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1. Introduction 

The presence of non-linear loads and the increasing number of distributed generation power 
systems (DGPS) in electrical grids contribute to change the characteristics of voltage and 
current waveforms in power systems, which differ from pure sinusoidal constant amplitude 
signals. Under these conditions advanced signal processing techniques are required for 
accurate measurement of electrical power quantities. The impact of non-linear loads in 
electrical power systems has been increasing during the last decades. Such electrical loads, 
which introduce non-sinusoidal current consumption patterns (current harmonics), can be 
found in rectification front-ends in motor dr ives, electronic ballasts for discharge lamps, 
personal computers or electrical appliances. Harmonics in power systems mean the 
existence of signals, superimposed on the fundamental signal, whose frequencies are integer 
numbers of the fundamental frequency. The electric utility companies should supply their 
customers with a supply having a constant fr equency equal to the fundamental frequency, 
50/60 Hz, and having a constant magnitude. Th e presence of harmonics in the voltage or 
current waveform leads to a distorted signal for voltage or current, and the signal becomes 
non-sinusoidal signal which it should not be. Thus the study of power system harmonics is 
an important subject for power engineers. 
The power system harmonics problem is not a new problem; it has been noticed since the 
establishment of the ac generators, where distorted voltage and current waveforms were 
observed in the thirtieth of 20 th century [2]. 
Concern for waveform distortion should be shar ed by all electrical engineers in order to 
establish the right balance between exercising control by distortion and keeping distortion 
under control. There is a need for early co-ordination of decisions between the interested 
parties, in order to achieve acceptable economical solutions and should be discussed 
between manufacturers, power supply and communication authorities [1]. 
Electricity supply authorities normally abro gate responsibility on harmonic matters by 
introducing standards or recommendations for the limitation of voltage harmonic levels at 
the points of common coupling between consumers. 
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2. Sources and problems of harmonics [2] 

Harmonic sources are divided into two categories: 
1. Established and known 
2. New and Future 
A review of the literature indicates that the known sources of harmonics include: 
1. Tooth ripple or ripples in the voltag e waveform of rotating machines. 
2. Variations in air-gap reluctance over synchronous machine pole pitch. 
3. Flux distortion in the synchronous machine from sudden load changes. 
4. Non-sinusoidal distribution of the flux in the air gap of synchronous machines. 
5. Transformer magnetizing currents. 
6. Network nonlinearities from loads such as re ctifiers, inverters, welders, arc furnaces, 

voltage controllers, frequency converters, etc. 
While the established sources of harmonics are still present on the system, the power 
network is also subjected to new harmonic sources: 
1. Energy conservation measures, such as those for improved motor efficiency and load 

matching, which employ power semiconductor devices and switching for their 
operation. These devices often produce irregular voltage and current waveforms that 
are rich in harmonics. 

2. Motor control devices such as speed controls for traction. 
3. High-voltage direct-current power conversion and transmission. 
4. Interconnection of wind and solar power converters with distribution systems. 
5. Static var compensators which have largely replaced synchronous condensors as 

continuously variable-var sources. 
6. The development and potentially wide use of el ectric vehicles that require a significant 

amount of power rectification for battery charging. 
7. The potential use of direct energy conversion devices, such as magneto-hydrodynamics, 

storage batteries, and fuel cells that require dc/ac power converters. 
8. Cyclo-converters used for low-speed high-torque machines. 
9. Pulse-burst-modulated heating elements for large furnaces. 
Today’s power system harmonic problems can be traced to a number of factors: 
1. The substantial increase of nonlinear loads resulting from new technologies such as 

silicon-controlled rectifiers (SCRs), power transistors, and microprocessor controls 
which create load-generated harmonics throughout the system. 

2. A change in equipment design philosophy. In  the past, equipment designs tended to be 
under-rated or over-designed. Now, in order to be competitive, power devices and 
equipment are more critically designed and,  in the case of iron-core devices, their 
operating points are more into nonlinear regi ons. Operation in these regions results in a 
sharp rise in harmonics. 

The most damaging frequencies to power devices and machines appear to be the lower – 
below 5-kHz – frequency range. In years past, the magnitudes and sources of these lower-
frequency harmonics were limited and, inmost cases, power systems could tolerate them. 
The increase in power loss due to harmonics was also neglected because energy costs were 
low. These conditions no longer apply, and concern for harmonics is now becoming 
widespread among utilities. 
For more Than 100 years, harmonics have been reported to cause operational problems to 
the power systems. Some of the major effects include: 

www.intechopen.com



 
Electric Power Systems Harmonics - Identifiction and Measurements 

 

5 

1. Capacitor bank failure from dielectric breakdown or reactive power overload. 
2. Interference with ripple control and power li ne carrier systems, causing mis-operation 

of systems which accomplish remote switching, load control, and metering. 
3. Excessive losses in – and heating of – induction and synchronous machines. 
4. Over voltages and excessive currents on the system from resonance to harmonic 

voltages or currents on the network. 
5. Dielectric breakdown of insulated cables resulting from harmonic over voltages on the 

system. 
6. Inductive interference with telecommunications systems. 
7. Errors in induction kWh meters. 
8. Signal interference and relay malfunction, particularly in solid-state and 

microprocessor-controlled systems. 
9. Interference with large motor controllers an d power plant excitation systems. (Reported 

to cause motor problems as well as non-uniform output.) 
10. Mechanical oscillations of indu ction and synchronous machines. 
11. Unstable operation of firing circuits based on zero voltage crossing detection or 

latching. 
These effects depend, of course, on the harmonic source, its location on the power system, 
and the network characteristics that promote propagation of harmonics. 

3. Estimation of harmonics and sub-harmonics; the static case 

3.1 Time domain model [3] 
In this model, it is assumed that the waveform under consideration consists of a 
fundamental frequency component and harmon ic components with order of integral 
multiples of the fundamental frequency. It is also assumed that the frequency is known and 
constant during the estimation period. Cons ider a non-sinusoidal voltage given by a 
Fourier-type equation: 

 � � � � � � � �0
0

sin
N

n n
n

v t V n t�Z �I
� 

�  � ��¦  (1) 

where 
v(t)  is the instantaneous voltage at time t (s.) 
Vn is the voltage amplitude of harmonic n 
�In is the phase angle of harmonic n 
�Z0 is the fundamental frequency 
n order of harmonic 
N total number of harmonics 
Equation (1) can be written as 

 0 0
0

( ) ( cos sin sin cos )
N

n n n n
n

v t V t V t�I � Z � I� Z
� 

�  � ��¦  (2) 

Define 

 cosn n nx V �I�  (3a) 
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 sinn n ny V �I�  (3b) 

Then, equation (2) can be written as 

 � � � � � � � �0 0
0

sin cos
N

n n
n

v t x n t y n t�Z �Z
� 

�  � ��¦  (4) 

If the voltage signal v(t) is sampled at a pre-selected rate, say �' t, then m samples would be 
obtained at t1, t2 = t1 + �' t, t3 = t1 + 2�' t, …, tm = t1 + (m – 1)�' t. Then, after expanding equation 
(4), it can be written as 
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 (5) 

where the elements of the A matrix are the sine and cosine expansion of equation (4). In the 
a’s vector form, equation (5) can be written as 

 �� �� �� �� �� ��v vvZ t A t t�T� � � � •  (6) 

where Zv(t) is m �u 1 vector of sampled voltage measurement, A(t) is m �u (2N + 1) matrix of 
measurement coefficients, �Tv is (2N +1) vector to be estimated, �• v(t) is m �u 1 error vector to 
be minimized. The order of the matrix A(t) depends n the number of harmonics to be 
estimated. Furthermore, the elements of the matrix A(t) depend on the initial sampling time 
t1 the sampling rate �' t and the data window size used in the estimation process. The matrix 
A (t) can be calculated on off-line and stored. 
At least (2N + 1) samples are required to solve the problem formulated in (6). Using 2 N + 1 
samples may produce a poor estimate, since we force �• v(t) to be zero. We assume that m > 
2N +1, so that equation (4) represents over determined set of equations.  

