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1. Introduction  

Anthropogenic activities are causing highly influential impacts on species persistence. The 
sustained environmental change wildlife are experiencing may surpass the capacity of 
developmental, genetic, and demographic mechanisms that populations have evolved to 
deal with these alterations. Undeniably, habitat fragmentation, habitat loss, and human 
disturbance are causing a decline in species numbers on a global scale, with shifts or 
reductions occurring in species-distribution ranges. The knowledge of species distribution is 
a vital component in wildlife conservation and management. Such information aids in 
quantifying animal–habitat relationships, describing and predicting differential space use by 
animals, and ultimately identifying habitat that is important to an animal (Beyer et al. 2010). 
The field of species distribution modeling (SDM) as a means of quantifying species–
environment relationships has been extensively developed since the first formal definition 
of differential habitat selection theory by Fretwell and Lucas in 1969. It has since produced a 
variety of numerical tools that combine observations of species occurrence or abundance 
with environmental estimates based on statistically or theoretically derived response 
surfaces (Guisan and Zimmermann 2000). These models include presence/absence models, 
dispersal/migration models, disturbance models, and abundance models; they are now 
widely used across terrestrial, freshwater, and marine realms.  
SDMs are used to determine the suitability of the organisms’ habitat, relying on 
density/abundance measures or the ratio between used and available habitats to infer 
habitat quality. These models use spatial environmental data to make inferences on species’ 
range limits (Kearney and Porter 2009). Most approaches are correlative in that they 
statistically link spatial data (typically geographic information systems data) to species 
distribution records. Despite the prevalence of SDMs in applied ecology, a review of recent 
papers cautions using a statistical description that implicitly captures these “habitat use” 
processes as they are statistically associated with the predictor variables, but may not be so 
biologically. Firstly, habitat use does not necessarily equate with high quality habitat, range 
requirements, nor resultant increased wildlife fitness because biotic and abiotic cues can 
cause animals to choose habitats that do not provide the necessary resources to ensure high 
fitness returns (Jonzén 2008; Pérot and Villard 2009). Secondly, SDMs are frequently applied 
for predicting potential future distributions of range-shifting species, despite these models’ 
assumptions that (1) species are at equilibrium with the environments, and (2) the data used 
to train (fit) the models are representative of conditions to which the models are already 

www.intechopen.com



 
Biodiversity 

 

4 

statistically associated, and not to which they are anticipated (Elith et al. 2010). Animal 
responses to novel environments, therefore, especially ones that may be a mismatch to the 
habitats in which the animal evolved, can render the predictions of SDMs ineffectual. A lack 
of insight into the processes that govern animal movement and habitat selection can have 
consequences on the predictive success of SDMs in determining range limits and habitat 
suitability. This can then have carryover effects on the resolving of spatial issues (such as 
extent and resolution, geographical- and environmental space), and the statistical 
methodologies used to test model fit and selection.  
Methodological innovations have been recently proposed to improve the predictability of 
conventional SDMs in spatial modeling of animal-habitat interactions. These newer models 
incorporate explicit relationships between environmental conditions and organismal 
performance, which are estimated independently of current distributions. They include: (i) 
the integration of animal movement and resource-selection models to arrive at biologically-
based definitions of available habitat (Fieberg et al. 2010), (ii) the use of state-space 
movement models (Patterson et al. 2008), (iii) linking species with their environment via 
mechanistic niche modeling (Kearney and Porter 2009), (iv) and combining resource-
selection functions, residency-time and interpatch-movement analyses (Bastille-Rousseau et 
al. 2010). These emergent efforts have one common, unifying feature: the need to implicitly 
or explicitly incorporate mechanism; that is, the underlying physiological, behavioral, and 
evolutionary basis for animal movement and habitat use. The emphasis on improving the 
statistical fit of SDMs via the incorporation of more ecologically-relevant procedures 
highlights the multiple advantages when considering the mechanistic links between the 
functional traits of the organism and its environment. These are: (1) the understanding of 
the proximate constraints limiting distribution and abundance, (2) the examination of the 
ultimate consequences of species range effects and population persistence, and (3) the 
exploration of how organisms might respond to environmental change.  
One of the challenges in incorporating mechanism into SDMs is that these models can be 
limited by the availability of data for model parameterization and because their success in 
predicting range limits relies on the identification of key, abiotic limiting processes, such as 
climatic factors, humidity, etc., that have both proximate and ultimate effects on species 
distributions (Elith et al. 2010). These limiting processes, or constraints, might not be the 
most important ones, or equally important, in all areas of a species’ range. In addition, the 
interaction between different abiotic constraints and those between abiotic and biotic 
constraints could cause observed ranges to deviate from predicted ranges. In essence, 
emergent relationships between the organism and a changing environment cannot be 
captured by mechanistic SDMs. Lastly, few studies have explicitly incorporated geographic 
variation in animal traits or genetic variation across a range in mechanistic models, thus 
essentially ignoring that unique phenotypes may behave in significantly different ways. For 
a more comprehensive review of correlative versus mechanistic SDMs, we refer the reader 
to Buckley et al. (2010). In this paper, we present an alternative approach to conventional 
correlative and mechanistic species distribution modeling, called agent-based modeling that 
can be used as an effective tool for understanding and forecasting animal habitat selection 
and use. This methodology offers several advantages. First, it can accommodate ecological 
and evolutionary theory in the form of behavioral ecology. Second, it can be readily 
integrated with the concepts of spatial ecology. In doing so, agent-based models (ABMs) can 
redress the fundamental issues of mechanism, spatial representation, and statistical model 
evaluation. ABMs can thus enable the exploration of how wildlife might respond to future 
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changes in environmental conditions - an inquiry of utmost importance for wildlife 
conservation and management. 
This chapter is organized as follows. First, we begin by discussing why animal behavior 
should be incorporated into studies of wildlife conservation, and how its oversight can lead 
to erroneous understandings and predictions of critical habitat. We then describe how 
behavioral ecology provides the basic understanding of the mechanisms driving animal 
habitat selection and dispersal/migration behaviors; and we argue that it should be 
incorporated with the concepts of spatial ecology and its geospatial tools. Next, we 
introduce agent-based modelling and demonstrate how it represents the ideal framework 
for assimilating behavioral mechanisms with temporal-spatial processes to drive animal 
movement and habitat selection, and to determine habitat suitability and species 
distribution. Based on this principle, we then show how the incorporation of spatial 
behavioral ecology in ABMs can address issues of scale commonly found with the more 
conventional species-distribution models with regards to extent and resolution, and 
geographical and environmental space. We also discuss the issues of statistic evaluation of 
best fit models. We conclude by summarizing the potential of ABMs for wildlife 
conservation planning, and by suggesting areas for improving their flexibility and 
performance.  

