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1. Introduction 

1.1 The insulin-like growth factor (IGF) system 

The insulin-like growth factor (IGF) system has been shown to have an integral role in 

normal growth and development, and in the pathophysiology of various cancers. The IGF 

system is comprised of a series of circulating ligands (IGF-1, IGF-2), transmembrane 

receptor tyrosine kinases (IGF-1R, IGF-2R, and the insulin receptor (IR), high affinity ligand-

binding proteins (IGFBP1-6), IGFBP proteases, and several low affinity IGFBP-related 

proteins (IGFBP-rp1 to 10) that work in unison to regulate cell growth [1].  

There are two key circulating ligands, IGF-1 and IGF-2, which share approximately 50%  
structural homology with insulin[2]. IGF-1 is produced  primarily in the liver in response to 
circulating levels of growth hormone(GH) [3]. IGF-1 and IGF-2 are highly homologous small 
peptide hormones of approximately 7 kDa molecular mass, which are important mitogens 
that affect cell growth and metabolism [2]. IGFs interact with specific cell surface receptors, 
designated type I and type 2 IGF receptors, and can also interact with insulin receptor (IR).  
The type I IGF receptor (IGF-1R) is a transmembrane heterotetramer consisting of 2 

extracellular alpha subunits and two intracellular beta subunits linked by disulfide bonds 

(fig 1). The intracellular component of IGF-1R has intrinsic tyrosine kinase activity that 

requires ligand binding for activation [4]. The IGF-1R and the IR share approximately 60% 

homology which allows them to form hybrid receptors [5]. As a result of this homology, 

IGF-1R can be activated not only by IGF-1 but also IGF-2 and insulin, although the affinity 

of IGF-1R for IGF-2 and insulin is approximately 10 fold and 1000 fold lower than for IGF-1, 

respectively [6]. The type 2 IGF receptor (IGF-2R), which is identical to the cation-

independent mannose-6-phosphate receptor, binds IGF-2 with 500 fold increased affinity 

over IGF-1[7]. IGF-2R does not bind insulin. Most of the biological activity of IGF-2 is 

thought to be mediated through binding IGF-1R[7]. IGF-2 is known to function primarily as 

a scavenger receptor, regulating circulating IGF-II levels through internalization and 

degradation  [7].  
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Fig. 1. Cell surface receptors for IGFs and insulin. Illustration of the different 

transmembrane receptors and ligands of the IGF system. Purple represents the alpha and 

beta  subunit of IGF-1R;  red represents the alpha and beta subunit of the IR-B; orange 

represents the alpha and beta subunit of the IR-A ; green represents the IGF-2R. The 

potential ligand(s) is shown above the respective receptor.  

Two distinct insulin receptor isoforms have been identified and are known to hybridize 

with IGF-1R. The insulin receptor isoform A (IR-A), the IR fetal isoform,  is generated by 

alternative splicing through the deletion of exon 11 of the insulin receptor gene whereas the 

insulin receptor isoform B (IR-B) retains exon 11 [8]. IR-A is the predominant isoform 

expressed in fetal tissues and cancers with ubiquitous expression, whereas IR-B appears in 

postnatal life within insulin-target tissues, such as muscle, adipose tissue and kidney 

[9,10,11]. Data obtained from murine 32D hemopoietic cells demonstrated that IR-A 

preferentially induces mitogenic and anti-apoptotic signals, whereas IR-B predominantly 

induces cell differentiation signals [12]. IR-A, but not IR-B, binds IGF-II with high affinity 

and operates as a second physiological receptor for this growth factor [13]. The two IR 

isoform half receptors (composed of one alpha and one beta subunit) can heterodimerize, 

resulting in the formation of either homologous IR-A/IR-A or IR-B/IR-B receptors as well as 

the hybrid IR-A/IR-B insulin receptors [14](fig 1). Heterodimers can also form between IGF-

1R and IR, resulting in the hybrid IGF-1R/IR-A and hybrid IGF-1R/IR-B. Hybrid IGF-1R/IR 

receptors are believed to mostly bind IGF-1, although they can also bind insulin but with a 

much lower affinity [15]. The IGF system is also regulated by a group of at least six high 

affinity ligand-binding proteins, the insulin-like binding proteins (IGFBPs), as well as low 

affinity ligand-binding proteins (IGFBP-rp1 to 10). 
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2. The IGFBP superfamily 

Unlike insulin, IGFs circulate in biological fluids complexed to a family of structurally 
related binding proteins, called IGF-binding proteins (IGFBPs). The IGFBP superfamily can 
be subdivided into two groups: the high affinity IGFBPs (IGFBP1 to 6) and the low-affinity 
IGFBPs (IGFBP7 to 10, and IGFBP-rP5 to 10). [16].  

High affinity binding proteins (IGFBPs) 

There are, to date, six well characterized mammalian IGFBPs, designated IGFBP-1 through -
6. IGFBPs are capable of binding IGF-1 and IGF-2 with higher affinity than their interactions 
with the IGF-1R, but do not bind to insulin. Some IGFBPs compete for activity of IGFs at the 
receptor level and antagonize IGF signaling, while others (eg. IGFBP2 and IGFBP5) appear 
to amplify IGF signaling [17]. Therefore, IGFBPs function not only as carriers of IGFs, 
thereby prolonging the half-life of the IGFs, but also act as modulators of IGF availability 
and activity[18]. Apart from their ability to inhibit or enhance IGF actions, all the IGFBPs 
have been reported to exert distinct biological actions such as cell proliferation, 
differentiation, migration, angiogenesis and apoptosis through an IGF/IGF-1R-independent 
manner [19,20,21,22,23].  
All six IGFBPs share approximately 35% sequence identity with each other. The primary 

structures of mammalian IGFBPs appear to contain three distinct domains of roughly 

similar sizes: the conserved N-terminal domain, the highly variable midregion, and the 

conserved C-terminal domain. Within their N-terminal domain, all IGFBPs share  a common 

conserved cysteine-rich domain termed IGFBP motif (GCGCCXXC) (fig 2). The IGFBP motif 

is encoded by a single exon, has overall similar topology and is only present in vertebrates 

[19]. Ten to 12 of the 16-20 cysteines found in the prepeptides are located within this 

domain. In IGFBP1-5 these 12 cysteines are fully conserved, whereas  10 of the 12 cysteines 

are invariant in IGFBP6 [19]. The midregion is believed to act structurally as a hinge 

between the N and C terminal domains. Posttranslational modifications (glycosylation, 

phosphorylation) of the IGFBPs has been found only in the midregion so far. The C-termini 

of IGFBPs, like the N-terminal domain, are highly conserved, and contain the remaining 6 of 

the total 16-20 cysteines. The primary sequence of all members of the IGFBP family 

surrounding the last 5 cysteines is strikingly similar (~40%), implying that the tertiary 

structure of the C-terminal domain should be almost identical. Interestingly, the amino acid 

sequences embracing these last 5 cysteines share 37% similarity with the thyroglobulin-type-

1 domain, a structural motif occasionally employed as an inhibitor of proteases [19,24]. It 

has been hypothesized that the N and C-terminal domains are capable of acting 

independently of each other based on the fact that the cysteines within each of the conserved 

regions are even numbered, and that proteolytic cleavage products of IGFBPs contain either 

the C or N-terminal regions. Indeed, disulphide linkages have been shown to form typically 

within each conserved domain, rather than between domains[25,26]. All the IGFBPs are 

encoded by 4 exons, except IGFBP3 which has an extra exon, exon 5, that is not translated. 