3.1.1 Time domain estimation; l east error squares estimation (LES) 
The solution to the over determined set of equations of (6) in the LES sense is given by 

 � � � � � � � � � � � �� � � �
� � � �� � � �

1* T T
vv

v

A t A t A t Z t

A t Z t

�T
��

��

� ª � º� � ¬ � ¼
� 

 (7) 

where 1( ) [ ( ) ( )] ( )T TA t A t A t A t� � � ��  is the left pseudo inverse. Having obtained the *
v�T , the 

magnitude of any harmonic of order n can be calculated as 

 
1

2 2 2
n n nV x n�ª �º�  � ��¬ �¼; 1, ,n N� �!  (8) 

while the phase angle of the nth harmonic is: 

 1tan n
n

n

y
x

�I ���  (9) 
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The above estimation procedures are simple and straight forward if the voltage and/or 
current waveforms under investigation are stationary and in steady state, but if there is a 
sudden variation in the power system operation, transient operation, such as fault, lighting 
and sudden loading to the system or sudden switching off a large load, the voltage signal 
waveform may contain, for a few cycles, a dc component, which if it is neglected, will affect 
the harmonics estimation content in the wavefo rm. To overcome this problem, the voltage 
signal in equation (1) may be remodeled to take into account the dc component as [4] 

 � � � � � � � �0 0
1

sin
N

t
n

n

v t V e V n t�W �Z �I��

� 

� � � � ��¦  (10) 

where 
V0  is the amplitude of decaying dc component at t = 0 
�W Is the time constant of the decaying dc component 
The exponential term in equation (10) can be expanded using Taylor series and its first two 
terms can be used as 

 � � � � � � � �0
0 0

1

sin
N

n n
n

V
v t V t V n t�Z �I

�W � 

� § � ·�  � � � � � �� ¨ � ¸
� © � ¹

�¦  (11) 

Define the new parameters 

 11 0x V�  (12a) 

 0
12

V
x

�W
�  (12b) 

Then, equation (11) can be written as 

 � � � � � � � �11 12 0 0
1

sin cos
N

n n
n

v t x tx x n t y n t� Z � Z
� 

�  � � � � � ��¦  (13) 

If the voltage v(t) is samples at a pre-selected rate �' t, then m sample would be obtained at t1, 
t2 = t1 + �' t, …, tm = 1 + (m – 1)�' t, in this case equation (13) becomes 

 �� �� �� �� �� ��Z t B t Y t�[�  � � (14) 

where  
Z(t)  is the m �u 1 voltage samples 
B(t)  is m �u (2N +2) measurement matrix whose elements depend on the initial and 
sampling times  and its order depends on the number of harmonics and the number of 
terms chosen from Taylor series expansion for the exponential term. 
Y  is (2N +2) �u 1 parameters vector to be estimated containing  x11, x12 and xn, yn, 
�[(t) is m �u 1 error vector to be minimized. 
If m > (2N +2), we obtain over determined set of equation and the non-recursive least error 
square algorithm can be used to solve this system of equation as 

 � � � � � � � � � � � �� � � �
1* T TY B t B t B t Z t

��
� ª � º� � ¬ � ¼ (15) 
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Having obtained the parameters vector Y*, the harmonics magnitude and phase angle can be 
obtained as 

 
1

2 2 2
n n nV x y�ª �º�  � ��¬ �¼ (16) 

 1tan n
n

n

y
x

�I ���  (17) 

while the parameters of the dc component can be calculated as 

 0 11V x�  (18a) 

 11

12

x
x

�W�  (18b) 

Figure 1 gives actual recorded data for a three-phase dynamic load. The load is a variable 
frequency drive controlling a 3000 HP induction motor connected to an oil pipeline 
compressor [5]. Examining this curve reveals the following:  (a) the waveform of the phase 
currents are not periodical;  (b) there are low-frequency transients, which have frequencies 
not an integer number of the fundamental, we call them sub-harmonics, contaminating 
these waveforms, especially in the tips of the wave;  and (c) the phase currents are not 
symmetrical. It can be concluded from these remarks that this waveform is contaminated 
with harmonics, as well as low frequency transients, this is due to the power electronic 
devices associated with the load. 

3.2 Modeling of sub-harmonics in time domain 
The sub-harmonics is a noise contaminated with a signal and having frequency which is not 
a multiple from the fundamental frequency ( 50/60 Hz), as given in equation (19). To 
measure these sub-harmonics, an accurate model is needed to present the voltage and 
current waves: 
Assume the voltage or current waveform is contaminated with  both harmonics and sub-
harmonics. Then, the waveform can be written as 

 � � � � � � � �1
1 1

2 1

( ) cos cos cos
N M

t i t
i i i k k k

i k

f t A e w t A e w t B w t� V � V� M � T
�  �  

�ª � º � ª � º
�  � � � �� � � ��« � » � « � »

�¬ � ¼ � ¬ � ¼
� ¦ � ¦ (19) 

where 
A1, A2, …, AN  are the sub-harmonics magnitude 
B1, B2, …, Bk  are the harmonics magnitude 
�V1, �V2, …, �VN  are the damping constants 
�Ii;  i = 1, …, N  are the sub-harmonic phase angles 
�Tk;  k = 1, …, M  are the harmonic phase angles 
wi;  i=1, …, N  are the sub-harmonic frequencies, assumed to be identified in the  
            frequency domain 
wk;  k = 1, …, M  are the harmonic frequencies assumed to be identified also in the 
frequency domain.  

www.intechopen.com



 
Electric Power Systems Harmonics - Identifiction and Measurements 

 

9 

Note that wi �z wk, but 1
w

w
i i

� § � ·
� � ¨ � ¸

� ¨ � ¸
� © � ¹

, i = 3, …, N. 

The first bracket in Equation (19) presents the possible low or high frequency sinusoidal 
with a combination of exponential terms, while  the second bracket presents the harmonics, 
whose frequencies, wk, k = 1, …, M, are greater than 50/60 c/ s, that contaminated the 
voltage or current waveforms. If these harm onics are identified to a certain degree of 
accuracy, i.e. a large number of harmonics are chosen, and then the first bracket presents the 
error in the voltage or current waveforms. Now,  assume that these harmonics are identified, 
then the error e(t) can be written as 

 � � � � � � � �1
1 1

2

cos cos
N

t i t
i i i

i

e t A e w t A e w t� V � V�I
� 

�  � � � ��¦  (20) 

 

 

 
 

Fig. 1. Actual recorded phase currents. 