2. Behavior as a key mechanism 

2.1 The advantages of addressing behavioral mechanisms over choosing statistical 
empiricism  
As mentioned above, statistical statistical SDMs perform poorly in identifying true habitat 
quality when the mechanisms driving habitat selection are not explicitly incorporated into 
the modelling process. This is because strong social interactions, temporally unpredictable 
habitats, post-disturbance crowding effects, non-ideal habitat selection, and ecological traps 
all lead to animals either under- or over-utilizing a habitat that produces greater or fewer 
fitness returns than others available on the landscape, respectively (Johnson 2007; Jonzén 
2008). For instance, Mosser et al. (2009) found that density was a misleading indicator of lion 
(Panthera leo) habitat quality in the Serengeti, as this metric identified ‘source’, high-quality 
sites that were actually low-quality sites that merely provide refuges for non-reproductive 
individuals. Over a multi-year and multi-site study of yellow warbler (Dendroica petechia) 
nest microhabitat selection, Latif et al. (2011) found a consistently negative relationship 
between preferred microhabitat patches and nest survival rates, suggesting that 
maladaptive nest microhabitat preferences arose during within-territory nest site selection. 
The authors attribute this mismatch to the recent proliferation of the parasitic brown-headed 
cowbird (Molothrus ater), and/or anthropogenic changes to riparian vegetation structure as 
likely explanations. These behavioral phenomena will result in SDMs identifying habitats as 
being suitable foraging, breeding, or dispersing grounds, when in fact there has been a 
mismatch between habitat use and fitness, with serious ramifications for conservation 
planning. 
Novel or disrupted environments can also violate the assumption of correlational SDMs that 
animal populations are at equilibrium. Ecological niches may expand or go extinct, affecting 
population demographics and species ranges via animal behavior in discontinuous or non-
linear ways. Schtickzelle et al. (2006) studied how habitat fragmentation modified dispersal 
at the landscape scale in the specialist butterfly Proclossiana eunomia. They showed that 
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dispersal propensity from habitat patches and mortality during dispersal were the 
consequences of two different evolutionary responses of dispersal behavior. They concluded 
that evolutionary responses can generate complex nonlinear patterns of dispersal changes at 
the metapopulation level according to habitat fragmentation, making predictions of 
metapopulation effects challenging. Additionally, the success or failure of establishing 
populations, or altering animal distributions in different environments is mediated by 
animals that benefit from the presence of conspecifics or heterospecifics after settlement, or 
are governed by personality-dependent dispersal. In a long-term study of the range 
expansion of passerine birds, Duckworth and Badyaev (2007) concluded that the coupling of 
aggression and dispersal strongly facilitated the range expansion of western bluebirds (Sialia 
mexicana) across the northwestern United States over the last 30 years. As such, forecasting 
the responses of wildlife to changes in their environment without acknowledging the 
mechanisms involved can give potentially misleading predictions of range effects.  

2.2 Conservation behavior as a discipline 
Conservation behavior is a relatively new interdisciplinary field aimed at investigating how 
proximate and ultimate aspects of animal behavior can be of value in preventing the loss of 
biodiversity (Bushholtz 2007). Animal behavior is an important determinant in species 
persistence since how an animal behaves determines its survival and reproductive success. 
In particular, natural selection favors individuals who adopt life history strategies that 
maximize their gene contribution to future generations. Expression of these strategies 
typically manifests itself through the behaviors of the animal that possess a heritable 
component sufficient to allow natural selection to operate. Thus, the behaviors of animals 
attempting to maximize their lifetime fitness will affect survival, reproduction, and hence 
recruitment, ultimately scaling up to the population level and species persistence.  
Indeed, many of the initial responses by animals to environmental change are behavioral 
i.e., changes in feeding location, prey selection, or movement responses to disturbance. 
Behavioral indicators can provide an early warning to population decline or habitat 
degradation before numerical responses are evident. Similarly, they can be used to monitor 
the effectiveness of management programs, or evaluate the success of a management 
program at its early stages, before population or ecosystem-level responses are evident 
(Berger-Tal et al. 2011). While these concepts may seem atheoretical and merely descriptive, 
there is a strong incentive to understand the underlying motivations involved in animal 
responses to anthropogenic impacts and their mitigation. As an illustrative example, when 
managers plan for critical habitat, it is imperative to ensure: (1) that enough cover is present 
so that the animal does not spend an excessive amount of time being vigilant at the expense 
of acquiring its energetic requirements, (2) that the food resources available will not cause 
the animal to spend excess time searching or assimilating their forage at the expense of other 
activities such as dispersing successfully, breeding or caring for young, (3) that animals are 
not crowded into habitats so that foraging-interference or -exploitative competition occurs, 
thereby reducing food intake and potentially affecting health and reproduction, and (4) that 
human-induced alterations in food availability do not cause animals to modify their 
foraging behavior to the extent that natural history traits are altered and potentially 
maladaptive. As is apparent, animals must constantly trade off competing strategies to try to 
find the optimal solution to successfully survive and reproduce in their environment. Using 
a conservation behavior approach, we can understand such relationships that are critical to 
survival of individuals and persistence of populations. 
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2.3 Behavioral ecology - providing the mechanism 
Behavioral ecology is a field of animal behavior that can be used to investigate fitness 
impacts of organismal interactions with their environment, since it seeks to understand both 
the ecological and evolutionary basis of animal behaviors. There are three fundamental 
types of adaptation that allow individuals to adjust to the environment: phenotypic 
plasticity, learning, and genetic (Huse and Giske 2004). These adaptations partly determine 
individual behavior, and whichever is dominant will depend on the current circumstances 
and the different timescales on which they function. Adaptation functions by animals 
making tradeoffs between competing goals to try and find an optimal solution that 
maximizes their fitness. Behavioral ecology therefore attempts to understand how an 
individual’s behavior is adapted to the environment in which it lives, and how a particular 
behavior pattern contributes to an animal’s chances of survival and its reproductive success 
(Krebs and Davies 1996). Furthermore, because anthropogenic change can disrupt optimal 
decision-making and affect an animal’s reproductive success and survival, behavioral 
ecology can be a key ecological indicator when assessing wildlife fitness impacts. Within the 
field of behavioral ecology, there are three key behavior domains that are central to the 
attainment of high fitness in individuals of all species and are therefore of key concern in 
habitat-suitability and species-range effects management: foraging and predator–prey 
related behaviors, social behavior and reproduction, and life-history strategies (Caro 1998, 
Gill and Sutherland 2000, Festa-Bianchet and Apollonio 2003, Berger-Tal et al. 2011).  

