode voltage drop, as a function of temperature to 
compensate for the effect of its variation was used. 
The electrode voltage drop Velectr, may then be modeled as: 

 I
A

tl
TV

electr

electr

)(
)( , (1) 

where (T) is the electrode electrical resistivity as a function of temperature, lelectr(t) is the 
electrode length not yet melted, A is the area of the electrode wire and I is the welding 
current. As the electrical conductivity of the core wire is two orders of magnitude greater 
than the coating (Waszink & Piena, 1985), one can consider only the resistivity and cross 
sectional area of it.  

As the electrical resistivity  of the core wire material varies with its temperature, it is 
important to know the temperature behavior along the electrode during the process. In 
Felizardo (2003) the authors conclude that the longitudinal temperature profile along the 
covered electrode is practically constant. Its heating is due to the Joule effect caused by the 
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high electric current crossing the electrode. The conduction of the heat generated by the 
electric arc to the electrode is often slower than the fusion rate, which causes the 
temperature to be constant along the electrode length. Then, temperature can be measured 
during welding using thermocouples (Dantas et al., 2005) placed under the coating near the 
electrode holder.  

3.3 Results 
To validate the methodology, an anthropomorphic industrial robot, with 6 rotational degrees 
of freedom was used. This robot uses a controller that allows programming from simple, linear 
and circular join-to-joint movements to creation of complex programs, including changes of 
parameters at run time (KUKA, 2003). These characteristics make possible the implementation 
of the proposed methodology for trajectory generation and control of the electric arc length 
during welding. To perform data acquisition, a modular system I/O-SYSTEM 750 from 
WAGO® was used. This system communicates with the robot controller by a DeviceNet 
interface. For the tests, a constant current power source, capable to supplying currents up to 
250A, and an open circuit voltage of 70V was used. A drill chuck was used as electrode holder 
(Dantas et al., 2005). The supply current is made through the jaw of the chuck, which is in turn 
electrically isolated from de holder by a part of nylon. To enable the arc initiation in the 
welding start point, it was used a composite specially developed to burn when submitted to 
electric current (Pessoa et al., 2003). When the composite is burned, the arc is established and 
the robot starts the movement. At the end point the current is interrupted by a fast movement 
of the electrode and the arc is terminated. 
Using the robot routines to define tools, the Tool Center Point models with the complete 
electrode and with the melted electrode were defined (Figure 8). 
 

 

Fig. 8. Complete electrode and melted electrode frames. 

The proposed methodology allows welding with covered electrode of any length, diameter 

and type of coating, since it performs the closed loop control of the process. Thus, the 

proposed methodology was validated with rutile type covered electrodes (E6013) of 4mm in 

diameter, and with basic type covered electrodes (E7018) of 3.25 mm diameter. The welding 

current ranged between 150A to 180A as indicated by the manufacturer. Plates and tubes of 

carbon steel were used for linear and non-linear (circumferential) welding trajectories. 
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During the process, it was possible to observe that although the robot can keep the mean 
voltage constant, the arc length increases significantly at the end of the weld, as discussed 
above. To compensate this effect, the model of the electrode voltage drop in function of its 
length and temperature was used to correct the feedback signal used by the controller. For 
this, tests were made to obtain the curve of temperature versus time. Thermocouples type K 
were used for monitoring temperature during welding (Dantas et al., 2005). 
Welding tests were then made using this compensation. The reference voltage (Vref) was set 
to 21V. Figure 9 shows the voltage on the electrode (Velectr) as a function of time. Despite the 
voltage drop compensation in the electrode varies of only 0.5V, it was observed that the 
length of the arc remained constant throughout the execution of the weld, reinforcing the 
need for such compensation. 
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Fig. 9. Electrode voltage drop during welding. 

To prove the repeatability achieved with the automation of the process, several beads on 
plate were performed using the E6013 electrodes with 4mm diameter, welding current of 
175A, reference voltage of 21V and welding speed of 2.5 mm/s. Figure 10 shows the 
appearance of the welds. Despite the spatter problem it is possible to observe that all the 
welds are identical, demonstrating the repeatability obtained with the robotization of the 
process. 
 