It is clear that this expression represents the general possible low or high frequency dynamic 
oscillations. This model represents the dynamic oscillations in the system in cases such as, 
the currents of an induction motor when contro lled by variable speed drive. As a special 
case, if the sampling constants are equal to zero then the considered wave is just a 
summation of low frequency components. Withou t loss of generality and for simplicity, it 

www.intechopen.com



 
Power Quality Harmonics Analysis and Real Measurements Data 

 

10

can be assumed that only two modes of equation (21) are considered, then the error e(t) can 
be written as (21) 

 �� �� �� �� �� ��1 2
1 1 2 2 2cos cost te t A e w t A e w t� V � V�I�  � � � � (21) 

Using the well-known trigonometric identity 

�� ��2 2 2 2 2 2cos cos cos sin sinw t w t w t�I � I � I� � �  � �  

then equation (21) can be rewritten as: 

 � � � � �� �� �� ��1 2 2
1 1 2 2 2 2 2 2cos cos cos sin sint t te t A e w t e w t A e w t A� V � V � V�I �I�  � � � � (22) 

It is obvious that equation ( 22) is a nonlinear function of A’s, �V’s and �I’s. By using the first 
two terms in the Taylor series expansion A ie�Vit;  i = 1,2. Equation (22) turns out to be 

 
�� �� �� ���� �� �� ���� �� �� ���� ��

� � � �� � � �� � � �� � � �
1 1 1 1 1 2 2 2 2 2 2

2 2 2 2 2 2

cos cos cos cos cos cos

sin sin sin sin

e t A w t t w t A w t A t w t A

w t A t w t A

�V � I � V� I

� I � V� I

�  � � � � � �

� � � �
2

2

 (23) 

where the Taylor series expansion is given by: 

1te t�V �V� ��  

Making the following substi tutions in equation (23), equation (26) can be obtained, 

 
1 1 2 1 1

3 2 2 4 2 2 2

5 2 2 6 2 2 2

;                  

cos ;      cos

sin ;      sin

x A x A

x A x A

x A x A

�V
�I � V � I
�I � V � I

�  �  �­ �½
�° �°�  �  �® �¾
�° �°�  �  � ¯ � ¿

 (24) 

and 

 
�� �� �� ��
� � � � � � � �
� � � � � � � �

11 1 12 1

13 2 14 2

15 2 16 2

cos ;         cos

cos ;        cos

sin ;      sin

h t w t h t t w t

h t w t h t t w t

h t w t h t t w t

�­ �  �  � ½
�° �°

�  �  �® �¾
�° �°�  � � �  � �� ¯ � ¿

 (25) 

 �� �� �� �� �� �� �� �� �� �� �� �� �� ��11 1 12 2 13 3 14 3 15 4 16 5e t h t x h t x h t x h t x h t x h t x�  � � � � � � � � � � (26) 

If the function f (t) is sampled at a pre-selected rate, its samples would be obtained at equal 
time intervals, say �' t seconds. Considering m samples, then there will be a set of m 
equations with an arbitrary time reference t1 given by 

 

� � � �
� � � �

� � � �

� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �

1 11 1 12 1 16 1 1

2 21 2 22 2 26 2

1 2 6

                   

                  

                                      

                                      

               m m m m m m m

e t h t h t h t x
e t h t h t h t x

e t h t h t h t

� 

�!

�!

� ! � ! � ! � ! � !

� ! � ! � ! � ! � !

�!

2

6x

�!

�!
 (27) 
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It is clear that this set of equations is similar to the set of equations given by equation (5). 
Thus an equation similar to (6) can be written as: 

 �� �� �� �� �� �� �� ��z t H t t t� T � [�  � � (28) 

where z(t) is the vector of sampled measurements, H(t ) is an m �u 6, in this simple case, 
matrix of measurement coefficients, �T(t) is a 6 �u 1 parameter vector to be estimated, and �[ (t) 

is an m �u 1 noise vector to be minimized. The dimensions of the previous matrices depend 
on the number of modes considered, as well as, the number of terms truncated from the 
Taylor series. 

3.2.1 Least error squares estimation 
The solution to equation (28) based on LES is given as 

 � � � � � � � � � � � � � � � �� � � �
1* T Tt H t H t H t Z t�T

��
� ª � º� � ¬ � ¼ (29) 

Having obtained the parameters vector �T*(t), then the sub-harmonics parameters can be 
obtained as 

 
*

* 2
1 1 1 *

1

,      
x

A x
x

�V�  �   (30) 

 
1 *

*2 *2 42
2 3 5 2 *

3

,      
x

A x x
x

�V� ª � º�  � � �  � ¬ � ¼ (31) 

 
* *
5 6

2 * *
3 4

tan
x x
x x

�I �  �   (32) 

3.2.2 Recursive least error squares estimates 
In the least error squares estimates explained in the previous section, the estimated 
parameters, in the three cases, take the form of 

 � > � @� > � @
1*

11

m

n m mn
A Z�T

�� ��

�u �u�u
� ª � º� � ¬ � ¼  (33) 

where [A]+ is the left pseudo inverse of [A] = [ATA]-1AT, the superscript “ m – 1” in the 
equation represents the estimates calculated using data taken from t  = t1 to t = t1 + (m – 1)�' t 
s, t1 is the initial sampling time. The elements of the matrix [ A] are functions of the time 
reference, initial sampling time, and the sampling rate used. Since these are selected in 
advance, the left pseudo inverse of [A] can be determined for an application off-line. 
Equation 33 represents, as we said earlier, a non recursive least error squares (LES) filter that 
uses a data window of m samples to provide an estimate of the unknowns, �T. The estimates 
of [�T] are calculated by taking the row products of the matrix [ A]+ with the m samples. A 
new sample is included in the data window at  each sampling interval and the oldest sample 
is discarded. The new [A]+ for the latest m samples is calculated and the estimates of [�T] are 
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updated by taking the row products of the updated [ A]+ with the latest m samples. 
However, equation (33) can be modified to a recursive form which is computationally more 
efficient. 
Recall that equation 

 �> �@ �> �@ �> �@1 1m m n n
Z A �T

�u � u � u
�  (34) 

represents a set of equations in which [Z] is a vector of m current samples taken at intervals 
of �' t seconds. The elements of the matrix [A] are known. At time t = t1 + m�' t a new sample 
is taken. Then equation (33) can be written as 

 
� � � �

� > � @
� > � @� � � �

*

1
1

m

n
mi mn mH mH

ZA
a Z

�T
��

�u
�u �u

� ª � º� ª � º
� ª � º� � « � »� « � »� ¬ � ¼

� « � »� ¬ � ¼� ¬ � ¼
 (35) 

where the superscript “ m” represents the new estimate at time t = t1 + m�' t. It is possible to 
express the new estimates obtained from equation (34) in terms of older estimates (obtained 
from equation (33)) and the latest sample Zm as follows 

 � � � �
1 1* * *  

m m m
m Z a

m mi
� T � T � D � T

�� ���ª �º� ª � º � ª � º � ª � º� ª � º � ª � º�  � �� ª� º � ��« �»� ¬ � ¼� « � » � « � » � « � »� ¬ � ¼ � ¬ � ¼� ¬ � ¼ � ¬ � ¼ � ¬ � ¼�« �»�¬ �¼
 (36a) 

This equation represents a recursive least squares filter. The estimates of the vector [�T] at t = 
t1 + m�' t are expressed as a function of the estimates at t = t1 + (m – 1)�' t and the term 

1*  
m

Z a
m mi

�T
��� ª � º� ª � º� ª � º � ª � º��� « � »� « � »� ¬ � ¼ � ¬ � ¼� ¬ � ¼� « � »� ¬ � ¼