The striking observation is the correlation between these IGFBP exons and the three protein 

domains of IGFBPs. The N-terminal domain is encoded within exon 1 in all of the IGFBPs, as 

is the 5’ untranslated region and a few amino acids of the midregion. Exon 2 encodes the 

nonconserved midregion. Both exons 3 and 4 encode for the conserved C-terminal domain. 

The  containment of the N-terminal domain within one exon, combined with the ability to 

bind IGFs, supports the concept of an IGFBP superfamily [27,19].  
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Fig. 2. Partial amino acid sequence alignment of human IGFBP-1 to 10, and IGFBP-rP5-rP10. 
The consensus IGFBP motif which relates all of these sequences as a family is boxed. 
Consensus cysteine residues are shown in red. The matriptase consensus site sequence for 
cleavage is indicated in blue. Alignment was performed using the Clustalw2 sequence 
alignment program (European Bioinformatics Institute; 
http://www.ebi.ac.uk/Tools/msa/clustalw2/). Small gaps were introduced to optimize 
alignment. Nomenclature for the IGFBP7-IGFBP15, IGFBP-rPs: IGFBP7, IGFBP-
rP1;mac25/TAF/PSF1;  IGFBP8, IGFBP-rP2, CTGF; IGFBP-rP3,NovH; IGFBP-rP4, Cyr61; 
IGFBP-rP5, L56/HtrA; IGFBP-rP6, ESM-1; IGFBP-rP7, WISP-2/CTGF-L;  IGFBP-rP8, WISP-
1;  IGFBP-rP9, WISP-3; IGFBP-rp10, Bono1. 

Low affinity binding proteins (IGFBP-rPs) 

Upon comparison of the IGFBP N-terminus in other cysteine-rich proteins, another group of 
proteins that were structurally related to the IGFBP family were identified, IGFBP-related 
proteins (IGFBP-rPs). Based on sequence alignment, the N-terminal domains of the IGFBP-
rPs have significant similarities to the IGFBPs (40-57%) within their N-terminal domains, 
conserving all of the 12 cysteines within the N-terminal domain, including the consensus 
IGFBP motif. Past the N-terminus, the similarities decrease significantly to less than 15%. 
Unlike the IGFBPs, the IGFBP-rPs do not contain the thyroglobulin-type 1 domain at the C-
terminus [28]. Their low affinity for IGFs together with their conserved structural homology 
to the IGFBP family suggested that these IGFBPs may have unique biological properties 
independent of their capacity to bind IGF. The first protein proven to be functionally related 
to the IGFBPs was IGFBP-rP1(IGFBP7)[29,30]. A group of highly related, cysteine-rich 
proteins were subsequently identified as part of the IGFBP-like family, termed the CCN 
family of proteins, including connective tissue growth factor (CTGF)[16], nov 
(nephroblastoma overexpressing) oncogene [31],cyr61 [32], and three genes (WISP-1, WISP-
2, and WISP-3) that are upregulated in Wnt-1-transformed cells and are aberrantly 
expressed in human colon tumors [33]. HtrA (IGFBP-rP5) refers to a family of serine 
proteases who’s main functions are protein quality control, and have been  implicated in 
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tumour suppression and in the control of proliferation, migration and neurodegeneration 
(reviewed in [134]). IGFBP-rP10 (Bono1), the most recently identified member of the IGFBP 
family, with the highest homology to IGFBP7 at the amino acid level (42.2%), has been 
shown to be involved in the proliferation of osteoblasts during bone formation and bone 
regeneration [135]. This chapter will preferentially focus on IGFBP7. 

IGFBP7 overview 

The gene for human IGFBP7 is localized to chromosome 4q12-13 [34]. The mouse homolog 

shares 87.5% nucleotide identity and 94.4% similarity with human IGFBP7 [35]. IGFBP7 

amino acid sequence has an overall 40-45% similarity and 20-25% identity to IGFBPs. The 

protein is produced as a precursor of 282 amino acids, which is processed to a mature 27 kD 

protein of 256 amino acids with one N-glycosylation site resulting in a secreted mature 

protein of 33 kD [16,30,27]. Structurally, the region of similarity of IGFBP7 to IGFBPs is 

confined to the N-terminal domain, encompassing the common IGFBP motif in a region 

containing 11 out of the 12 conserved cysteines [36](fig 2). Another domain found within the 

 

 

Fig. 3. Processing of recombinant IGFBP7 protein. A)Full length IGFBP7 protein is shown 
beginning with the signal sequence in red, which is cleaved off upon  secretion from the cell. 
The N terminal contains the consensus IGFBP domain (dark purple), and the heparin 
binding domain (light purple). Kazal-like motif is shown in yellow and the Ig-like C2 
domain is indicated in green. As a result of overexpression through the pSec-Tag2B plasmid, 
the protein is tagged in our system with myc and his at the C terminal, as shown in light pink 
and blue, respectively. Matriptase cleavage site is C terminal to the heparin binding domain 
between amino acid 97 and 98. Cleavage results in the production of 2 fragments, the N 
terminal portion (8 kd) and the C terminal 29 kd fragment. B) Western blotting of 
conditioned medium from MDA-MB-468 overproducing breast cancer cell line with anti-
myc antibodies produces 2 bands, corresponding to the predominant large 38 kd protein, 
and the minor 29 kd cleaved protein. 
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N-terminus is a heparin sulfate binding site, consisting of 20 amino acid residues including 7 

basic amino acids, which allows weak cell adhesion by interacting with cell surface-

associated heparin sulfate proteoglycans [37](fig 3). Immediately adjacent to the N terminal 

domain is a stretch of 30-45 amino acid residues that has 30% similarity to the Kazal family 

of serine proteinase inhibitors, including the human pancreatic secretory trypsin inhibitor 

[38]. This domain, known as a KI domain, is also found in follistatin, leading to the 

hypothesis that IGFBP7 was a follistatin-like protein [35]. IGFBP7 can be proteolytically 

cleaved to a two-chain form by the type II membrane-bound serine proteinase, matriptase 

[39](fig 3). Cleavage occurs between K(Lys)97 and A(Ala)98, resulting in a 26 kD protein 

comprised of the C-terminal domain, and an 8 kD peptide corresponding to the N-terminal 

domain [40](fig 2,3). Cleavage results in almost a complete loss of both insulin/IGF-1 

binding activity, while increasing cell adhesion activity [40]. 