 

Fig. 10. Beads on plate performed by the robot using E6013 electrodes, demonstrating the 
repeatability of the process. 

Aiming to demonstrate the flexibility of the used methodology with respect to the variety of 
electrodes, tests were made using E7018 electrodes of 3.25 mm in diameter. The best welds 
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were obtained using current of 150A, speed of 2.5 mm/s and the reference voltage of 26.5 V. 
Figure 11 shows the appearance of welds.  
 

 

Fig. 11. Welds made using E7018 electrodes demonstrating the flexibility and repeatability 
of the process. 

As can be observed, the welds are more uniform and with less spatter than the ones 
obtained with E6013 electrodes. It is important to note that the E7018 electrodes, despite 
producing best quality welds, have greater difficulty in manual welding. In the experiments, 
however, these electrodes did not present any operational difficulties in relation to E6013 
electrodes, but was necessary to conduct some additional experiments to adjust the 
reference voltage as the voltage of the electric arc varies considerably with the change of the 
electrode coating.  
To demonstrate the generality of the developed methodology for the trajectories generation, 
an orbital welding on a steel tube with 14 inches diameter was conducted. The welding 
started in the flat position, going downward in vertical position with the electrode in an 
angle of 45o, pulling the weld bead. E7018 electrodes were used with a current of 130A, 
welding speed of 5.5 mm/s and reference voltage of 18V. Figure 12 shows robot positioned 
with the electrode at the arc opening and after its extinction. 
 

 
(a) 

 
(b) 

Fig. 12. Robot positioning (a) before arc opening and (b) after arc extinction. 
 

 

Fig. 13. Welds made on tube with E7018 electrodes. 
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Figure 13 shows the appearance of two welds made on the pipe with the same welding 
parameters, demonstrating the repeatability of the process.  
The results show that is possible to automate an intrinsic manual process, bringing 
reliability and repeatability to it. Also it can be applied when the task is dangerous to be 
performed by the human welder. 

4. Robotic GMAW 

Before deciding for the automatization of a process using welding robots, various factors 
such as definition of the goals to be reached (production volume increase or quality 
improvement), necessity of improvement in the adjustment between the parts, among many 
factors must be verified (Bracarense et al., 2002). 
This section shows the cooperation between University and Industry in the welding of 
scaffolds used in civil construction. The company wanted to use robots to improve the 
production, but was in doubt about the weld beads quality and the economic viability. The 
production line of scaffolds used manual welding and did not control the welding sequence 
nor the deposition rates. The University was then contacted to study the viability of using a 
robot to carry through these operations. 

4.1 Scaffold welding study 
Among many scaffold types manufactured by the company, the tubular scaffold was the 
one studied. These scaffolds are manufactured in three different models, with 1,0m by 1,0m, 
1,0m by 1,5m and 1,0m by 2,0m, as shown in Figure 14. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 14. Scaffold models manufactured by the company: 1,0m x 1,0m (a), 1,0m x 1,5m (b) and 
1,0m x 2,0m (c). 

In the manual process, before the welding, the scaffold joints are arc spot welded using 

Shielded Metal Arc Welding. Two operators work in this procedure: while one places the 

tubes on a jig, the other spot welds the joints in other jig. A great variation in the arc spot 

welding times is observed. For an average of 39,6s for arc spot welding of a complete 

scaffold, a standard deviation of 11,1s was obtained (Pereira & Bracarense, 2002).  

Initially some problems, such as differences in tubes lengths (Figure 15a) and cut finishing 

(Figure 15b), beyond lack of parallelism in its extremities (Figure 15c) have been stated. 

These problems would compromise the robotic welding, since, although the manual welder 

perceives such differences and compensates them during the welding, the robot is not 

capable to make it, as its movements are based on a previous programming. To make 

possible using the robot, some modifications had been carried through in the cutting process 

in order to minimize such problems. 
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(a) 

 
(b) 

 
(c) 

Fig. 15. Problems in the tubes preparation: difference in length (a), difference in the 
extremity sections (b) and lack of parallelism (c). 