. The elements of the vector, [�D(m)], are the time-invariant gains 

of the recursive least squares filter and are given as 

 � � � � � > � @
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T TT Tm A A a I a A A a

mi mi mi
�D

��� � � ��ª �º� ª � º � ª � º� ª � º � ª � º � ª � º�  � ��« �»� « � » � « � »� ¬ � ¼ � ¬ � ¼ � ¬ � ¼� ¬ � ¼ � ¬ � ¼�« �»�¬ �¼
 (36b) 

3.2.3 Least absolute value estimates (LAV) algorithm (Soliman & Christensen 
algorithm) [3] 
The LAV estimation algorithm can be used to  estimate the parameters vectors. For the 
reader’s convenience, we explain here the steps behind this algorithm. 
Given the observation equation in the form of that given in (28) as 

�� �� �� �� �� ��Z t A t t�T�  � �� • 

The steps in this algorithm are: 
Step 1. Calculate the LES solution given by 

� � � � � � � �* A t Z t�T
��� ª � º�  � ª � º� ¬ � ¼� ¬ � ¼ , � � � � � � � � � � � � � � � �

1T TA t A t A t A t
����

� ª � º� ª � º �  � ¬ � ¼� ¬ � ¼ 

Step 2. Calculate the LES residuals vector generated from this solution as 
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� � � � � � � � � � � �� � � �*r Z t A t A t Z t
��

�  � � � ª � º� ¬ � ¼ 

Step 3. Calculated the standard deviation of this residual vector as 

� � � �
1
22

1

1
1

m

i
i

r r
m n

�V
� 

�ª �º
�  � ��« �»� � � ��¬ �¼

�¦  

Where
1

1 m

i
i

r r
m � 

� �¦ , the average residual 

Step 4. Reject the measurements having residuals greater than the standard deviation,  and 
recalculate the LES solution 

Step 5. Recalculated the least error squares residuals generated from this new solution 
Step 6. Rank the residual and select n measurements corresponding to the smallest 

residuals 

Step 7. Solve for the LAV estimates ˆ�T as 

� � � � � � � �
1*

1
1

ˆˆ ˆ
n

n n n
A t Z t�T

��

�u
�u �u

� ª � º� ª � º� � ¬ � ¼� ¬ � ¼ 

Step 8. Calculate the LAV residual generated from this solution 

3.3 Computer simulated tests 
Ref. 6 carried out a comparative study for power system harmonic estimation. Three 
algorithms are used in this study; LES, LAV, and discrete Fourier transform (DFT). The data 
used in this study are real data from a thr ee-phase six pulse converter. The three techniques 
are thoroughly analyzed and compared in terms of standard deviation, number of samples 
and sampling frequency. 
For the purpose of this study, the voltage signal is considered to contain up to the 13th 
harmonics. Higher order harmonics are neglected. The rms voltage components are given in 
Table 1. 
 

RMS voltage components corresponding to the harmonics 

Harmonic 
frequency 

Fundamental 5th 7th 11th 13th 

Voltage 
magnitude 

(p.u.) 
0.95�‘ –2.02�q 0.09�‘ 82.�q 0.043�‘ 8.9�q 0.030�‘ 212.9�q 0.033�‘ 162.6�q 

Table 1. 

Figure 2 shows the A.C. voltage waveform at the converter terminal. The degree of the 
distortion depends on the order of the ha rmonics considered as well as the system 
characteristics. Figure 3 shows the spectrum of the converter bus bar voltage. 
The variables to be estimated are the magnitudes of each voltage harmonic from the 
fundamental to the 13th harmonic. The estimation is performed by the three techniques 
while several parameters are changed and varied. These parameters are the standard 
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deviation of the noise, the number of samples, and the sampling frequency. A Gaussian-
distributed noise of zero mean was used. 
 
 

 
Fig. 2. AC voltage waveform 

 
 

. 

Fig. 3. Frequency spectrums. 
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Figure 4 shows the effects of number of samples on the fundamental component magnitude 
using the three techniques at a sampling frequency = 1620 Hz and the measurement set is 
corrupted with a noise having standard deviation of 0.1 Gaussian distribution. 
 
 
 

 
 
 

Fig. 4. Effect of number of samples on the magnitude estimation of the fundamental 
harmonic (sampling frequency = 1620 Hz). 

It can be noticed from this figure that the DF T algorithm gives an essentially exact estimate 
of the fundamental voltage magnitude. The LA V algorithm requires a minimum number of 
samples to give a good estimate, while the LES gives reasonable estimates over a wide range 
of numbers of samples. However, the performance of the LAV and LES algorithms is 
improved when the sampling fr equency is increased to 1800 Hz as shown in Figure 5. 
Figure 6 –9 gives the same estimates at the same conditions for the 5th, 7th, 11th and 13th 
harmonic magnitudes. Examining these figures reveals the following remarks. 
�x For all harmonics components, the DFT gives bad estimates for the magnitudes. This 

bad estimate is attributed to the phenomenon known as “spectral leakage” and is due to 
the fact that the number of samples per number of cycles is not an integer. 

�x As the number of samples increases, the LES method gives a relatively good performance. 
The LAV method gives better estimates for most of the number of samples. 

�x At a low number of samples, th e LES produces poor estimates. 
However, as the sampling frequency increased to 1800 Hz, no appreciable effects have 
changed, and the estimates of the harmonics magnitude are still the same for the three 
techniques. 
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Fig. 5. Effect of number of samples on the magnitude estimation of the fundamental 
harmonic (sampling frequency = 1800 Hz). 

 
Fig. 6. Effect of number of samples on the magnitude estimation of the 5 th harmonic 
(sampling frequency = 1620 Hz). 
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Fig. 7. Effect of number of samples on the magnitude estimation of the 7 th harmonic 
(sampling frequency = 1620 Hz). 

 

 
Fig. 8. Effect of number of samples on the magnitude estimation of the 11th harmonic 
(sampling frequency = 1620 Hz). 
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Fig. 9. Effect of number of samples on the magnitude estimation of the 13th harmonic 
(sampling frequency = 1620 Hz). 

The CPU time is computed for each of the three algorithms, at a sampling frequency of 1620 
Hz. Figure 10 gives the variation of CPU. 
 

 
Fig. 10. The CPU times of the LS, DFT, and LAV methods (sampling frequency = 1620 Hz). 
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The CPU time for the DFT and LES algorithms are essentially the same, and that of the LAV 
algorithm is larger. As the number of samples increases, the difference in CPU time between 
the LAV and LS/DFT algorithm increases. 
Other interesting studies have been carried out on the performance of the three algorithms 
when 10% of the data is missed, taken uniformly at equal intervals starting from the first 
data point, for the noise free signal and 0.1 standard deviation added white noise Gaussian, 
and the sampling frequency used is 1620 Hz. 
Figure 11 gives the estimates of the three algorithms at the two cases. Examining this figure 
we can notice the following remarks: 
For the no noise estimates, the LS and DFT produce bad estimates for the fundamental 
harmonic magnitude, even at a higher number of samples 
The LAV algorithm produces good esti mates, at large number of samples. 
 

 
Fig. 11. Effect of number of samples on the magnitude estimation of the fundamental 
harmonic for 10% missing data (sampling frequency = 1620 Hz):  (a) no noise;  (b) 0.1 
standard deviation added white Gaussian noise. 
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Figure 12 –15 give the three algorithms estimates, for 10% missing data with no noise and 
with 0.1 standard deviation Gaussian white noise, when the sampling frequency is 1620 Hz 
for the harmonics magnitudes and the same discussions hold true. 