2.4 Spatial behavioral ecology - one step further 
Because most wildlife management directives occur in situ, these domains are inherently 

related to spatiotemporal variations in landscape, and indeed, behavioral ecologists can 

benefit by assimilating the tools and the concepts developed in spatial ecology (Valcu and 

Kempenaers 2010). The following section focuses on how behavioral ecology combined with 

spatial ecology can be used to explain and explore space-use and movement patterns in 

wildlife. 

2.4.1 Habitat selection 
Conservation of a species requires knowledge of the habitat use of both sexes in order to 

predict the population size and to protect the habitats that a species requires. Habitat 

selection is the behavioral process used by individuals when choosing resources and 

habitats. From a behavioral ecology perspective, habitat selection implies that individual 

organisms have a choice of different types of habitat available to them, and that they 

actively move into, remain in, and/or return to certain areas over others (Stamps 2009). 

When faced with a site in which to forage, rest, or mate, an individual will rely on abiotic 

and biotic cues that will help shape the behavioral rules (optimal group size, anti-predator 

tradeoffs, foraging efficiency) and tactics (e.g., natal home range cues, public information 

cues and conspecific attraction) to make an optimal selection at various spatial and temporal 

scales (Johnson 1980).  

Investigating habitat selection with a behavioral-ecological focus and using local, fine grain 

spatial parameters is common practice. However, more behavioral ecologists are availing 

themselves to the data-capturing tools and techniques offered by geographic information 

science, such as telemetry, remote sensing, and sensor networks, and incorporating larger-

scale analyses to understand the complexities involved in animal habitat choice and use. 
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Indeed, behavioral ecology often contributes to habitat-selection studies and ‘confounds’ 

analyses relying just on empirical relationships between an organism and its static 

environment. Using GPS telemetry monitoring, Fischhoff et al. (2007) examined variation in 

plains zebra (Equus burchelli) movements and habitat use in relation to danger from lions. 

They found predator avoidance and predation risk to be the main drivers of habitat choice 

and movement patterns, and concluded that individual variation in zebra responses can 

affect individual variation in survival. Willems et al. (2009) used a remotely sensed index of 

plant productivity as a spatially explicit and temporally varying measure of habitat 

structure and productivity for the study of vervet monkey (Chlorocebus pygerythrus) habitat 

preferences. Using both broad spatiotemporal scales and finer grained level of analysis, they 

were able to relate home-range use to food availability, and anti-predatory responses to 

changes in habitat visibility using their index of vegetation productivity. Durães et al. (2007) 

evaluated whether female hot spots can account for patterns of lek structure in the blue-

crowned manakin (Lepidothrix coronata) by modeling female distribution patterns relative to 

lek locations using radio-telemetry. The authors found a lack of spatial correlation between 

males and females, and concluded that refutation of the hotspot hypothesis renews the 

debate on how leks evolve and are shaped, and emphasizes that spatial considerations are 

an important issue for lek evolution that likely involve multiple interacting mechanisms. 

Lastly, using a combination of animal- and environmental-GPS point locations and satellite 

imagery, Greisser and Nystrand (2009) studied the influence of large-scale habitat structure 

on the vigilance levels of kin- and non-kin Siberian jay (Perisoreus infaustus) groups to aerial 

predators. They found that different foraging habitats, differentiated by large-scale metrics, 

had different levels of predation risk, and these were partially mediated by whether or not 

jays were in groups with offspring. The authors surmised that large-scale habitat structure 

influences predator–prey interactions; and therefore antipredator allocation is crucial to 

understanding spatial variation in habitat use and individual jay mortality. The above 

examples showcase the need of interrelating spatial data at fine and broad scales with 

fitness-maximizing behaviors and demonstrate the applicability of this approach in 

elucidating the array of factors involved in habitat use. 