IGFBP7-interacting proteins 

Four groups independently identified the human IGFBP7 protein. One of these groups cloned 
the mac25 cDNA from normal leptomeningial and mammary epithelial cells, with expression 
of IGFBP7 decreased in the corresponding tumor cells [36,34]. The protein was shown to  be 
able to bind IGFs, albeit with much lower affinity than IGFBPs [30]. During that same period, 
two other proteins were purified and characterized that were subsequently shown to be 
identical to the protein encoded by mac25. First, tumor adhesion factor (TAF) was isolated 
from the conditioned media of a human bladder carcinoma cell line, and promoted cell 
adhesion activity [41]. Second, prostacyclin-stimulating factor (PSF) was isolated from the 
conditioned media of human dipoid fibroblasts [42]. It was so termed due to its ability to 
stimulate prostacyclin production in endothelial cells, but not in patients with diabetes 
mellitus [43,44]. Finally, T1A12 was identified by subtractive cDNA cloning using RNAs from 
a normal breast epithelial cell line Hs578Bst and the breast cancer cell  line Hs587T [45].  
The ability of IGFBP7 to bind both IGF-1 and IGF-2, albeit with lower affinity than IGFBPs, 
led to its renaming as IGFBP7 [30]. However, IGFBP7 is unique amongst its family members 
in that it can bind insulin with high affinity, whereas IGFBPs 1-6 can only bind insulin with 
low affinity. This ability of IGFBP7 is due to the exposure of the insulin binding site at the 
amino terminal region due to lack of conserved cysteine residues in the C-terminal end, 
which are important for IGF binding by IGFBPs [46,47]. IGFBP7 can compete with insulin 
receptors for binding of insulin, thus preventing insulin-stimulated autophosphorylation of 

the insulin receptor  subunit[47]. IGFBP7 also contains a ‘follistatin module’ in its protein 

sequence, and has been shown to bind activin, a member of the TGF-superfamily of 
growth factors [48]. Activin and its receptors are associated with growth modulation in 
glandular organs. Specifically, when activin signaling is disrupted or lost in normal 
mammary cells, malignant progression is potentiated, as demonstrated by the global 
decrease in  the abundance of activin and its receptors in high grade breast cancer [49].  
Another binding partner is type IV collagen. IGFBP7 co-localizes with type IV collagen in the 
vascular basement membrane [29]. IGFBP7 also can bind to cell surface-associated heparin 
sulfate proteoglycans, specifically, syndecan-1[40]. IGFBP7 has also been shown to bind certain 
CC chemokines, specifically, RANTES, SLC, and the CXC chemokine, IP-10 [50].  

Expression 

IGFBP7 is found in some biological fluids, such as serum, urine, CSF and amniotic fluid [51]. 
In normal human adult sera, the median IGFBP7 was 21.0 µg/liter. IGFBP7 is expressed in a 
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variety of normal tissues including heart, spleen, ovary, small intestine and colon [52]. 
Immunohistochemistry performed on normal human tissues showed a ubiquitous intense 
staining of peripheral nerves, smooth muscle cells, including those from blood vessel walls, 
gut, bladder, breast and prostate. Cilia from the respiratory system, epididymis, and 
fallopian tube also demonstrated intense positive staining. Most endothelial cells were seen 
to be positive, whereas fat cells, plasma cells and lymphocytes were negative. Specific 
IGFBP7 expression was limited to certain cell types in the kidney, adrenal gland and skeletal 
muscle [52]. IGFBP7 has also been shown to play a role in endometrial physiology. IGFBP7 
expression is increased in the receptive versus prereceptive endometrium, and rises sharply 
again in late luteal phase. The protein was localized at the apical part of the luminal and 
glandular epithelium, as well as in stromal and endothelial cells [53]. Strong expression of 
IGFBP7 has also been seen in high endothelial vessels (HEV)[50].  

Oncogene induced senescence 

Normal cells have a limited proliferative lifespan, after which they enter a state of 

irreversible growth arrest. This process, originally observed by Hayflick and Moorhead and 

called replicative senescence, is believed to result in human cells from telomere shortening 

as a consequence of cell division [54,55]. This was thought to be a failsafe mechanism 

preventing the expansion of aged cells[56]. Almost three decades ago, it was observed that 

normal cells are refractory to oncogene transformation [57]. Ectopic expression of the 

oncogene H-RASG12V in normal fibroblasts induced senescence that was later shown to be 

telomere-independent, representing another type of senescence triggered by oncogenes, 

called oncogene-induced senescence (OIS)[58,59]. OIS, together with oncogene-induced 

apoptosis, has been suggested to act as a true barrier to cancer, once cellular damage is 

inefficiently repaired[56,60]. OIS can be triggered by activated oncogenes like BRAFE600 or 

RASV12  or by the loss of tumor suppressor proteins, like PTEN or NF1[61,62,63]. OIS is often 

characterized by the upregulation of the CDK inhibitors p15INK4B,p16INK4A, and p21CIP1, as 

well as by an increase in senescence-associated -galactosidase (SA--Gal) activity [64,65]. 

Acute inactivation of certain genes, such as Rb or p53, can reverse OIS [66,67,68]. A typical 

example of OIS occurs in melanocytic nevi, which are benign skin lesions that rarely 

progress to melanoma [69,70]. Nevi are growth arrested and display classical hallmarks of 

senescence, including expression of SA--Gal, and the cell cycle inhibitor, p16INK4A 

[62,71,72]. Activating BRAF mutations account for up to 82% of melanocytic nevi [73]. 

Senescent cells secrete a broad spectrum of factors, primarily involved in IGF and TGF- 

signaling, ECM remodeling and inflammation [74,75,76,77,78]. Together, these secreted 

factors are referred to as the Senescence-Messaging Secretome (SMS) or the Senescence-

Associated Secretory Phenotype (SASP) [79,78]. IGFBP7 has been identified as one of these 

factors responsible for the establishment and/or maintenance of OIS [34,75].  

3. IGFBP7 as tumor suppressor in various cancers 

IGFBP7 has been shown to be a tumor suppressor in a variety of solid cancers (summarized 

in Table 1). Its expression is lost upon progression to more aggressive cancer types. Loss of 

expression is associated with poor prognoses. Reexpression or exposure of cancer cell lines 

to IGFBP7 results in either senescence or apoptosis, and when these IGFBP7-expressing cell 

lines are xenografted in mice, tumor growth is inhibited.  
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Breast cancer 

IGFBP7 has been shown to be a tumor suppressor in breast cancer. IGFBP7 was identified as 
one of the genes overexpressed in senescent human mammary epithelial cells (HMEC) (10 
fold higher than quiescent cells of the same origin), and which was upregulated in normal 
mammary epithelial cells by all-trans-retinoic acid [34,80]. We cloned the gene for IGFBP7 by 
subtractive hybridization from the Hs568T breast cancer cell line and found IGFBP7 to be 
downregulated in primary breast cancer tissues. In normal breast tissue, IGFBP7 protein 
expression is concentrated in the cytoplasm of luminal epithelial cells, in ducts and acini of 
normal and benign primary breast tissues as well as other luminal, normal human cellular 
structures, suggesting an important role for IGFBP7 in the maintenance of normal breast 
and tissue architecture in general [45].  
 