3.4 Remarks 
Three signal estimation algorithms were used to estimate the harmonic components of the 
AC voltage of a three-phase six-pulse AC-DC converter. The algorithms are the LS, LAV, 
and DFT. The simulation of the ideal noise-free case data revealed that all three methods 
give exact estimates of all the harmonics for a sufficiently high sampling rate. For the noisy 
case, the results are completely different. In general, the LS method worked well for a high 
number of samples. The DFT failed completely. The LAV gives better estimates for a large 
range of samples and is clearly superior for the case of missing data. 
 

 
 

 

Fig. 12. Effect of number of samples on the magnitude estimation of the 5 th harmonic for 
10% missing data (sampling frequency = 1620 Hz):  (a) no noise;  (b) 0.1 standard deviation 
added white Gaussian noise. 
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Fig. 13. Effect of number of samples on the magnitude estimation of the 7 th harmonic for 
10% missing data (sampling frequency = 1620 Hz): (a) no noise; (b) 0.1 standard deviation 
added white Gaussian noise. 

4. Estimation of harmonics; the dynamic case 

In the previous section static-state estimation algorithms are implemented for identifying 
and measuring power system harmonics. The techniques used in that section was the least 
error squares (LES), least absolute value (LAV) and the recursive least error squares 
algorithms. These techniques assume that harmonic magnitudes are constant during the 
data window size used in the estimation process. In real time, due to the switching on-off of 
power electronic equipments (devices) used in electric derives and power system 
transmission (AC/DC transmission), the situation is different, where the harmonic 
magnitudes are not stationary during the da ta window size. As such a dynamic state 
estimation technique is required to identifying (tracking) the harmonic magnitudes as well 
as the phase angles of each harmonics component. 
In this section, we introduce the Kalman filtering algorithm as well as the dynamic least 
absolute value algorithm (DLAV) for identifying (tracking) the power systems harmonics 
and sub-harmonics (inter-harmonics). 
The Kalman filtering approach provides a mean for optimally  estimating phasors and the 
ability to track-time-varying parameters. 
The state variable representation of a signal that includes n harmonics for a noise-free 
current or voltage signal s(t) may be represented by [7] 

 � � � � � � � � � � � �
1

cos
n

i i
i

s t A t i t�Z �T
� 

�  � ��¦  (37) 

where 
A i(t)  is the amplitude of the phasor quantity representing the ith harmonic at time t 
�Ti  is the phase angle of the ith harmonic relative to a reference rotating at i �Z 
n is the harmonic order 
Each frequency component requires two state variables. Thus the total number of state 
variable is 2n. These state variables are defined as follows 
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, (38) 

These state variables represent the in-phase and quadrate phase components of the 
harmonics with respect to a rotti ng reference, respectively. This may be referred to as model 
1. Thus, the state variable equations may be expressed as: 
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�#  (39) 

or in short hand 

 �� �� �� �� �� ��1X k X k w k�I� � �  � � (40) 

where  
X  is a 2n �u 1 state vector 
�I Is a 2n �u 2n state identity transition matr ix, which is a diagonal matrix 
w(k)  is a 2n �u 1 noise vector associated with the transition of a sate from k to k + 1 instant 
The measurement equation for the voltage or current signal, in this case, can be rewritten as, 
equation (37) 
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� ! � # (41) 

which can be written as 

 �� �� �� �� �� �� �� ��Z k H k X k v k�  � � (42) 

where Z(k) is m �u 1 vector of measurements of the voltage or current waveforms, H(k) is m �u 
2n measurement matrix, which is a time varying matrix and v(k) is m �u 1 errors 
measurement vector. Equation (40) and (42) are now suitable for Kalman filter application. 
Another model can be derived of a signal with time-varying magnitude by using a 
stationary reference, model 2. Consider the noise free signal to be 

 � � � � � � � � � � � �cosk ks t A t wt �T� ��  (43) 
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Now, consider �� �� �� �� �� ��1 cosk kx k A t wt �T� ��  and �� ��2x k  to be �� �� �� ��sink kA t wt �T�� . At tk+2, which 
is tk + �' t, the signal may be expressed as 
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Thus, the state variable representation takes the following form 
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 (44) 

and the measurement equation then becomes 
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If the signal includes n frequencies; the fundamental plus n – 1 harmonics, the state variable 
representation may be expressed as 
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where the sub-matrices M i are given as 
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Equation (46) can be rewritten as 

 � � � � � �� �� � � � � � � �1X k k X k w k�I� � �  � � (48) 

while equation (45) as 

 � � � � � � � � � � � �Z k HX k V k�  � � (49) 

This model has constant state transition and measurement matrices. However, it assumes a 
stationary reference. Thus, the in-phase and quadrature phase components represent the 
instantaneous values of con-sinusoidal and sinusoidal waveforms, respectively. 
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4.1 Testing the kalman filter algorithm 
The two Kalman filter models described in the preceding section were tested using a 
waveform with known harmonic contents. The waveform consists of the fundamental, the 
third, the fifth, the ninth, th e eleventh, the thirteenth, and the nineteenth harmonics. The 
waveform is described as 

� � � � �� �� �� �� �� ��
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The sampling frequency was selected to be 64 �u 60 Hz. 
i. Initial process vector  

As the Kalman filter model started with no past measurement, the initial process vector 
was selected to be zero. Thus, the first half cycle (8 milliseconds) is considered to be the 
initialization period. 

ii.  Initial covariance matrix  
The initial covariance matrix was selected to be a diagonal matrix with the diagonal 
values equal to 10 p.u. 

iii.  Noise variance (R) 
The noise variance was selected to be constant at a value of 0.05 p.u.2. This was passed 
on the background noise variance at field measurement. 

iv.  State variable covariance matrix (Q) 
The matrix Q was also selected to be 0.05 p.u. 
Testing results of model 1, which is a 14-state model described by equations (40) and (42) are 
given in the following figures. Figure 14 show s the initialization period and the recursive 
estimation of the magnitude of th e fundamental and third harmonic. Figure 15 shows the 
Kalman gain for the fundamenta l component. Figure 16 shows the first and second diagonal 
element of Pk. 
 

 
Fig. 14. Estimated magnitudes of 60 Hz and third harmonic component using the 14-state 
model 1. 
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Fig. 15. Kalman gain for x1 and x2 using the 14-state model 1. 

 

 
Fig. 16. The first and second diagonal elements of Pk matrix using the 14-state model 1. 

While the testing results of model 2 are given in Figures 26 –28. Figure 26 shows the first 
two components of Kalman gain vector. Figu re 27 shows the first and second diagonal 
elements of Pk. The estimation of the magnitude of and third harmonic were exactly the 
same as those shown in Figure 23. 
 

 
Fig. 17. Kalman gain for x1 and x2 using the 14-state model 2. 
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Fig. 18. The first and second diagonal elements of Pk matrix using the 14-state model 2. 