2.4.2 Dispersal and migration 
Non-foraging movements of animals within a heterogeneous landscape are recognized as 
the key process influencing meta-population dynamics, the coexistence of competitors, 
community structure, disease ecology, and biological invasions (Morales and Ellner 2002). It 
is not surprising then, that most effort by conservationists has focused on the dispersal and 
migration requirements of animals. Animal dispersal consists of two component behaviors: 
(i) emigration out of an original habitat patch and (ii) subsequent search for a new habitat 
patch. Emigration is assumed to depend on the chance rate of encounter with habitat 
boundaries, and dispersers are assumed to search for new habitat in the manner of a 
correlated random walk (Conradt and Roper 2006). The decision-rules of animal movement, 
however, have a very strong behavioral component that is influenced by both endogenous 
and exogenous factors. Physiological and motivational states, perceived travel costs in terms 
of predation risk, and the distance at which a dispersing animal can perceive remote habitat 
will determine whether an animal will cross habitat gaps formed by fragmentation (Zollner 
and Lima 2005). Susceptibility to competition as well as level of conspecific attraction will 
also play an important role in determining the movements of individuals (Bélisle 2005). 
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Whether an animal needs to migrate to find resources or exploits resources from a central 
place to which it periodically returns will also affect the degree of impact from sub-optimal 
habitat quality, size, and connectivity. In other words, the movement paths of wildlife result 
from the dynamic interplay of the internal state of the organism, its motion capacity, its 
navigation capacity, and the external environment (Holyoak et al. 2008, Revilla and 
Wiegand 2008).  
As with habitat-selection studies, behavioral ecologists also employ GIS techniques to both 
represent the environment and collect wildlife movement data when studying animal 
dispersal and migration. For instance, Long et al. (2008) investigated emigration cues and 
distance of transitional movements in white-tailed deer (Odocoileus virginianus), and found 
that both inbreeding avoidance and mate competition ultimately underlie emigration of 
juveniles, and that, proximately, these patterns of dispersal are elicited by different social 
cues during different seasons. Using ruffed grouse (Bonasa umbellus), Yoder et al. (2004) 
tested the hypothesis that increased movement rates during dispersal bouts increases 
conspicuousness and hence predation-related mortality of individuals. Contradictorily, they 
found that movement rates and distance moved did not predict bird mortality; instead, it 
was the familiarity with the site itself which determined the birds’ survival. Lastly, a study 
by Hebblewhite and Merrill (2009) investigated how trade-offs between predation risk and 
forage differ between migrant strategies in migratory elk (Cervus elaphus). Each strategy had 
its associated costs and benefits, with resident elk balancing increased predation risk with 
refugia caused by human activities. These examples again highlight that the success of 
managers and policy makers when planning critical habitat for species conservation 
depends on a spatial and mechanistic understanding of the species in question. 

2.5 Behavioral ecology and the individual 
On a final note, it is crucial to realize that behavioral ecology concerns itself with the 
adaptations of individuals. Although inter-individual variation in phenotypic traits is 
omnipresent, it has historically been considered to be noise superimposed on the 
evolutionarily important signal, the population mean (Careau et al. 2008). But a rapidly 
growing literature on animal personality, temperament, coping styles, and behavioral 
syndromes (Stampes and Groothuis 2010) reveals the increasing importance researchers 
place on inter-individual variation as an important ecological and evolutionary 
characteristic of wild populations. Individuals are the building blocks of ecological systems - 
the birth and death of individuals are the constituents of the birth and death rates of 
populations, and because these rates are the result of the assimilated effects of varying and 
different fitness-maximizing behaviors that are used by each individual, population 
structure, demography, and community structure can be significantly affected by variation 
in the behavior of individuals (Bradbury et al. 2001). The approaches explained so far 
describe the relationships existing between a given individual organism, which is influenced 
by its need for basic resources (e.g. water, food, security cover, space), and the spatial 
distribution of such resources. As explained above, individuals are spatially clustered 
around resources and the spatial distribution of animals and plants can therefore be 
predicted.  However, most animals and plants also have the need to encounter conspecifics 
and to reproduce. Therefore, populations are formed comprised of multiple individuals that 
are associated to spatially distributed resources and to each other, and these are the units 
that survive or go extinct during the evolutionary process. Subsequently, population-level 
properties such as persistence, resilience, and patterns of abundance over space and time are 
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not simply the sum of the properties of individuals; instead, they emerge from the 
interactions of adaptive individuals with each other and with their environment (Figure 1). 
These links make models of spatial distribution of organisms and of populations relevant 
and crucial for the following conservation purposes: to predict spatial occurrence of 
populations, population sizes that resources can sustain, connectivity among populations, 
and their very chances of survival. As such, models of species distribution and habitat 
suitability should therefore consider individual mechanisms of habitat selection and 
movement coupled with spatially explicit representations of the animal’s environment. 

2.6 Behavioral ecology and SDMs 
The call for integrating behavioral ecology into spatially explicit species distribution and 
range models is not new. Blumstein and Fernández-Juricic (2004) suggest that specific 
behavioral mechanisms should be the basis of bottom-up models that predict the behavior, 
movement, habitat use, and distribution of species of conservation concern. Morales and 
Ellner (2002) further posit that the challenge for scaling up movement patterns resides in the 
complexities of individual behavior, specifically behavioral variability between individuals 
and within an individual over time, rather than solely in the spatial structure of the 
landscape. Bélisle (2005) also advocates for the use of behavioral ecological resource-based  
 

 

Fig. 1. Summary of how behavioral decisions, driven by animal adaptations that have 
evolved over time from ecological and evolutionary processes, can match or mismatch an 
animal to its environment. This process has cascading direct and indirect effects on 
population and species persistence via individual-fitness effects on population 
demographics and evolution of species’ traits. Modified from Lankau et al. (2011). 
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models in judging habitat quality, travel costs, and hence landscape functional connectivity. 
Specifically, these latter types of models would be capable of addressing the distribution of 
individuals among resource patches at large spatial scales, among resource patches 
embedded within a hierarchy of spatial scales, and along smoothly changing resource 
gradients. Finally, Jonzén (2008) acknowledges that while habitat selection theory has a 
successful history in behavioral ecology, it can also be useful for understanding spatial 
population dynamics on a large scale. We propose here that the principles of behavioral 
ecology can be quite naturally and readily integrated with the tenets of spatial ecology in the 
alternative approach to SDM: 

3. Agent-based models 

Agent-based models (ABMs) are computational simulation tools that rely on a bottom-up 
approach that explicitly considers the components of a system (i.e. individual entities 
represented as agents) and attempts to understand how the system’s properties emerge 
from the interactions among these components (Grimm 1999, Grimm and Railsback 2005). 
This emphasis on interactions between agents and their environment is what distinguishes 
agent-based modeling (also referred to as individual-based models) from other systemic 
modeling approaches (Marceau 2008; Figure 2a), and additionally allows the use of ABMs 
for the exploration of complex phenomena that are ill-suited to analytic approaches (e.g., 
statistical models; Tang 2008). 
 