Cancer type 
Down-
regulated 

Up -
regulated 

IGFBP7 
Introduction 

Effect Reference 

Breast MCF-7   Overexpressed 
G0-G1 arrest 
Senescence

[86] 

 MDA-MB-468 pERK1/2  Overexpressed 
 Tumour-
genicity

[85 

 
Xenograft-
MDA-MB-468 

  Overexpressed 
Growth 
and 
migration

[85] 

 MDA-MB-231  
pp38 
p53, p21 

Exogenous 
Protein

Cell growth 
Senescence

Manuscript 
submitted 

Colorectal 
SW620, 
COLO205, HT29

  5-Aza-dc 

Apoptosis
Cell 
migration/i
nvasion

[93] 

  RKO, CW2 
E-cadherin
B-catenin 
pRB

p53 Overexpressed 
G1 arrest 
Senescence 

[95] 

  DLD-1    

Anchorage   
indepe-
ndent 
growth 
Cell 
adhesion

[98] 

 
Xenograft-DLD-
1 

  Overexpressed 
 Tumour-
genicity

[98] 

 
Xenograft-HT29, 
SW620

  
Exogenous 
protein

 Tumour-
genicity

[89] 

Hepatocell
ular 

PLC/PRF/5 
SMARCB1 
BNIP3L 
p27 

pERK1/2 
cyclin D1 
cyclin E 

shRNA targeting 
IGFBP7 mRNA 

IFN┙ 
resistance 
 Cell 
growth 
Apoptosis

[106,117] 

Melanoma Nevi pERK1/2 RKIP 
Exogenous 
protein

Senescence [75]  

 Cell line BNIP3L Apoptosis [75] 
 Xenograft Apoptosis [75] 

 Metastatic   
Intervenous 
protein injection

Growth 
inhibition

[89] 

 
Murine
metastatic

VEGF Caspase-3 
Intra-tumoral 
plasmid injection

Apoptosis  [90] 
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Cancer type 
Down-
regulated 

Up -
regulated 

IGFBP7 
Introduction 

Effect Reference 

Prostate M12   Overexpressed 

 Doubling 
time 
Apoptosis 
sensitivity 
Epithelial 
Morphology 
 change 
 Colony 
formation 

[102] 
 

 M12 xenograft   Over-expressed 
 Tumour 
size 

[102] 
 

Thyroid N1M1 pERK1/2 

p53 
p21 
cleaved 
PARP 

Over-expressed 

Apoptosis 
Cell 
migration 
 

[105] 

 N1M1   Over-expressed 
Reduced 
tumour 
growth 

[105] 

Table 1. IGFBP7 as a tumor suppressor in various cancer models. Summarized data from six 
different cancers, showing the effect of overexpression or inhibition of IGFBP7 on cancer cell 
growth both in vivo and in vitro, as well as signaling pathways affected. 

Expression of IGFBP7 decreases with breast cancer progression. Normal breast tissues had 
very high IGFBP7 protein levels, such as luminal epithelial cells of normal lobules and 
ducts, as well as in benign proliferation of ducts consistent with fibroadenoma [45]. By 
immunohistochemical staining, IGFBP7 expression was detected in all normal and benign 
patient samples examined, with particularly strong staining in luminal epithelial cells of 
normal ducts, and acini or endothelial cells of blood vessels [81]. Intermediate to weak 
IGFBP7 staining was evident in hyperplastic breast tissue and DCIS specimens [81]. In 
addition, IGFBP7 was significantly upregulated in low grade ductal carcinoma in situ 
(DCIS) relative to high grade DCIS, as judged by CDNA microarray analysis. In invasive 
breast tumors, immunohistochemical analysis revealed that IGFBP7 is downregulated at the 
protein level [45]. IGFBP7 is downregulated in some breast tumors by loss of heterozygosity 
(LOH), and is also reduced by promoter methylation, both of which lead to increased tumor 
incidence and poor overall survival [45,82,83]. When DNA extracted from microdissected 
breast tissues was used with a microsatellite marker based method to determine allelic loss 
of the IGFBP7 locus in paired normal and invasive breast tissues, 50% of the informative 
samples from 30 matched pairs of normal and breast tumor tissues showed allele-specific 
LOH suggesting that the IGFBP7 gene was inactivated by deletions in at least a portion of 
each tumor [45]. A thoroughly characterized group of 106 invasive breast samples was 
surveyed using the tumor tissue microarray technique and immunohistochemistry [84]. 
Approximately 40% of tumors have low or no IGFBP7 staining suggesting that the gene or 
gene product was inactivated in a subset of invasive breast cancer samples [84]. Low 
IGFBP7 was associated with high cyclin E expression, retinoblastoma protein (pRb) 
inactivation, poorly differentiated tumors and higher stage. There was a significantly 
impaired prognosis for patients with low IGFBP7-expressing tumors. IGFBP7 also showed 
an inverse correlation with proliferation (Ki-67) in ER- tumors [84].  
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IGFBP7 expression was examined in 32 primary patient breast tumors and matched 

metastatic counterparts (fig 4). Low levels of IGFBP7 expression were found in 25/32 

primary tumors. Approximately half of these tumors had lower levels of IGFBP7 in their 

metastatic tumors compared to the matched primary tumor, indicating that loss of IGFBP7 

confers a selective growth advantage for metastatic lesions [85].  

In order to investigate the growth of human breast cancers in an in vivo model, 7 human 

primary tumors were implanted into human bone grafts under the right flank of human-

bone NOD/SCID mice. Only triple negative breast tumors grew in these mice (table 2). One 

of the triple negative primary breast tumors was serially transplanted more than five times. 

Each serial transplant resulted in increased tumor uptake and shorter growth rate. The 

tumor latency was decreased by approximately half after the first re-implantation. 

Examination of IGFBP7 expression revealed that each serial transplant resulted in lower 

levels of IGFBP7 expression by qRT-PCR [85](fig 4). Comparing the xenografted tumor to 

the original primary patient tumor revealed an increase in the anti-human specific 

proliferation marker, Ki67 (42.03 ± 8.87 to 53.3 ± 3.6). These results again confirmed an 

inverse correlation between IGFBP7 expression and breast tumor growth as well as 

aggressiveness of the tumor.  

 

 

Fig. 4. Expression of IGFBP7 in primary and xenografted patient breast tumors by qRT-PCR. 
Quantitative PCR of IGFBP7 expression in primary and successively xenografted human 
breast tumors derived from first and second implantation into NOD/SCID mice. The data 
represent average values and standard error measurement from two triplicate samples, 
normalized against ┚-actin mRNA levels. The relative fold changes of the selected genes are 
obtained by dividing the expression levels of the re-implanted tumors by the expression 
levels in the primary patient tumors. 
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Patient 
Age 

(Years)

Histo-
pathological 

diagnosis 
Grading

Estrogen 
/Progestero
ne receptor 
expression

ErB-2 
expressio

n 

Node 
invasion 
(number 
positive/ 
number 

harvested) 

Growth in 
hu-bone 

NOD/ 
SCID mice 

HuP-1 67 
Invasive 
ductal 

carcinoma 
II/III +/- + 1/12 - 

HuP-2 35 
Metaplastic 
carcinoma 

III -/- - 0/23 + 

HuP-3 40 
Invasive 
ductal 

carcinoma 
II/III +/+ + 0/2 - 

HuP-4 48 
Invasive 
ductal 

carcinoma 
III -/- - 0/17 + 

HuP-5 81 
Invasive 
ductal 

carcinoma 
II +/- - 0/1 - 

HuP-6 50 
Invasive and 
In-situ duct 
carcinoma 

II +/+ - 0/16 - 

HuP-7 75 
Invasive 
ductal 

carcinoma 
I +/+ - 4/15 - 

Table 2. Characteristics of the human patient breast tumor tissues engrafted in hu-bone 
NOD/SCID mice. 