Aiming to define the size of the robot to be specified, simulations had been done using 
commercial software (Figure 16). The scaffold of 1,0m x 2,0m was considered in this 
simulation, because its bigger dimensions among the others to be produced. A MOTOMAN 
SK6 robot was considered the model since it was the one to be used in the laboratory. 
 
 

 
 

Fig. 16. Computer simulation of scaffold welding process. 

The use of a simulation software allowed, beyond verifying if all the joints to be welded 
would be inside of the workspace of the robot, to verify if it would be possible to locate the 
tool with desired orientation in all the points to be welded, that is, if all the points would be 
inside of the robot dexterous workspace (Craig, 1989).  
Then some welds had been carried through in the laboratory at the University within the 
objective to study the best welding parameters to be used (Figure 17). 

www.intechopen.com



 
Arc Welding Automation 

 

61 

 

Fig. 17. Tests at University laboratory for verification of the welding parameters. 

Through tensile test, it was verified that the welds made using the robot are stronger than 
those manually welded (Pereira and Bracarense, 2002). Additionally, it was verified that the 
rupture occurs far from the HAZ (Heat Affected Zone), confirming the higher quality of the 
welds made by the robot. It was also stated that there was not any visible modification in 
the weld bead after the tests. Accepting the viability of using robots for the scaffold welding, 
the company decided to acquire a robotic welding cell. 

4.2 Robotic cell conception and development 
The Company acquired a KUKA KR16 robot, similar to MOTOMAN SK6, but with a wider 
workspace. The layout of the cell, projected by the University, consists of three jigs located 
around the robot (Figure 18). In this cell the operators can mount or remove two scaffold 
while the robot welds another in the third jig. 
 

jig 1 jig 3

jig 2

 

Fig. 18. Robotic cell conception. 

The construction and installation of the robotic cell was supervised by the University and 
carried through the Company, which has resources to produce doors, gratings, tables and 
jigs (Figure 19).  
 

 

Fig. 19. Installed robotic cell. 
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As it was conceived, with three jigs, the robotic cell allows getting a work cycle of practically 
100%. Considering that the robotic arc spot welding process is faster than the manual 
scaffold assembly, it is possible to the robot to weld two scaffolds while two operators 
remove the welded scaffold and assembly new ones in the two other jigs.  

4.3 Arc spot welding program development 
Considering the problems observed in the tubes preparation, it was opted to initiate 
programming the arc spot welding of the scaffold to posterior manual welding by the 
operators. An operator would be trained on the robot programming and would follow the 
development of the arc spot welding program. This operator would be also responsible for 
determining changes in the cutting process, guiding the other employees to adapt it to the 
robot. 
As commented before, the arc spot welding was originally made manually using SMAW. 
With the robot, the arc spot welding would be made with GMAW (Gas Metal Arc Welding), 
being, therefore, unnecessary to remove the slag after arc spotting, before welding of the 
joints. 
The 1,0m x 1,5m scaffold has 6 joints to be welded. The complete arc spot welding consists 
on 12 spots with approximately 10mm, being 2 spots on each joint, as shown in Figure 20.  
 

 

Fig. 20. Points to be arc spot welded in 1,0 x 1,5m scaffold. 

To program each spot, it was identified two positions (one oscillation) for the robot program 
(Figure 21). The electric arc is opened in position 1, moves to position 2 and extinguish the 
electric arc. 
 

 
(a) 

 
(b) 

Fig. 21. Positions used to program each arc spot welding: position 1 (a) and position 2 (b). 

However, due to differences in the tubes lengths and lack of parallelism in the cuts, still 

present in its preparation, it was not possible to obtain a good repeatability in the spot 

welding. In some points occurred lack of fusion, being necessary manual rework. 

It was opted then to program the arc spot welding using 3 oscillations with the torch 
moving twice to each position: after opening the electric arc, the robot would move from 
position 1 to position 2, back to position 1 and, finally, back to position 2, extinguishing the 
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electric arc. This way, it was possible to almost get a utilization of 100% in welds, although 
the lack of repeatability in the preparation of the tubes. 
With this procedure, the arc spot welding program with 12 welds lasts on average 55 
seconds. Considering three operators doing assembly of scaffolds on the jigs, the robot was 
capable to arc spot weld 520 scaffold per day. 