 

Fig. 2. ABM architecture. a) Example of an ABM conceptual diagram demonstrating how 
agents are tightly coupled to their environment. b) Generic programming language, giving 
rise to agent (a) autonomy and intelligence.  

a. 

b. 
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The concepts underlying ABM are similar to those of the object-oriented programming 

paradigm in computer science, and ABMs frequently employ object-oriented 

programming languages like C++ and Java (An et al. 2005; Figure 2b). Because of this 

architecture, the most critical feature of ABMs is their ability to reproduce artificial 

intelligence. Agents can explicitly execute decision-making heuristics - symbolic rules or 

numerical functions - that can be either predefined (e.g., expert knowledge or statistical 

inferences) or learned through their interactions and feedback with other agents or their 

environment (e.g., via memory or machine learning techniques like genetic and 

evolutionary algorithms; Russell and Norvig 1995, Tang 2008). These agents act 

independently of any controlling intelligence, they are goal-driven and try to fulfill 

specific objectives, they are aware of and can respond to changes in their environment, 

they can move within that environment, and they can be designed to learn and adapt their 

state and behavior in response to stimuli from other agents and their surroundings. It is 

these characteristics of ABMs that make their amalgamation with animal mechanisms of 

habitat selection and movement so ideal as they share the same principles of behavioral 

ecology: animal adaptation, individual variation, and fitness-maximizing tradeoff 

behaviors.  

3.1 Behavioral-ecological ABMs and species distributions 
ABMs have been developed to expressly evaluate wildlife habitat suitability and species 

range effects via habitat-selection and movement studies. These ABMs can be divided into 

categories depending on whether agents are given imposed, empirically-derived behaviors, 

or agents are allowed to choose the optimal strategy themselves based on decision-making 

tradeoffs (for a thorough review, see McLane et al. 2011). The latter category is the focus of 

this section, as it most closely represents the tenets of behavioral ecology (Figure 3). As one 

example of habitat suitability and its underlying habitat-selection behaviors, Kanarek et al. 

(2008) incorporated habitat selection in their ABM of environmental fluctuations on a 

barnacle geese (Branta leucopsis) population in Helgeland, Norway. The aim of each 

individual was to optimize fitness (survival and reproduction) by gaining enough food 

(energy reserves) to meet a threshold of energy necessary for successful reproduction. In 

their model, geese chose unoccupied habitat according to their rank in the population-

structured dominance hierarchy, their memory of previously visited sites in past years, past 

reproductive success, inherited genetic influence towards site preference, and knowledge of 

the available biomass density. Their findings revealed that different types of population 

dynamics and patterns of colonization occur, depending on the strength of site fidelity and 

degree of habitat loss. Duriez et al. (2009) investigated the decision rules of departure and 

stopover ecology of the migratory behavior of geese (Anser brachyrhynchus) between 

wintering grounds in Denmark and breeding grounds in Svalbard, Norway. They tested 

rules governed by energetics, time-related cues and external cues by comparing predicted 

and observed departure dates. The most accurate predictions were made by a combination 

of cues including: the amount of body stores, date, and plant phenology. They also found 

that by changing decision rules over the course of the migration, with external cues 

becoming decreasingly important and time-related cues becoming increasingly important as 

the geese approached their breeding grounds, they could improve ABM model predictions 

of site selection.  
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Fig. 3. An agent’s decision-making heuristics in a behavioral-ecological ABM. 

With respect to range-limiting effects and migration, Pettifor et al. (2000) used an agent-
based approach to predict the response of goose populations to both natural and human-
induced environmental changes. They used contrasting time-minimizing vs. energy-
maximizing foraging strategies as well as a game theoretic approach of competitor density 
to determine year-round dynamics of the goose populations. Populations were predicted to 
decline following habitat loss in their winter or spring-staging sites, providing a clear 
illustration of the need for a year-round, individual-behavior approach to animal population 
dynamics. Lastly, Goss-Custard and Stillman’s (2008) seminal work on oystercatcher 
(Haematopus ostralegus) management elegantly demonstrates how mechanistic ABMs can 
contribute to the conservation of local populations’ occupancy and species persistence. The 
overall purpose of their ABM was to predict how environmental change (e.g., habitat loss, 
changes in human disturbance, climate change, mitigation measures in compensation for 
developments, and changes in population size itself) affects the survival rate and body 
condition in animal populations. The model does this by predicting how individual animals 
respond to environmental change by altering their feeding location, consuming different 
food or adjusting the amount of time spent feeding. The central assumption of the model is 
that animals behave in ways that maximize their chances of survival by using rate-
maximizing optimization decision rules and game theoretic rules in that each animal 
responds to the decisions made by competitors in deciding when, where, and on what to 
feed. They found that even small reductions in fitness can substantially reduce population 
size of shorebirds since their “ecological food requirement” greatly exceeds the 
"physiological requirement".  
As has been demonstrated, the use of behavioral-ecological based ABMs can produce 

emergent system-level processes that allow one to ask ecological questions that extend 

beyond the individual itself. Imposing system behavior by giving individuals mechanical, 
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empirically-derived traits can also provide a feasible alternative. However, this might lead 

to the simple reproduction of reactive abilities and behaviors observed in real systems 

without providing the desired ultimate causations necessary to understand animal 

movements and habitat selection. This distinction is particularly important for wildlife 

management such as ecological forecasting. In fact, SDM approaches may not reliably 

ascertain whether the empirical relationship upon which these models are based will hold 

under new environmental conditions 

To have confidence in predictions, models need to operate on basic principles, underpinned 

by theory that will still apply in the new scenarios, rather than on present-day empirical 

relationships which may no longer hold in the scenarios for which predictions are required 

(Grimm et al. 2007). The allocation of behavioral strategies to individual agents allows 

researchers to predict how animals will most likely respond to novel changes in their 

environment, since the underlying processes are consistent with evolutionary concepts (i.e., 

how animals will tradeoff fitness-maximizing behaviors and find an optimum).  Finally, 

with ABMs intra-specific relationships among individuals can also be modeled, thus 

allowing better understanding of population responses to the environment and to 

conspecifics as well as other organisms  (e.g. competitors, predators, parasites). 