The major traits of the engrafted human patient breast tumor samples (patient age, 

histopathological diagnosis, grading, estrogen/progesterone receptor expression, ErB-2 

expression, node invasion) are indicated. The table also shows if the patient tumor samples 

were able to grow in the hu-bone NOD/SCID mouse model.  

In order to transcriptionally characterize the colonization and aggressive behavior of 

engrafted patient breast tumors, microarray gene expression profiling was performed on 

breast tumors that were serially transplanted in the human-bone NOD/SCID mice. Genes 

were identified that were differentially expressed in the xenografted tumors by at least 1.5 

fold compared to the primary patient tumors. There were 205 genes found to be 

differentially regulated in both HuP-2 and HuP-4 bone residing-breast tumors. Of the 129 

known genes, 97 were expressed at higher levels and 32 at lower levels in the patient 

breast tumors colonized in bone. To narrow the spectrum of genes, 14 up-regulating and 

18 down-regulating genes with bone colonization potentials are displayed (Table 3). Many 

of these gene identified have been previously associated with cancer function or 

metastatic activities such as cell viability, apoptosis and oncogenic transformation. 

IGFBP7 was identified as one of the genes that were downregulated in the xenografted 

tumors.  
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Gene 

Fold 
Differences Description Identified cancer involvements 

HuP-2 HuP-4

Down-regulated 

MTBP 7.11 1.94 
Mdm2, transformed 3T3 cell double 

minute 2, p53 binding protein 
p53 regulator, Metastasis and cell proliferation 

suppressor 

PARK7 5.30 3.14 
Parkinson disease (autosomal recessive, 

early onset) 7 
Negative regulator of PTEN, cell survival & 

aggressiveness 

TOB1 1.79 6.12 Transducer of ERBB2, 1 Anti-proliferative protein 

SDCBP 2.01 5.64 Syndecan binding protein (syntenin) Cell adhesion & protein trafficking 

CD24 2.12 11.29 CD24 molecule 
Breast cancer stem cell marker & associated 

with bone metastasis 

IL1R1 4.27 2.44 Interleukin 1 receptor, type I 
Mediate cytokine induced immune & 

inflammatory response 

PDLIM5 2.60 1.70 PDZ and LIM domain 5 
Negative factor of oncogenic activity in neural 

tumor 
HLA-

DRA 
2.15 6.33 

Major histocompatibility complex, class 

II, DR alpha 
Tumor immunosurveillance 

PRKACB 3.11 3.93 
Protein kinase, cAMP-dependent, 

catalytic, beta 
Cell proliferation & differentiation 

UBE2I 5.55 1.63 Ubiquitin-conjugating enzyme E2I Suppressing p53 functions via RPA2 activity 

IGFBP7 3.82 2.00 
Insulin-like growth factor binding 

protein 7 
Tumor suppressor & cell proliferation 

ITM2B 1.94 2.28 Integral membrane protein 2B Cell survival 

ADAMT

S12 
1.61 3.43 

ADAM metallopeptidase with 

thrombospondin type 1 motif, 12 
Prevents tumorigenic effect of HGF 

SPIN 1.56 3.35 Spindlin Cell cycle regulation 

PTPRF 1.86 2.32 
Protein tyrosine phosphatase, receptor 

type, F 

Regulation of epithelial cell-cell contact and 

cell growth 

UHRF1B

P1L 
2.54 2.34 UHRF1 (ICBP90) binding protein 1-like

Regulate VEGF gene expression & tumor 

angiogenesis 

TRMT5 2.20 1.87 
TRM5 tRNA methyltransferase 5 

homolog 
Methylation 

NR3C1 1.62 2.29 
Nuclear receptor subfamily 3, group C, 

member 1) 
Signaling and transduction 

Up-regulated 

EIF5A 2.78 1.79 
Eukaryotic translation initiation factor 

5A 
Cell viability & senescence 

PCNXL2 2.81 1.79 Pecanex-like 2 Tumorigenesis in colorectal carcinoma 

CD1C 3.11 1.54 CD1c molecule Mediate immune responses to tumors 

CSF1R 3.71 5.70 Colony stimulating factor 1 receptor Metastasis & cell invasiveness 

RPS5 1.99 1.99 Ribosomal protein S5 Cell differentiation and apoptosis 

GOT2 2.10 1.74 
Glutamic-oxaloacetic transaminase 2, 

mitochondrial 

Serum GOT correlated with cancer and 

metastatic disease 

RABL4 3.95 1.64 
RAB, member of RAS oncogene family-

like 4 
Ras-related putative GTP-binding protein 

RPS14 2.39 2.02 ribosomal protein S14 Haploinsufficiency disease gene 

KLF8 1.57 1.53 Kruppel-like factor 8 
Oncogenic transformation & EMT, 

downstream of FAK 

DGKQ 1.82 2.28 Diacylglycerol kinase, theta 110kDa Signal transduction pathways 

AP2S1 3.23 1.60 
Adaptor-related protein complex 2, 

sigma 1 subunit 

Clathrin adaptor complex associated with 

plasma membranes 
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PALM 1.58 1.83 Paralemmin Cell shape control 

RPS8 1.87 1.76 Ribosomal protein S8 
Up-regulated in astrocytoma and pancreatic 

cancer 

POLR2J 3.61 2.07 DNA directed RNA polyermase II Enzyme & transcription 

Table 3. Schematic representation of microarray analysis from xenografted tumors 
compared to primary tumors. To identify genes with bone colonization potential, 
xenografted tumor tissues were harvested for microarray analysis. Fold changes are 
obtained by dividing the gene expression levels in the xenografted tumors by the 
expression levels in the primary patient tumors. 205 genes are at least 1.5 fold 
differentially expressed in both HuP-2 and HuP4 bone residing breast-tumors 
compared with their primary patient breast tumors. A representation of genes whose 
expressions in xenografted tumors were at least 1.5 fold down-regulated from primary 
patient tumors (18 of 157 genes), or upregulated from primary patient tumors (14 of 48 
genes) are shown.  

The increased expression of IGFBP7 in senescent versus proliferating normal HMECs [34], 

prompted the evaluation of potential antiproliferative capabilities of IGFBP7 in breast 

cancer cells. In order to test this theory, IGFBP7 was overexpressed by retroviral vector in 

the ER/PR+ IGFBP7- MCF-7 breast cancer cell line. IGFBP7-transduced MCF-7 breast 

cancer cells  showed a significant reduction in cell growth compared to parental IGFBP7 

negative MCF-7 cells. When further analyzed, cells had arrested at the G0-G1 phase of cell 

cycle upon IGFBP7 expression. IGFBP7 was found to induce senescence rather than 

apoptosis [86].  