4.4 Program optimization 
This program, although efficient, was not productive, as the human operators are capable to 
arc spot weld the same number of scaffolds in less time. It was then performed a study to 
optimize the robot programming aiming to reduce the time cycle, without compromise the 
arc spot quality. 
Initially, it was opted to reduce the number of torch movements on each spot, from three to 
two oscillations. To avoid problems caused by differences on the tubes, it was necessary to 
adjust the weld parameters, increasing the voltage, keeping the current constant, to increase 
the bead width without increasing the heat input. 
Some tests were done to verify the arc spots quality, resulting in satisfactory joints (Figure 
22). Even using only two torch oscillations, it was obtained almost 100% of good welds. 
 
 

 

Fig. 22. Arc spot welded joint. 

The average cycle time was reduced to 47 seconds, resulting in a daily production of 610 
scaffolds. 
Considering that this number was still low, it was opted to develop a new configuration of 
arc spot welds. In this case, instead of using two spots on each joint, the program was 
changed to make two spots in the inner joints and only one spot in the outer ones, as shown 
in Figure 23. This way, the number of arc spots to be make in each joint decreased from 12 to 
8 spots. 
 
 

 
 

Fig. 23 Arc spot welds configuration using only one spot in the outer joints. 

www.intechopen.com



 
Arc Welding 

 

64

Figure 24 shows a spot in one of the outer joints. 
 

 

Fig. 24. Outer joint spot. 

The average cycle time was reduced to 31 second, resulting in a daily production of 920 
scaffolds, over the company expectation that was of 900 scaffolds per day. However, those 
scaffolds presented a low flexural stiffness resistance, which could cause deformations 
during the transport and posterior welding. 
It was then used a new spots configuration, in which the inner joints have only one weld 
spot, while the outer ones have one or two, alternatively, as shown in Figure 25. The average 
cycle time was not changed as the number of spots is also 8, maintaining a daily production 
of 920 scaffolds. 
 

 

Fig. 25. Arc spot welds configuration to increase flexural stuffiness resistance using only 8 
spots. 

Figure 26 shows an arc spot weld made in one inner joint. It was observed a significant 
increase in the flexural stiffness resistance. However, it was still lesser than using 12 arc spot 
welds. It was then used a new configuration, as shown in Figure 27. This new configuration, 
in theory, would increase the resistance as it locates the isolated spots in points with less 
flexor moment. 
 

 

Fig. 26. Weld spot in one inner joint. 

www.intechopen.com



 
Arc Welding Automation 

 

65 

 

Fig. 27. Alternative configuration of arc spots to increase flexural stiffness resistance using 8 
spots. 

As foreseen the new configuration produces scaffolds with a greater stiffness resistance, if 
compared to the previous configuration. 
The next step was to program the complete welds; however, the repeatability of the tubes 
preparation was not adequate to the robotic welding process. Some tests showed that it is 
possible to weld tubes with joints with almost 3mm of gap by changing the welding 
parameters in order to obtain wider beads (Fig. 28a); however, if the gap is greater than this 
value, it is not possible to obtain adequate beads (Fig. 28b). 
 

 
(a) 

 
(b) 

Fig. 28. Weld obtained changing welding parameters for small gaps (a) and great gaps (b). 

This work shows that a robotic system is not always able to solve practical problems, as its 
programs just repeat the previously programmed trajectory and parameters. To solve this 
problem it would be necessary an adaptive control system to measure the gap and change 
welding parameter for each joint. 

5. Development of a robot for orbital welding 

Manufacturing of oil and gas lines is made through the union of metallic pipes, which 

length, in average, changes from 12 to 14 meters, in order to produce lengthier ducts. Figure 

29 shows pictures obtained in a pipe work performed in Brazil. Figure 30 shows the welding 

procedure. The process used to weld these pipes is called circular or orbital welding. As can 

be seen in the figure, in Brazil the welding of pipes is all manually carried through with the 

GTAW process (Gas Tungsten Arc Welding) and coated electrode - SMAW (Shielded Metal 

Arc Welding). 