4. ABMs and issues of scale 

All types of animal-environment models need to allow for the determination of where the 

important interactions lie and to understand both the spatial scales and time scales on 

which the various processes operate (Bithell and Brasington 2009). This is particularly the 

case where the issues of conservation planning and ecological forecasting are concerned, 

as these typically involve spatial scales that can cross political borders, temporal scales 

longer than the organism’s lifespan, and the need for long-term institutional policies to be 

effective. Because the dynamic nature of the environment plays such an influential role  

in affecting organism state, behavioral decisions and motion, a representation of the 

animal’s actual environment in a spatially explicit manner at the adequate spatial and 

temporal scale can improve the effectiveness of wildlife management as it can highlight 

the causal links between organism movement and environmental change (Nathan et al. 

2008; Figure 4).  

4.1 Extent versus resolution 
Although various approaches exist, there is as yet little consensus on how to deal with scale 

disparities - such as extent and resolution, when fitting SDMs (Barry and Elith 2006; Elith 

and Leathwick 2009). While there is no single scale at which ecological patterns should be 

studied (Levin 1992), mismatches between coverage and grain can be caused by the study 

goals, the system, data availability, and by extent to which a species perceives its 

environment. Some SDMs attempt to address these issues by incorporating hierarchical 

structures into the modelling process, either through the use of sub-models, through 

Bayesian approaches that operate across scales, or through models that allow nested 

structures of data (reviewed in Elith and Leathwick 2009). However, these different 

approaches remain untested both theoretically and practically, nor is it certain whether 

these scale-specific model predictors provide a clear advantage over traditional SDMs 

(Barry and Elith 2006).  
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Fig. 4. The link between spatial and temporal scales of habitat selection and dispersal/ 
migration and conservation planning of habitat suitability and species range effects. 
Modified from Mayor et al. (2009).  

Agent-based models are particularly well suited to represent a virtual geographic 

environment within which entities and their interrelationships (e.g., spatial, temporal, and 
spatiotemporal) can be explicitly described, and provide contextual information to which 

agents sense and respond (Tang 2008). In agent-based modelling, the movement trajectory 
or pathway of an animal can be represented as a sequence of discrete time-stamped location 

variables, for example, geographic coordinates. Because environment representation in 
ABMs can be raster- or vector-based, the location variables can be further indexed by raster 

cells or vector-based patches (Tang and Bennett 2010; McLane et al. 2011). ABMs are not 
completely immune to issues of scale. Scale factors can affect the design and application of 

agent-based models particularly when temporal landcover changes are incorporated. To 

deal with spatial constraints, Evans and Kelley (2004) recommend that models be run at a 
range of spatial scales. Then modelers can choose the minimally-acceptable resolution by 

identifying the spatial resolution at which agents have sufficient partitions on their 
landscapes within which to make biologically-relevant decisions pertinent to the study goals 

(minimum change unit), and where the heterogeneity of the landcover and land suitability 
measures are adequately represented. The coarsest, or upper bound, resolution for model 

runs can be identified by the resolution at which appreciable data loss occurs (e.g., the 
disappearance of potentially relevant cover classes).  
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Despite the universal confounds of scale regardless of the modelling methodology used, 
ABMs are still more decoupled from scale issues than SDMs as the researcher can address 
the extent- and resolution-issues by developing a model that makes the best statistical use of 
information at the finest spatial and temporal resolution available; and then allowing large-
scale behavior to emerge from the small scale via interaction between these model elements 
(Parker et al. 2003; Bithell and Brasington 2009). In addition, because ABMs incorporate 
ecological theory, and deal with processes and mechanisms at the level of the individual, the 
resultant hierarchical phenomena that emerge from agents’ interactions with others and 
their environment can naturally accommodate issues of scale (Breckling et al. 2006). As an 
illustrative example, Bennett and Tang (2006) combined cell- and patch-based approaches to 
represent multi-scale environmental representation in their elk migration model. Agent elk 
performed local movement at the cell level, but were capable of perceiving and using 
greater scale, patch-level information to guide their long-distance winter migration. In the 
wolf (Canid lupus) ABM study of Musiani et al. (2010), their canid agents were able to 
perceive disturbance (i.e., bear and human agents) at a 200m scale, and able to detect prey 
(elk) at a 3km scale, travel accordingly, and allow pack home range dynamics to emerge 
from these interactions and behaviors.  
Multiscale detection does not have to only be via the the agent’s immediate perception of 
heterogeneous landscapes features and/or agents at different scales, but through its 
memory processes. In an ABM study of the effect of anthropogenic landscape change on 
disease of red colobus monkeys (Procolobus rufomitratus) populations (Bonnell et al. 2010), 
monkey agents were able to remember the location and quantity of past resource sites that 
contained a significantly higher amount of resources (i.e., spatial memory), allowing red 
colobus agents to estimate resource levels at these sites while not within their search radius. 
This allowed for a more biologically-relevant prediction of the optimal distribution of 
resources which could facilitate the spread of an infectious agent through the simulated 
population. ABMs, through a multi-scale environmental representation, can therefore 
support the investigation of scale issues and even facilitate our understanding of individual 
movement behavior in response to spatiotemporal heterogeneity on landscapes in ways in 
which traditional SDMs cannot (Figure 5). 
 

 

Fig. 5. Multiscale habitat selection of an agent (a) in a spatially-explicit space.  

Dark grey: ‘Habitat-Selection Scale’ 
          - Scale: fine-grain, small ‘cell’ selection 
          - Behavioral processes: foraging, breeding,  
           conspecfic/heterospecific attraction or repulsion. 