ER/PR-negative breast cancers are the most aggressive and hardest to treat. In order to 

examine whether restoration of IGFBP7 could inhibit triple negative breast cancer cell 

growth, IGFBP7-overexpressing cells were engineered using a pSec-Tag2 plasmid in 

MDA-MB-468, a triple negative breast cancer line with barely detectable levels of 

endogenous IGFBP7, that is also tumorigenic in mice [87]. The vector contained a C-

terminal c-myc epitope for detection with an anti-myc antibody, and a polyhistidine (6xhis) 

tag for rapid purification with nickel-chelating resin and detection with an anti-his(C-

term) antibody (fig 3). Western blots of conditioned medium from stable IGFBP7-

transfectants  revealed two bands in response to IGFBP7 staining, a 38 kD band seen also 

in cell lysates, and a weaker, smaller 29 kD band. N-terminal sequencing revealed that 

both bands are IGFBP7 gene products [85]. The 38 kD band corresponded to the full 

length protein minus the signal sequence, whereas the smaller 29 kD band was cleaved 

after amino acid lys97, suggesting cleavage by the enzyme matriptase [39,85](fig 2, 3). 

IGFBP7 overexpression in MDA-MB-468 cells reduced cell growth and migration 

compared to parental MDA-MB-468 cells. Similarly, conditioned medium from IGFBP7 

overexpressing breast cancer cell lines also lowered the growth of MDA-MB-468 cells. In 

order to examine the mechanism of IGFBP7-mediated growth inhibition, the effect of 

IGFBP7 overexpression on the MAP kinase pathway was analyzed. IGFBP7 

overexpression inhibited the phosphorylation of MEK-1/2 and ERK-1/2 compared to 

parental MDA-MB-468 cells [85](fig. 5). These results are consistent with those observed 

in melanoma studies, whereby IGFBP7 is thought to act through autocrine and paracrine 

pathways to inhibit BRAF-MEK-ERK signaling resulting in induction of senescence or 

apoptosis [75].  
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Fig. 5. Effect of IGFBP7 overexpression on the MAP kinase signaling pathway. Western 
blotting using equal amounts of protein from total cell lysates from MDA-MB-468 (lane 1), 
MDA-MB-468/IGFBP7 (lane 2), and empty vector control (lane 3) cells were examined by 
western blotting with antibodies to pERK-1/2,ERK-1/2, pMEK-1/2, and MEK-1/2. 

The effects of IGFBP7 mediated growth inhibition were also examined in vivo. Parental 

MDA-MB-468 breast cancer cells and the IGFBP7-overexpressing variant were injected 

into NOD/SCID or NSG mice. Examination of tumor growth revealed a significant 

inhibition of tumor growth from the IGFBP7 overexpressing MDA-MB-468 cells (fig 6). 

Tumors were considerably smaller in the presence of IGFBP7. Immunohistochemistry and 

qRT-PCR of revealed the expression IGFBP7 in tumors derived from IGFBP7 

overexpressing cells, confirming continual production of IGFBP7 in vivo during the 

duration of the experiment, which suggested that IGFBP7 was responsible for tumor 

growth suppression [85].  

 

 

Fig. 6. Effect of IGFBP7 overexpression on breast tumor formation in vivo. 5x106 MDA-MB-
468 cells or MDA-MB-468/IGFBP7 cells were injected into NSG or NOD/SCID mice. After 
36 days, tumors were removed and analyzed.  
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Melanoma 

IGFBP7 was shown to be a tumor suppressor in melanoma studies, in that loss of IGFBP7 
expression was critical step in melanoma development [75]. Activating BRAF mutations are 
found at a high frequency in melanomas (50-70%)[88]. In normal melanocytes, IGFBP7 is 
expressed at low levels. Following expression of the activating BRAFV600E mutation in 
melanocytic nevi, IGFBP7 is upregulated and induces senescence [75]. Melanoma cell lines 
harboring the activating BRAFV600E mutation, did not express IGFBP7, due to epigenetic 
silencing through promoter methylation of IGFBP7 [75,89]. Upon exposure to IGFBP7, 
BRAFV600E-positive melanoma cells underwent apoptosis. BRAFV600E expression in 
melanoma cells results in hyperactivation of the BRAF-MEK-ERK pathway. IGFBP7 
treatment blocked cellular proliferation in part through inhibition of this pathway. 
Specifically, the phosphorylation of MEK by BRAF was prevented by upregulation of the 
RAF inhibitory protein (RKIP) by IGFBP7 through autocrine/paracrine pathways [75]. The 
apoptotic pathway induced by IGFBP7 involved the upregulation of BNIP3L, a proapoptotic 
BCL2 family protein. Furthermore, systemically administered IGFBP7 markedly suppressed 
the growth of BRAF-positive melanomas in xenografted mice, also through induction of 
apoptosis [75]. Epigenetic silencing of IGFBP7 is even more pronounced in human 
metastatic  samples [89]. In a mouse  model of metastatic melanoma, where mice were 
injected via tail vein with the highly metastatic BRAFV600E-positive malignant melanoma 
cells A375M-Fluc, IGFBP7 systemic administration suppressed tumor growth and increased 
survival [89]. Another group demonstrated that intratumoral injection of IGFBP7 in the form 
of the plasmid, pcDNA3.1-IGFBP7, promoted stable expression of IGFBP7, and suppressed 
the growth of the murine malignant melanoma cell line, B16-F10, by inducing apoptosis. 
Caspase 3 levels were increased and VEGF levels were decreased in the pcDNA3.1-IGFBP7 
treated group [90].  

Colorectal cancer 

In the normal colon, IGFBP7 expression varies from the basal compartment to the surface 

epithelium. Epithelial cells at the surface contain very strong IGFBP7 expression, whereas 

IGFBP7 staining was much weaker at the crypt base, which indicates that IGFBP7 

expression is stronger in the differentiating areas of the colonic epithelium. Interestingly, 

IGFBP7 expression is actually increased in colorectal cancer. In colon carcinoma, IGFBP7 

expression is strongest in the well differentiated colorectal adenocarcinoma, while weakly 

expressed in poorly differentiated colorectal adenocarcinoma [91]. IGFBP7 expression was 

correlated with differentiation, low grade tumor, and better prognosis. Cell differentiation 

and apoptosis are considered a result of normal colonocyte terminal differentiation in vivo. 

Introduction of IGFBP7 into colon cancer cells induced a more differentiated morphology. 

Upregulation of several colonic epithelial cell differentiation markers, such as AKP and CEA 

occurred with reintroduction of IGFBP7 [91]. This study identified IGFBP7 as a potential key 

marker associated with colon cancer differentiation.  