The manual welding is not just ergonomically improper to the human been because the 
pipes are welded in loco and near to the floor but also it does not guarantee the desired 
productivity and repeatability. The great challenge then was the development of a robot for 
the orbital welding of pipes aiming to better comply the work with requirements. This 
process has as operational characteristic the fact that each welding bead is composed by 4 

www.intechopen.com



 
Arc Welding 

 

66

different welding positions. The positions are the plain position, the over-head position, the 
ascending vertical position and the vertical descendant position. In each one of them the 
optimal welding parameters are different and a robot must to self adjust to them.  
 

  

Fig. 29. Preparation of a pipeline assembly. (a) pipes positioning and (b) root pass. 

 

 

Fig. 30. Pipeline manual welding procedure. 

As commented before, the definition of a robot is a “reprogrammable multifunctional 
manipulator designed to move materials, parts, tools or specialized devices through variable 
programmed motions for the performance of a variety of tasks”. From this definition, it can 
be said that the devices for the orbital welding shown in literature up to now (Blackman and 
Dorling 1999; Yapp and  Blackman 2004) are not robots, because they do not allow the 
programming of trajectories or parameters of welding. For these reasons, it is said that the 
currently process of orbital welding is mechanized, not robotic.  
Weld pipes in loco using anthropomorphous industrial robots would be possible, however 
impracticable, due to the great weight which would have to be dislocated to each new 
pipeline bead. The device developed and that will be presented here, in such a way, makes 
possible the programming of trajectories, so as programming the welding parameters for the 
orbital welding of pipes. Therefore, such device can be called a robot due to its capability of 
being completely programmable and automatically carrying through all welding activities: 
opening and closing the electric arc, moving the welding torch (controlling the welding 
speed, the torch angle and stick-out) and controlling the welding current and the electric arc 
voltage. However, incapable of being completely multi-functional (it could not be used for a 
generic task, being limited to movements around of the pipe), such mechanism can be 
defined as a “robot designed to special tasks”.  
The development of the welding started with some tests been performed by a qualified 
welder using GMAW and FCAW processes in order to obtain optimal orbital welding 
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parameters (Soragi, 2004). Beads on pipe were made in the four welding positions – flat, 
overhead, vertical up and vertical down. For every sample produced, metallographic tests 
were performed to determine the bead quality and the best welding parameters. An 
anthropomorphous industrial robot was also used to check the repeatability and weld 
quality in the four positions. 
From the obtained results, best parameter tables were generated indicating the optimal 

parameters (voltage, current, welding speed, torch angle and stick-out) for each welding 

position mainly with tubular wire. In the intersection or where the welding changes from 

one position to other the parameters were interpolated in a small interval to avoid 

discontinuities and heterogeneity of the bead.  

It was observed, however, that the optimal parameters for the descendant vertical welding 

substantially differ from those at vertical up, flat and overhead. Choosing to weld all around 

the pipe would introduce then unnecessary difficulties in the regions where the parameters 

must change from one position to other. It was opted then to perform welding only in the 

following sequence: overhead, vertical up and flat. Thus, the robot must weld one side of 

the pipe, extinguish the arc, go down to the other side and perform the other bead in the 

same sequence. This, of course, has the inconvenience of having electric arc extinguished. 

However, it allowed using short cables to connect the robot to the controller and to the 

welding machine.  

In order to change parameters during the welding process, it was necessary to know the 

position of the robot in relation to the flat position. This positioning can be provided by a 

sensor that informs the inclination where the robotic system is at every moment (the 

inclinometer).  

The robot was projected and constructed with 4 degrees of freedom: movement around the 

pipe, torch angle, stick out and torch lateral motion. Figure 31 shows these 4 degrees. As the 

robot has to weld pipes near the floor, it needs to be compact. Many versions were studied. 

Figure 32 shows the first and the 6th version.  