The Kalman gain vector Kk and the covariance matrix Pk reach steady-state in about half a 
cycle, when model 1 is used, 1/60 seconds. Its variations include harmonics of 60 Hz. The 
covariance matrix in the steady-state consists of a constant plus a periodic component. These 
time variations are due to the time-varying ve ctor in the measurement equation. Thus, after 
initialization of the model, the Kalman gain vector of the third cycle can be repeated for 
successive cycles. 
When model 2 is selected, the components of the Kalman gain vector and the covariance 
matrix become constants. In both models, the Kalman gain vector is independent of the 
measurements and can be computed off-line. As the state transition matrix is a full matrix, it 
requires more computation than model 1 to update the state vector. 
Kalman filter algorithm is also tested for actual recorded data. Two cases of actual recorded 
data are reported here. The first case represents a large industrial load served by two parallel 
transformers totaling 7500 KVA [5]. The load consists of four production lines of induction 
heating with two single-phase furnaces per line. The induction furnaces operate at 8500 Hz 
and are used to heat 40-ft steel rods which are cut into railroad spikes. Diodes are used in the 
rectifier for converting the 60 Hz power into dc and SCRs are used in the inverter for 
converting the dc into single-phase 8500 Hz power. The waveforms were originally sampled at 
20 kHz. A program was written to use a reduced sampling rate in the analysis. A careful 
examination of the current and voltage waveform s indicated that the waveforms consist of (1) 
harmonics of 60 Hz and (2) a decaying periodic high-frequency transients. The high-frequency 
transients were measured independently for another purpose [6]. The rest of the waveform 
was then analyzed for harmonic analysis. Using a sampling frequency that is a multiple of 2 
kHz, the DFT was then applied for a period of  3 cycles. The DFT results were as follows: 
 

Freq. (Hz) Mag. Angle (rad.) 
60 1.0495 -0.20 
300 0.1999 1.99 
420 0.0489 -2.18 
660 0.0299 0.48 
780 0.0373 2.98 
1020 0.0078 -0.78 
1140 0.0175 1.88 
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Fig. 19. Actual recorded current waveform of phases A, B, and C. 

The Kalman filter, however, can be applied for any number of samples over a half cycle. If 
the harmonic has time-varying magnitude, the Kalman filter algorithm would track the time 
variation after the initialization period (half a cycle). Figures 19 and 20 show the three-phase 
current and voltage waveforms recorded at th e industrial load. Fi gures 21 –23 show the 
recursive estimation of the magnitude of the fundamental, fifth, and seventh harmonics;  the 
eleventh and thirteenth harm onics; and the seventeenth and nineteenth harmonics, 
respectively, for phase A current. The same harmonic analysis was also applied to the actual 
recorded voltage waveforms. Figure 24 shows the recursive estimation of the magnitude of 
the fundamental and fifth harm onic for phase A voltage. No other voltage harmonics are 
shown here due tot he negligible small value. 
 

 
Fig. 20. Actual recorded voltage waveform of phase A, B, and C. 
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Fig. 21. Estimated magnitudes of the fundamental, fifth, and seventh harmonics for phase A 
current. 

 

 
Fig. 22. Estimated magnitudes of the eleventh and thirteenth harmonics for phase A current. 

 

 
Fig. 23. Estimated magnitudes of the seventeenth and nineteenth harmonics for phase A 
current. 
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Fig. 24. Estimated magnitudes of the 60 Hz and fifth harmonic for phase A voltage. 

The second case represents a continuous dynamic load. The load consists of two six-phase 
drives for two 200 HP dc motors. The current waveform of one phase is shown in Figure 25. 
The harmonic analysis using the Kalman filter algorithm is show n in Figure 35. It should be 
noted that the current waveform was continuously varying in magnitude due to the 
dynamic nature of the load. Thus, the magnit ude of the fundamental and harmonics were 
continuously varying. The total harmonic distortion experienced similar variation. 
 

 
Fig. 25. Current waveform of a continuous varying load. 

There is no doubt that the Kalman filtering algorithm is more a ccurate and is not sensitive to 
a certain sampling frequency. As the Kalman filt er gain vector is time0varying, the estimator 
can track harmonics with th e time varying magnitudes. 
Two models are described in this section to show the flexibility in the Kalman filtering 
scheme. There are many applications, where the results of FFT algorithms are as accurate as 
a Kalman filter model. However, there are othe r applications where a Kalman filter becomes 
superior to other algorithms. Implementing linear Kalman filter models is relatively a 
simple task. However, state equations, measurement equations, and covariance matrices 
need to be correctly defined. 
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Kalman filter used in the previous section a ssumes that the digital samples for the voltage 
and current signal waveforms are known in advance,  or at least, when it is applied on-line, 
good estimates for the signals parameters are assumed with a certain degree of accuracy, so 
that the filter converges to the optimal estimates in few samples later. Also, it assumes that 
an accurate model is presented for the signals; otherwise inaccurate estimates would be 
obtained. Ref. 8 uses the Kalman filter algorithm to obtain the optimal estimate of the power 
system harmonic content. The measurements used in this reference are the power system 
voltage and line flows at differe nt harmonics obtained from a harmonic load flow program 
(HARMFLO). The effect of load variation ov er a one day cycle on the power system 
harmonics and standard are presented. The optimal estimates, in this reference, are the 
power system bus voltage magnitudes and phase angles at different harmonic level. 
 

 
Fig. 35. Magnitude of dominant frequencies and harmonic distortion of waveform shown in 
Figure 34 using the Kalman filtering approach. 

4.2 Linear dynamic weighted least absolute estimates [11] 
This section presents the application of the linear dynamic weighted least absolute value 
dynamic filter for power syst em harmonics identification  and measurements. The two 
models developed earlier, model 1 and model 2, are used with this filter. As we explained 
earlier, this filter can deal easily with the ou tlier, unusual events, in the voltage or current 
waveforms. 

Software implementation 

A software package has been developed to analyze digitized current and voltage 
waveforms. This package has been tested on simulated data sets, as well as on an actual 
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recorded data set. and computes the voltage and current harmonics magnitude, the voltage 
and current harmonics phase angles, and the fundamental power and harmonics power. 

Initialization of the filter 

To initialize the recursive process of the proposed filter, with an initial process vector and 
covariance matrix P, a simple deterministic procedure uses the static least squares error 
estimate of previous measurements. Thus, the initial process vector may be computed as: 

1

0
ˆ T TX H H H z

��
� ª � º� � ¬ � ¼ 

and the corresponding covariance error matrix is: 

1

0
ˆ TP H H

��
�ª �º� �¬ �¼  

where H is an m �u m matrix of measurements, and z is an m �u 1 vector of previous 
measurements, the initial process vector may be selected to be zero, and the first few 
milliseconds are considered to be the initialization period. 

4.3 Testing the algorithm using simulated data 
The proposed algorithm and the two models were  tested using a voltage signal waveform of 
known harmonic contents described as: 

� � � � �� �� �� �� �� �� �� ��
� � � � � � � � � � � �

1cos 10 0.1cos 3 20 0.08cos 5 30 0.08cos 9 40

0.06cos 11 50 0.05cos 13 60 0.03cos 19 70

v t t t t t

t t t

� Z � Z � Z � Z

� Z � Z � Z

�  � �� � � �� � � �� � � �

� � � �� � � �� � � �

� D � D � D � D

� D � D � D
 

The data window size is two cycles, with sampling frequency of 64 samples/cycle. That is, 
the total number of samples used is 128 samples, and the sampling frequency is 3840 Hz. 
For this simulated example we have the following results. 
Using the two models, the proposed filterin g algorithm estimates exactly the harmonic 
content of the voltage waveform both magnit udes and phase angles and the two proposed 
models produce the same results. 
The steady-state gain of the proposed filter is periodic with  a period of 1/60 s. This time 
variation is due to the time varying nature of the vector states in the measurement equation. 
Figure 54 give the proposed filter gain for X1 and Y1. 
The gain of the proposed filter reaches the steady-state value in a very short time, since the 
initialization of the recursive process, as explained in the preceding section, was sufficiently 
accurate. 
The effects of frequency drift on the estimate are also considered. We assume small and 
large values for the frequency drift:  �' f = -0.10 Hz and �' f = -1.0 Hz, respectively. In this 
study the elements of the matrix H(k) are calculated at 60 Hz, and the voltage signal is 
sampled at (�Z = 2�Sf, f = 60 + �' f). Figs. 24 and 29 give the results obtained for these two 
frequency deviations for the fundamental and the third harmonic. Fig. 55 gives the 
estimated magnitude, and Fig. 29 gives the estimated phase angles. Examination of these 
two curves reveals the following: 
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Fig. 27. Gain of the proposed filter for X1 and Y1 using models 1 and 2. 