Light grey: ‘Dispersal, Migration Scale’ 
          - Scale: coarse-grain, large ‘patch’ selection 
          - Behavioral processes: resource perception,  
           predator detection, memory accessing,  
           communication. 
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4.2 Geographic versus environmental space 
Another issue in SDMs is the distinction between geographic and environmental space. For 
example, two animal locations may be very close in geographic space, but the two points 
may be in completely different habitats. Important geographic predictors include glaciation, 
fire, contagious diseases, and connectivity (Elith and Leathwick 2009). Environmental 
factors primarily deal with abiotic and biotic processes such as resource distribution, social 
factors, and predation risk. Purely geographic SDMs, when attempting to derive habitat 
suitability and extrapolate findings to predictive species-range modeling, may ignore 
important environmental predictors. Equally, SDMs that solely incorporate environmental 
variables have difficulty in mapping their predictions onto geographic space as species 
distribution simply reflects the spatial autocorrelation of the environment. Current methods 
using both geographic and environmental predictors in SDMs (examples include species 
prevalence, latitudinal range / marginality, and spatial auto-correlation), while a promising 
compromise, can affect modelling performance and species predictions, with contradictory 
results (Marmion et al. 2009). Furthermore, these combined-effects models are more difficult 
to implement than standard techniques so they are under-utilized, and the emerging 
recommendation is to simultaneously apply several SDM methods within a consensus 
modelling framework (Grenouillet et al. 2011).  
ABMs are capable of representing both geographic and environmental space cohesively. 
This is accomplished by coupling ABMs to geographic information systems (GIS) that 
provide detailed abiotic and biotic characteristics of the environment (e.g., land cover, 
elevation models, resource distributions, risk), and having agents assign values to these 
geographic and environmental attributes either via a weighting function (like a friction 
map) or independently (Brown et al. 2005; Figure 6). The decision-making behaviors of 
agents therefore consider the spatiotemporal variation of the landscape itself; and the ABM 
accommodates how this variation feedbacks onto behavior in dynamic, non-predictable and 
non-linear ways. Specifically, an animal’s location in space and time, the way it perceives 
the surrounding landscape, and its subsequent behavior all determine what resources are 
accessible to it and what it chooses among those resources (May et al. 2010). In ABMs, the 
scale and degree of heterogeneity within the landscape will be perceived in different ways 
by different species, and thus an animal’s perception will influence its movement behavior, 
choice of search strategy and habitat patch choice (e.g. Lima and Zollner, 1996).  
In essence, by allowing agents to explicitly interact with, modify, and respond to their 
environs, geographic and environmental predictors are both naturally incorporated into the 
agent’s decision-making process. Any habitat-selection or movement patterns that then 
emerge will be more robust to the uncertainties involved in future predictions of species 
occupancy and range effects since specific geographical factors (e.g., barriers to movement, 
events) and spatial autocorrelation are directly represented and assimilated into the model. 
As an illustrative example, Rands et al. (2004) created a state-dependent foraging ABM for 
social animals in selfish (i.e., non-kin) herds. In the model, the agents tradeoff protective 
herding versus individual foraging behavior, with the individual basing its decisions upon 
its energy reserves, the distribution of foraging resources in the environment, and the 
perceptual range over which individuals are able to detect conspecifics, risks, and resources. 
The resulting behavior and energetic reserves of individuals, and the resulting group sizes 
were shown to be affected both by the ability of the forager to detect conspecifics and areas 
of the environment suitable for foraging, and by the distribution of energy in the 
environment. Both environmental (presence of conspecifics) and geographic (spatial 
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detection of resources) are considered independently of one another with this model. 
Grosman et al. (2009) developed an ABM to investigate management strategies that would 
reduce moose-vehicle collisions through salt-pool removal and displacement. The moose 
agents forage and travel in the Laurentides Wildlife Reserve, Quebec; and assess patches to 
visit and disperse through based on a weighted assessment of both geographic and 
environmental factors of food quality, cover quality (protection from predators and thermal 
stress), proximity to salt pools, proximity to water, and slope. The realistic patterns which 
emerged from the simulations revealed that the most successful management action was 
complete removal of salt-pools without any compensatory ones to ensure moose (Alces alces) 
survival.  
The ABM examples used in this section either comprised behavioral mechanisms in a 
spatially-implicit environment, or incorporated and modeled empirically-driven behaviors of 
agents (e.g., probabilistic, mechanical ‘decision-making’) on spatially realistic landscapes. Each 
proved very capable of accommodating multiscale agent behaviors and multi-environmental 
factors in reproducing the desired results. We believe, however, that integrating multi-scale 
and -environs using more behavioral-ecological based mechanisms in spatially realistic 
contexts (of which explicit examples in the literature are not yet available) will prove to be 
even more beneficial. When combined with behavioral mechanisms, the realism and 
applicability of the model will increase multi-fold, and the capacity of these ABMs to 
accommodate the dynamism of the environment, the spatial patterns of inter- and intra-
species mechanisms, and the feedbacks and adaptations inherent in these systems will 
represent a powerful tool in conservation planning and ecological forecasting. 
 

 

Fig. 6. Examples of how an agent perceives its environment. a.) Geographic and 
environmental variables are given specific weights (w) based on the agent’s habitat 
preferences at the initialization of the model, and the agent assesses its environs based on 
the integration of these factors which remain unchanged throughout the simulation. b.) 
Geographic and environmental variables are independently assessed by the agent at each 
time step, and factors are weighted based on the agent’s internal state, and/or fitness-
maximizing goal at that time step.  

a. b.