 
 

 
Translation 

 
Stick-out 

Lateral 
Angular 

 

Fig. 31. Degrees of freedom of the robot. 
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Fig. 32. Versions of the robot (a) the first and (b) the 6th. 

In order to drive the movement around the pipe and to control its speed, a DC motor was 
selected, driven by PWM (Pulse Width Modulation). For the stick out, inclination and lateral 
motion it have been selected step motors which although its reduced dimensions, provide 
high torque. Moreover, for these movements, position control must be precise, what makes 
the step motors the perfect choice. The robot controller is implemented in a PC in which 
digital output and input boards were added in order to make possible to drive and control 
the robot axles, as well as the welding machine. During the program execution, the 
controller generates set point values to the speed of the first axle and position of the three 
following axles. The values of welding speed, the torch angle and stick out are informed 
through the parameters look-up table. Thus, for each position of the robot around the pipe 
(which is read from the inclinometer sensor), it is possible to generate the set points with the 
optimal values for such parameters. 
Knowing the reference values, the controller implements the speed control of the movement 
around the pipe. The speed measuring is performed by means of an encoder located in the 
axle of the driving motor. Using the encoder pulses frequency, the real speed of the robot is 
determined with precision. When some error between the reference and the real speed 
exists, the driving voltage of the driving motor is modified so that the error heads to zero. 
After calculating the new driving voltage, an analogical signal is generated through a D/A 
board and sent to the PWM which amplifies the signal power and drives the DC motor.  
In the case of this robot, the controller must be as robust as possible, as many factors have 
influence in the system dynamics: the traction in the chains, the robot position (flat, 
overhead, descendant vertical and ascendant vertical), the pipe diameter etc. On the other 
hand, in the positioning control of the step motors are used drivers that feed the coils in the 
right order, so as to put them into motion according to the signal sent by the PC. 
The conventional welding source was modified in order to have two independent wire 
feeders allowing simultaneous use of two robots. Originally, the weld font had a 
potentiometer to adjust the welding voltage. Each one of the feeders has a potentiometer to 
adjust the welding current (wire feeding speed). Both potentiometers were manual. So, the 
operator would have to regulate voltage and current before starting the welding. 
To the robotic process, however, it is needed that the welding parameters (current and 
voltage) be regulated by the robot itself. Thus, an electronic board was developed to work as 
the interface between the robot controller and the welding machine. The values of current 
and voltage to be used are determined by means of the parameters look-up table, in 
accordance to the robot position around the pipe. The digital values for regulation of the 
welding font are determined by means of a calibration curve from the welding power 
source. 
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Figure 33 shows a weld bead made by the robot. It can be observed the homogeneity of the 
bead, even where the welding position is modified. This is achieved by the gradual variation 
of the parameters of the table during the welding. 
 

 

Fig. 33. Weld bead. 

The orbital welding process robotization brings enhancement in the final product quality, 
considerable increase of the repeatability, reduction of rework and reduction of the weld 
execution time. At the very least, the robot is capable to reproduce the work (the weld bead) 
of the best human welder, through the use of the same parameters contained in a reference 
table. Moreover, it is possible to optimize such parameters, in order to increase the quality 
and to reduce the weld execution time through the welding speed increase.  
The use of the robot in the welding with GMAW and FCAW revealed to be extremely 
viable. It was shown that the bead aspect did not suffer great variations from a welding 
position to another one, if a gradual change of the parameters (voltage, current, welding 
speed, torch angle and stick-out) is executed. In pipes with larger diameters, it is still 
possible to use two robots simultaneously, decreasing even more the closed arc time, which 
consequently increases the work factor. 

6. Conclusions 

This chapter discussed the many levels of automation of the arc welding processes, from the 
manual process (with no automation) to the adaptive control. To implement the automation 
of a process and to decide which level should be implemented, some aspects need to be 
studied as financial viability and number and variability of welds. If it is an extremely 
variable process, it should be considered no automation at all, as the setup and 
programming would take more time than the welding itself. On the other side, if it is a 
repetitive process with an adequate preparation of the parts to be welded, a robotic system 
with a preprogrammed task would guarantee repeatability and productivity to the process. 
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