 

    
Fig. 28. Estimated magnitudes of 60 Hz and third harmonic for frequency drifts using 
models 1 and 2. 

�x For a small frequency drift, �' f = -0.10 Hz, the fundamental magnitude and the third 
harmonic magnitude do not change appreciably; whereas for a large frequency drift, �' f 
= -1.0 Hz, they exhibit large relative errors, ranging from 7% for the fundamental to 25% 
for the third harmonics. 

�x On the other hand, for the small frequency drift the fundamental phase angle and the 
third harmonic phase angle do not change appreciably, whereas for the large frequency 
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drift both phase angles have large changes and the estimates produced are of bad 
quality. 

 

 

 
Fig. 29. Estimated phase angles for frequency drifts using models 1 and 2 

To overcome this drawback, it has been found through extensive runs that if the elements of 
the matrix H(k) are calculated at the same frequency of the voltage signal waveform, good 
estimates are produced and the frequency drift has in this case no effect. Indeed, to perform 
this modification the proposed algorithm needs a frequency-measurement algorithm before 
the estimation process is begun. 
It has been found, through extensive runs that the filter gains for the fundamental voltage 
components, as a case study, do not change with the frequency drifts. Indeed, that is true 
since the filter gain K(k) does not depend on the measurements (eqn. 8). 
As the state transition matrix for model 2 is a full matrix, it requires more computation than 
model 1 to update the state vector. Therefore in the rest of this study, only model 1 is used. 

4.4 Testing on actual recorded data 
The proposed algorithm is implemented to id entify and measure the harmonics content for 
a practical system of operation. The system under study consists of a variable-frequency 
drive that controls a 3000 HP, 23 kV induction motor connected to an oil pipeline 
compressor. The waveforms of the three phase currents are given in Fig. 31. It has been 
found for this system that the waveforms of th e phase voltages are nearly pure sinusoidal 
waveforms. A careful examinat ion of the current waveforms revealed that the waveforms 
consist of:  harmonics of 60 Hz, decaying period high-frequency transients, and harmonics 
of less than 60 Hz (sub-harmonics). The waveform was originally sampled at a 118 ms time 
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interval and a sampling frequency of 8.5 kHz.  A computer program was written to change 
this sampling rate in the analysis. 
Figs. 31 and 32 show the recursive estimation of the magnitude of the fundamental, second, 
third and fourth harmonics for the voltage of phase A. Examination of these curves reveals 
that the highest-energy harmonic is the fundamental, 60 Hz, and the magnitude of the 
second, third and fourth harmonics are very small. However, Fig. 33 shows the recursive 
estimation of the fundamental,  and Fig. 34 shows the recursive estimation of the second, 
fourth and sixth harmonics for the current of  phase A at different data window sizes. 
Indeed, we can note that the magnitudes of the harmonics are time-varying since their 
magnitudes change from one data window to  another, and the highest energy harmonics 
are the fourth and sixth. On the other hand, Fig. 35 shows the estimate of the phase angles of 
the second, fourth and sixth harmonics, at different data window sizes. It can be noted from 
this figure that the phase angles are also time0varing because their magnitudes vary from 
one data window to another. 
 
 
 
 

 
 
 
 
 

Fig. 30. Actual recorded current waveform of phases A, B and C. 
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Fig. 31. Estimated fundamental voltage. 

 

 
 

 
 

Fig. 32. Estimated voltage harmonics for V 

www.intechopen.com



 
Power Quality Harmonics Analysis and Real Measurements Data 

 

36

 

 
Fig. 33. Estimated fundamental current IA. 

 
Fig. 34. Harmonics magnitude of IA against time steps at various window sizes. 

Furthermore, Figs. 36 – 38 show the recursive estimation of the fundamental, fourth and the 
sixth harmonics power, respectively, for the system under study (the factor 2 in these figures 
is due to the fact that the maximum values for the voltage and current are used to calculate 
this power). Examination of these curves reveals the following results. The fundamental 
power and the fourth and sixt h harmonics are time-varying. 

www.intechopen.com



 
Electric Power Systems Harmonics - Identifiction and Measurements 

 

37 

For this system the highest-energy harmonic component is the fundamental power, the 
power due to the fundamen tal voltage and current. 
 

 

 
 

Fig. 35. Harmonics phase angles of IA against time steps at various window sizes. 

 
 

 
 
 

Fig. 36. Fundamental powers against time steps. 
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Fig. 37. Fourth harmonic power in the three phases against time steps at various window sizes. 

The fundamental powers, in the th ree phases, are unequal; i.e. the system is unbalanced. The 
fourth harmonic of phase C, and later after 1.5 cycles of phase A, are absorbing power from 
the supply, whereas those for phase B and the earlier phase A are supplying power to the 
network. 
The sixth harmonic of phase B is absorbing power from th e network, whereas the six 
harmonics of phases A and C are supplying power to the networ k; but the total power is still 
the sum of the three-phase power. 
 

 
Fig. 38. Sixth harmonic powers in the three phases against time steps at various window 
sizes. 

The fundamental power and the fourth and si xth harmonics power are changing from one 
data window to another. 
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4.4 Comparison with Kalman Filter (KF) algorithm 
The proposed algorithm is compared with KF algorithm. Fig 39 gives the results obtained 
when both filters are implemented to estimate the second harmonic components of the 
current in phase A, at different data window sizes an d when the considered number of 
harmonics is 15. Examination of the Figure reveals the following;  both filters produce 
almost the same estimate for the second harmonic magnitude;  and the magnitude of the 
estimated harmonic varies from one data window to another. 
 

 
Fig. 39. Estimated second harmonic magnitude using KF and WLAV. 

4.4.1 Effects of outliers 
In this Section the effects of outliers (unusual events on the system waveforms) are studied, 
and we compare the new proposed filter and th e well-known Kalman filtering algorithm. In 
the first Subsection we compare the results obtained using the simulated data set of Section 
2, and in the second Subsection the actual recorded data set is used. 