The inhibition of IGFBP7 expression in colon cancer cell lines was shown to be due to 
aberrant DNA hypermethylation of the CpG island in exon 1 of IGFBP7, specifically in the 
promoter region [92]. Reactivation of IGFBP7 by 5-aza-dC treatment inhibited colon 
cancer cell proliferation in a dose dependent manner [93]. Demethylation restored p53-
induced IGFBP7 expression[94]. Epigenetic inactivation of IGFBP7 appears to play a key 
role in tumorigenesis of CRCs with CpG island methylator phenotype (CIMP) by enabling 
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escape from p53-induced senescence [94]. Cell cycle was arrested, as cells accumulated in 
G2/M phase. 5-aza-dC treatment also increased the percentage of cells undergoing 
apoptosis. Cell migration and invasion were also reduced after treatment with 5-aza-dC 
[93]. The authors argue that demethylation increased the expression of tumor suppressor 
proteins, specifically IGFBP7, which was involved in the 5-aza-dC induced growth 
inhibitory effects.  
A more direct effect of IGFBP7 as a tumor suppressor in colon cancer was shown in a 
subsequent study. Colorectal carcinoma cells, RKO and CW2, transfected with pcDNA3.1-
IGFBP7 showed reduced proliferation. Cells were arrested in G1 phase of cell cycle (15% 

increased compared to control cells). The expression of E-cadherin and -catenin were 
reduced in IGFBP7-transduced CW2 cells. Migration was not affected. A senescence like 

phenotype was induced, as judged by increased SA--Gal activity, together with increased 
p53 and reduced pRB expression [95]. Cellular senescence is a barrier to cancer, preventing 
cells from unlimited proliferation [96,97]. This study suggested that IGFBP7 is an important 
molecule that triggers senescence through two important pathways, the p53-dependent 
pathway and the p16/p21-pRB pathway [95].  
IGFBP7 was also shown to inhibit colon cancer tumor growth. Overexpression of IGFBP7 in 
the human colon cancer cell line, DLD-1, reduced its tumorgenicity in vivo [98]. Anchorage 
independent growth was also reduced. IGFBP7 expression increased cell adhesion of DLD-1 
cells to laminin-5 and fibronectin [98]. In a separate study, two human CRC cell lines, one 
with an activating BRAF mutation (HT29) and the second with an activating KRAS mutation 
(SW-620), when xenografted into nude mice, were significantly growth inhibited upon 
systemic IGFBP7 treatment [89].  
Proteomics was used to identify proteins associated with IGFBP7 in CRC. Six proteins 

were downregulated upon IGFBP7 reintroduction in colon cancer RKO cells, one of which 

was heat shock protein (HSP) 60 [99]. The authors focused on HSP60, as a key protein 

involved in IGFBP7-mediated growth inhibition, since it is overexpressed in CRC tissue 

and involved in proliferation and inhibition of apoptosis. They argue that one mechanism 

by which IGFBP7 overexpression inhibits growth of CRC cells, is through downregulation 

of HSP60.  

Prostate cancer 

IGFBP7 expression is found in primary cultures of prostate epithelial cells, and within the 
conditioned media from these cells. Peripheral nerves and stromal components associated 
with prostate tissue were strongly positive for IGFBP7 [100]. IGFBP7 protein and mRNA 

expression was up-regulated by IGF-I, TGF-, and retinoic acid in the  nontumorigenic 
prostate epithelial line, P69, derived by immortalization of human primary prostate 
epithelial cells with simian virus-40 T antigen. IGFBP7 was undetectable by northern blot 
from malignant prostate lines such as LNCap, DU145, and PC-3 cells, and M12 cells (the 
tumorigeneic and metastatic subclone of P69) [101,100]. There was a significant loss of 
detectable IGFBP7 mRNA in metastatic prostate tissue [28]. Re-expression of IGFBP7 in the 
human prostate cancer cell line, M12, results in an increase in cell doubling time, a decrease 
in colony formation in soft agar, a marked change in epithelial morphology along with an 
increased sensitivity to apoptosis, and finally decreased tumor formation and size in vivo 
[102]. In order to identify genes upregulated by IGFBP7 expression in prostate epithelial 
cells, a cDNA array analysis of IGFBP7-overexpressing M12 was performed, identifying 
SOX9, a transcription factor associated with differentiation [103]. The overexpression of 
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SOX9 in M12 cells seemed to recapitulate the effects seen with overexpression of IGFBP7 
alone, suggesting that SOX9 is at least partly responsible for the growth inhibitory effect of 
IGFBP7 on prostate cancer cells. Another group used similar techniques and identified 
another transcription factor, manganese superoxide dismutase (SOD-2), which they argue 
was at least in part responsible for the growth inhibitory effects of IGFBP7 in prostate cancer 
cells [104]. Whether these transcription factors were indeed part of the anti-proliferative 
mechanism of IGFBP7, or merely a consequence of IGFBP7 overexpression in M12 cells 
remains to be determined.  

Thyroid cancer 

In accordance with prostate, colon and breast cancer, IGFBP7 expression is also significantly 
downregulated in thyroid cancer tissue samples compared to normal thyroid tissue [105]. 
IGFBP7 is epigenetically silenced by promoter hypermethylation in PTC-derived NIM1 
thyroid tumor cell line. NIM1, along with most other thyroid cancer cell lines, carries the 
BRAFV600E mutation. Restoration of IGFBP7 in NIM1 cells by cDNA transfection resulted 
in growth inhibition, reduced colony formation in soft agar, and decreased migration 
capability in wound healing assay. Furthermore, tumor growth was inhibited upon injection 
in nude mice [105]. Examination of the mechanism governing IGFBP7 mediated growth 
inhibition revealed that IGFBP7-expressing NIM1 cells were impaired in cell cycle 
progression, manifesting cell cycle arrest in G1. The G1 arrest was associated with a strong 
decline in phospho-ERK levels, and an upregulation of p53 and p21 tumor suppressors. 
IGFBP7 expression alone resulted in increased apoptosis, as judged by increased cleaved 
PARP, which was even more pronounced upon exposure to the TRAIL, a proapoptotic 
agent effective in NIM1 cells [105]. These results suggest that IGFBP7 is a tumor suppressor 
in thyroid carcinogenesis.  

Hepatocellular carcinoma (HCC) 

A strong antitumor activity against HCC has been demonstrated for interferon (IFN)-based 

combination therapy (IFN-/ 5-FU therapy) [106-116]. However continuous exposure to 

IFN- can result in IFN-resistant HCC cells. IGFBP7 was identified by microarray analysis 
as one of the most significantly downregulated genes in IFN resistant clones. Parental 

PLC/PRF/5 cells transfected with short hairpin RNA for IGFBP7 showed IFN- resistance. 
IGFBP7 transfection into IFN-resistant HCC cells restored IFN sensitivity [106]. These results 

suggested that IGFBP7 could be a novel marker to predict clinical outcome to IFN-/5-FU 
therapy.  
A recent report studied PLC/PRF/5 cells treated with shRNA directed towards IGFBP7. 

They found that in the absence of IGFBP7 expression, the cells grew more rapidly, phospho-

ERK was significantly increased, and apoptosis was decreased, as compared to the parental 

IGFBP7 expressing cells [117]. They found that apoptosis was decreased as a result of 

decreased expression of proapoptotic proteins, SMARCB1 and BNIP3L by qRT-PCR. 