Simulated data 

The simulated data set of Section 4.3 has been used in this Section, where we assume 
(randomly) that the data set is contaminated wi th gross error, we change the sign for some 
measurements or we put these measurements equal to zero. Fig. 40 shows the recursive 
estimate of the fundamental voltage magnit ude using the proposed filter and the well-
known Kalman filtering algorithm. Careful examination of this curve reveals the following 
results. 
The proposed dynamic filter an d the Kalman filter produce an optimal estimate to the 
fundamental voltage magnitude, depending on the data considered. In other words, the 
voltage waveform magnitude in the presence of outliers is considered as a time-varying 
magnitude instead of a constant magnitude. 
The proposed filter and the Kalm an filter take approximately two cycles to reach the exact 
value of the fundamental voltag e magnitude. However, if such  outliers are corrected, the 
discrete least absolute value dynamic filter almost produces the exact value of the 
fundamental voltage during the re cursive process, and the effects of the outliers are greatly 
reduced Figure 41. 
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Fig. 40. Effects of bad data on the estimated fundamental voltage. 

Actual recorded data 

In this Section the actual recorded data set that is available is tested for outliers’ 
contamination. Fig. 42 shows the recursive estimate of the fundamental current of phase A 
using the proposed filter, as well as Kalman filter algorithms. Indeed, both filters produce 
an optimal estimate according to the data available. However, if we compare this figure 
with Fig. 42, we can note that both filters produce an estimate different from what it should 
be. Fig. 42 shows the recursive estimates using both algorithms when the outliers are 
corrected. Indeed, the proposed filter produces an optimal estimate similar to what it should 
be, which is given in Fig. 43. 
 

 
Fig. 41. Estimated fundamental voltage magnitude before and after correction for outliers. 

www.intechopen.com



 
Electric Power Systems Harmonics - Identifiction and Measurements 

 

41 

 
Fig. 42. Estimated fundamental current when the data set is contaminated with outliers. 

 
Fig. 43. Estimated fundamental current before and after correction for outliers. 

4.6 Remarks 
�x The discrete least absolute dynamic filter (DLAV) can easily handle the parameters of 

the harmonics with time -varying magnitudes.  
�x The DLAV and KF produce the same estimates if the measurement set is not 

contaminated with bad data. 
�x The DLAV is able to identify and correct bad data, whereas the KF algorithm needs pre-

filtering to identify and eliminate this bad data. 
It has been shown that if the waveform is non-stationary, the estimated parameters are 
affected by the size of the data window. 
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It has been pointed out in the simulated results that the harmonic filter is sensitive to th e 
deviations of frequency of the fundamental co mponent. An algorithm to measure the power 
system frequency should precede the harmonics filter. 

5. Power system sub-harmonics (interharmonics); dynamic case  

As we said in the beginning of this chapter,  the off-on switching of the power electronics 
equipment in power system control may produc e damped transients of high and/or low 
frequency on the voltage and/or current wavefo rms. Equation (20) gives the model for such 
voltage waveform. The first term in this eq uation presents the damping inter-harmonics 
model, while the second term presents the harmonics that contaminated the voltage 
waveform including the fundamental. In this section, we explain the application of the 
linear dynamic Kalman filtering algorithm for measuring and identifying these inter-
harmonics. As we said before, the identificati on process is split into two sub-problems. In 
the first problem, the harmonic contents of th e waveform are identified. Once the harmonic 
contents of the waveform are identified, the reconstructed waveform can be obtained and 
the error in the waveform, which is the differe nce between the actual and the reconstructed 
waveform, can be obtained. In the second problem, this error is analyzed to identify the sub -
harmonics. 
Finally, the final error is obtained by subtracting the combination of the harmonic and t he 
sub-harmonic contents, the total reconstructed, from the actual waveform. It has been 
shown that by identifying th ese sub-harmonics, the final error is reduced greatly. 

5.1 Modeling of the system sub-harmonics  
For Kalman filter application, equation (28) is the measurement equation, and we recall it 
here as 

 �� �� �� �� �� �� �� ��Z t H t t t� T � Z�  � � (28) 

If the voltage is sampled at a pre-selected rate, its samples would be obtained at equal time 
intervals, say �' t seconds. Then equation (26) can be written at stage k, k = 1, 2, …, k, where K 
is the total number of intervals, K = [window size in seconds/ �' t] = [window size in seconds 
�u sampling frequency (Hz)]. 

 �� �� �� �� �� �� �� �� �� �� �� �� �� ��11 1 12 2 16 6z k t h k t x k h k t x k h k t x k� ' �  � ' � � � ' � � � � � '�!  (50) 

If there are m samples, equation (8.64) turns out to be a set of equations. Each equation 
defines the system at a certain time (k�' t). 

 �� �� �� �� �� �� �� ��1z k t H k t k w ki i�T� ' �  � ' � �; 1,2, ,i m� �!  (51) 

This equation can be written in vector form as: 

 �� �� �� �� �� �� �� ��z k t H k t k w k�T� ' �  � ' � � (52) 

where  
z(k)  is m �u 1 measurement vector taken over the window size  
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�T(k)  is n �u 1 state vector to be estimated. It could be harmonic or sub-harmonic 
 parameters depending on both H(k) and z(k) 
H(k)  is m �u n matrix giving the ideal connection between z(k�' t) and �T(k) in the absence of  

noise w(k). If the elements of H(k�' t) are given by equation (25), it is clear that 
 H(k�' t) is a time-varying matrix. 
w(k)  is an m noise vector to be minimized and is assumed to be random white noise 
 with known covariance construction. 
Equation (52) describes the measurement system equation at time k�' t. 
The state space variable equation for this model may be expressed as �;  
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 (53) 

Equation (67) can be rewritten in vector form as: 

 �� �� �� �� �� �� �� ��1k k k w k� T � I� T� � �  � � (54) 

where 
�I(k)  is n �u n state transition matrix and it is an identity matrix 
w(k)  is n �u 1 plant noise vector 
Together equation (52) and (54) form the system dynamic model. It is worthwhile to state 
here that in this state space representation the time reference was chosen as a rotating time 
reference which caused the state transition matrix to be the identity matrix and the H matrix 
to be a time varying matrix. 
Having estimated the parameter vector �T, the amplitude, damping constant, and the phase 
angle can be determined using equations (30) to (32), at any step  

5.2 Testing kalman filter algorithm 
5.2.1 Description of the load 
The proposed algorithm is tested on an actual recorded data to obtain the damped sub-
harmonics which contaminated the three phase current waveforms of a dynamic load. The 
load is a variable frequency drive controllin g a 3000 HP induction motor connected to an oil 
pipe line compressor. The solid state drive is of 12 pulses designed with harmonic filter. T he 
data given is the three phase currents at different motor speed, and is given in per unit. The 
three phase currents are given in Figure 42. This figure shows high harmonics in each phase 
current as well as sub-harmonics. It is clear that the currents have variable magnitudes from 
one cycle to another (non-stationary waveforms). 

5.2.2 Sub-harmonic estimation 
After the harmonic contents of the waveforms had been estimated, the waveform was 
reconstructed to get the error in this estimati on. Figure 71 gives the real current and the 
reconstructed current for phase A as well as the error in this estimation. It has been found 
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that the error has a maximum value of about 10%. The error signal is analyzed again to find 
if there are any sub-harmonics in this signal. The Kalman filtering algorithm is used here to 
find the amplitude and the phase angle of each sub-harmonic frequency. It was found that 
the signal has sub-harmonic frequencies of 15 and 30 Hz. The sub-harmonic amplitudes are 
given in Figure 43 while the phase angle of the 30 Hz component is given in Figure 44. The 
sub-harmonic magnitudes were found to be time varying, without any exponent ial decay, as 
seen clearly in Figure 43. 
 

 

Fig. 42. Actual and reconstructed current for phase A 

 

 
Fig. 43. The sub-harmonic amplitudes. 

www.intechopen.com






















