Furthermore, upon suppression of IGFBP7 expression, cell cycle progression was increased, 

concomittently with increased cyclin D1 and cyclin E, and decreased p27. IGFBP7  

reexpression in an HCC line that had very low IGFBP7 levels resulted in growth inhibition 

and decreased invasive ability. IGFBP7 downregulation was also significantly associated 

with tumor progression and postoperative poor prognosis in resected human HCC samples 

[117]. These studies identify IGFBP7 as a tumor suppressor and also an independent 

significant prognostic factor in HCC.  
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Lung cancer 

Expression of IGFBP7 in lung cancer cell lines using RT-PCR revealed decreased expression 

of IGFBP7 compared to controls, and 42 out of 90 patients with primary lung tumors 

exhibited negative staining of IGFBP7 by immunohistochemical analysis [118]. There was a 

significant correlation between DNA methylation of exon/intron 1 region and IGFBP7 

downregulation. When  a p53 expression vector was transfected into lung cancer cell lines, it 

could only induce expression of IGFBP7 in the unmethylated cell line, but not in the 

methylated cell lines, suggesting that IGFBP7 might be regulated by p53 in lung cancer cell 

lines.  

Squamous cell carcinoma of the head and neck (SCCHN) 

A study found that a single nucleotide polymorphism (G to A) in the IGFBP7 promoter 

region was  significantly associated with a reduced risk of SCCHN, when analyzed in a 

hospital-based case-control study of 1065 SCCHN patients and 1112 cancer-free control 

subjects. Upon analyzing reporter gene constructs, the G to A allelic change at -418 of the 

IGFBP7 promoter had increased promoter and DNA binding activity, suggesting increased 

IGFBP7 protein expression [119].  

Although IGFBP7 has been shown to function as a tumor suppressor in a wide variety of 

cancers, a few studies suggest that IGFBP7 has an opposite effect, ie. promoting cancer 

growth. These cancers include the blood cancer, leukemia, and the brain cancer, 

glioblastoma.  

Glioblastoma 

IGFBP7 is a selective biomarker of glioblastoma (GBM) vessels, strongly expressed in 

tumor endothelial cells and vascular basement membrane [120]. IGFBP7 was strongly 

expressed in GBM specimens but not nontumor brain tissue. Moreover, statistical analysis 

showed that expression of IGFBP7 correlated inversely with overall GBM survival rates. 

Inhibition of IGFBP7 expression using siRNA transfection in a glioma cell line inhibited 

cell growth [121]. Addition of IGFBP7 to cell culture medium stimulated cell proliferation. 

IGFBP7 also promoted glioma cell migration, through downregulation of AKT 

phosphorylation and enhanced ERK1/2 activation [121]. IGFBP7 expression in brain 

endothelial cells was found to be upregulated by secreted factors from GBM cells through 

TGF-1/ALK5/Smad2 signaling pathway, which has been implicated in angiogenesis 

[122].  

Acute leukemia 

Overexpression of the human gene BAALC (brain and acute leukemia, cytoplasmic), was 
shown to be associated with inferior outcome and chemotherapy resistance in adult patients 
with cytogenetically-normal acute myeloid leukemia (CN-AML), T cell-acute lymphoblastic 
leukemia (T-ALL) and B-precursor acute lymphoblastic leukemia (B-
ALL)[123,124,125,126,127]. IGFBP7 was strongly correlated with BAALC-expression, 
implicating IGFBP7 in acute leukemia [128]. Aberrent expression of IGFBP7 in adult 
leukemia was correlated with chemotherapy resistance and inferior survival. Addition of 
IGFBP7 to leukemic cell lines inhibited cell growth without induction of apoptosis or 
senescence, suggesting a role of IGFBP7 in contributing to drug resistance through reduced 
sensitivity to cytostatic drugs [128]. Aberrently increased levels of IGFBP7 were found in 
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CSF from children with acute lymphoblastic leukemia, implicating IGFBP7 with a more 
aggressive subtype of ALL [129]. IGFBP7 was also aberrantly overexpressed in the majority 
of AML at diagnosis and upon relapse, but not at remission stage [130]. Thus, IGFBP7 was 
shown to play a positive contributing role in the interaction between leukemia cells and the 
microenvironment, which may promote the leukemic cells' adhesion, invasion, and 
migration. 
While the data observed in studies of leukemia and glioblastoma portray IGFBP7 in a 

negative role with respect to cancer, the vast majority of data from studies of solid tumors 

are in disagreement with these conclusions. It is possible that cell signaling pathways that 

result in senescence or apoptosis due to IGFBP7 are not present or functional in 

hematopoietic or glioma cells.  

4. Conclusions and perspectives 

IGFBP7 has been shown to have tumor suppressive function in breast and other cancers. 

When examining the summarized data in Table 1, a common thread appears. 

Overexpression of IGFBP7 leads to inhibition of growth both in vitro and in vivo, 

increased expression of apoptotic markers (caspases, cleaved PARP), senescence 

associated proteins (i.e. p21, p27, p53), and decreased expression of proteins associated 

with proliferation (p-ERK). IGFBP7 appears to affect signaling through the MAP kinase 

pathway in many tumor models, including breast cancer. OIS may be a mechanism of 

tumor suppression by IGFBP7. The breast cancer cell lines used in our study, MDA-MB-

468 cells,  have a mutated PTEN, disregulating the PI3K pathway [131]. OIS can be 

triggered not only by the activation of oncogenes but also by the loss of tumor 

suppressor genes, such as PTEN. By upregulating proteins that counteract proliferation, 

such as cyclin dependent kinase inhibitors, ie. p21, which we have shown to occur upon 

IGFBP7 addition to breast cancer cells, the combined effect can lead to OIS [132]. Our 

model  for the role of IGFBP7 in breast cancer inhibition depicts the entrance of IGFBP7 

full length or cleaved IGFBP7 (through matriptase) into the cell, where signals are 

propagated to the nucleus, leading to the upregulation of expression of cyclin 

dependent kinase inhibitors, such as p21 and p27 (fig 7). This together with  an already 

hyperstimulated MAP kinase pathway due to oncogenic mutations such as RAS, leads 

to MAP kinase pathway inhibition, growth arrest, and senescence, as suggested by the 

conflicting signal model of senescence[132].  

The strong link to breast cancer outcome suggests that IGFBP7 may not only be a good 

prognostic indicator for malignant disease progression, but also a useful surrogate marker 

for monitoring therapeutic responses in the treatment of breast cancers. Senescence has been 

shown to be a method of halting tumor growth by many standard chemotherapeutic drugs 

[133]. Preliminary results indicate that senescence may be one mechanism by which IGFBP7 

inhibits breast cancer cell growth in our system. Inhibition of breast cancer growth in vivo 

and in vitro together with induction of senescence indicates that IGFBP7 could be further 

developed as a potential drug to treat breast cancers. The fact that IGFBP7 has growth 

inhibitory effects when expressed in triple negative breast cancer cells, i.e. MDA-MB-468, 

provides an exciting opportunity to bring to the clinic a potential drug for hard to treat 

breast tumors. 
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Fig. 7. Model for IGFBP7-mediated inhibition of breast cancer cell growth. IGFBP7 full 
length (FL) is cleaved by cell surface matriptase to short form (SF). Both forms enter breast 
cancer cells through an as yet unknown receptor, followed by signal propagation to the 
nucleus, which leads to upregulation of expression of cyclin dependent kinase (CDK) 
inhibitors, such as p21 and p27. This ultimately leads to growth arrest and senescence.  
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