ω
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5. ABMs and model evaluation 

Because SDMs are essentially statistical models, it is necessary to consider the compatibility 
between statistical model evaluation and selection of predicted versus observed species 
distributions and the underlying ecological model. The principle of model selection is to 
formulate different verbal hypotheses, express these hypotheses mathematically as 
statistical models, evaluate a score of a goodness-of-fit indicator for each statistical model, 
and either strongly select one hypothesis or keep a set of plausible ones with different 
weights (Piou et al. 2009). There still exists a lack of agreement amongst SDM researchers 
about the most effective statistical methods to evaluate and predict the spatial distribution 
and habitat selection of animal species, and the degree of ecological realism inherent in the 
statistically ‘best-fit’ model (Keating and Cherry 2004; Guisan and Thuille 2005; Austin 2007; 
Elith and Graham 2009). The main reason is that different statistics are used for the various 
different models, each one measuring different aspects of performance, and as such, 
appropriate statistics relevant to the application of the model need to be selected.  
ABMs use an altogether different approach, known as pattern-oriented modeling (POM). 
This protocol is based on the assumption that patterns are the defining characteristics of a 
system and are indicators of essential underlying ecological structures and processes. 
Patterns are defined by Grimm et al. (2005) as any observation made at any hierarchical 
level or scale of the real system that display non-random structure. Patterns are therefore 
particular expressions of a given comportment of the studied individuals, populations, or 
system. POM requires the researcher to begin with a pattern found in the real system, posit 
hypotheses to explain the pattern, and then develop predictions which can be tested. By 
observing multiple patterns at different hierarchical levels and scales, one can systematically 
optimize model complexity, parameterize the model, and simultaneously make it more 
general and testable (Grimm et al. 2005).  
POM capitalizes on both behavioral ecology and spatial ecology through the emergence of 
biologically- (and behaviorally-) relevant patterns at multiple scales to evaluate model 
results. For example, the emergence of a pattern generated by a tradeoff between the costs 
and benefits of a decision process could explain the selection pattern of certain habitats, 
leading to specific step length and turning angle distribution patterns, and allowing the 
reproduction of home range characteristics to emerge (Latombe et al. 2011). This modelling 
approach allows one to simultaneously filter combinations of parameter values and model 
structures in order to achieve the aims of testing the behavior of the agents in the model and 
of reducing parameter uncertainty. The greater the number of real-world patterns that can 
be simulated concurrently, the greater the confidence in the model, and typically the smaller 
the possible parameter space (Topping et al. 2009). By extension, the POM approach can 
additionally allow for rigorous statistical approaches. Information theory and information 
criteria have been recently developed for the POM method, and serves to further improve 
the agent-based modeling framework (Piou et al. 2009). The approach can be used to 
analyze separately the different patterns of focus, and analyze together an overall level of 
evidence of each model to all the patterns. This approach is more universal than the various 
methods of SDMs model evaluation, and can be applied to very different types of agent-
based models.  
POM has been used extensively and demonstrates a strong utility in addressing model 
complexity, unknown data requirements, variable parameterization, and model evaluation. 
As an example, Railsback and Harvey (2002) created an ABM to simulate habitat selection of 

www.intechopen.com



 
Biodiversity 

 

20

salmonid fish species in response to spatial and temporal variation in mortality risks and 
food availability. They used their ABM to draw conclusions about foraging theory by 
analyzing the ABM's ability to reproduce six patterns of habitat selection by contrasting 
three alternative habitat-selection objectives: maximizing current growth rate, current 
survival probability, or expected maturity. In the model, fish based their daily decision on 
the projection of current habitat conditions for a certain number of days into the future, as 
this strategy was capable of reproducing a set of six patterns observed in reality. Rossmanith 
et al. (2006) developed an ABM to test the impact of three behavioral scenarios on 
population persistence of the lesser spotted woodpecker Picoides minor: strict monogamy, 
polyandry without costs, and polyandry assuming costs in terms of lower survival and 
reproductive success for secondary males. Using a POM-approach where the model was 
simultaneously fitted to a set of four empirically observed patterns (adult sex ratio, ratio of 
old and new pairs, proportion of nest producing at least one fledgling, number of fledglings 
per successful nest) to produce a realistic population structure, the authors found that 
polyandry and in general flexibility in mating systems is a buffer mechanism that can 
significantly reduce the impact of environmental and demographic fluctuations that cause 
variations in the population’s growth rate. Consequently, they suggested that rare, 
exceptional behavior should be considered explicitly when predicting the persistence of 
populations. Lastly, Tyre et al. (2007) explored behavioral mechanisms for home range 
overlap in a Scincid lizard, Tiliqua rugosa. The authors tested two mechanisms, one that used 
refuge sites randomly and one that included a behavioral component that incorporated 
refuge sites based on nearest neighbor distances and use by conspecifics. Comparisons 
between the simulated patterns and the observed patterns of range overlap provided 
evidence that the behaviorally-driven refuge use model was a better approximation of lizard 
space use. In sum, pattern-oriented modelling presents an effective method for identifying 
and evaluating behavioral mechanisms of habitat selection and animal movement 
underlying observed patterns.  

6. Conclusion 

In a recent paper, Caro and Sherman (2011) state that the field of behavioral ecology is at a 
key turning point in its history. While the discipline was originally created with the intent of 
developing explanatory theories of ecological and evolutionary adaptations of organisms, 
future studies should be designed to provide information for the protection and 
management of organisms that are increasingly being compromised in human-dominated 
landscapes because of species extinctions, habitat destruction, invasive species, pollution, 
and climate change. The authors posit that behavioral ecology and conservation biology can 
be linked by forecasting how anthropogenic ecological changes are liable to reshape specific 
aspects of behavioral ecology during the 21st Century. We would like to further add that 
Caro and Sherman’s ‘call to arms’ can be accomplished in one manner by integrating 
behavioral ecology with spatial ecology in agent-based models for conservation planning. 
As we have shown, ABMs have multiple advantages: they incorporate and embody 
individual variation, adaptation, emergence from interactions, geographic and 
environmental space, short- and long-range spatial scales, multiple processes, and 
hypothesis testing to identify the most influential mechanisms. In doing so, ABMs can 
reduce uncertainty and increase model fit in the identification of habitat suitability and in 
the prediction of long-term species responses to environmental change. In addition, ABMs 
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are ideally suited to work across spatial and temporal scales and on individuals and 
populations of organisms, thus reaching the most meaningful scale in conservation biology. 
ABMs also have the ability to incorporate dynamic interactions between individuals, 
whether they be competitors, predators, or even humans (e.g., hunters, recreationists). Since 
the models are not constructed to meet a set of equilibrium criteria, they can additionally 
produce discontinuous and nonlinear phenomena, such as species extinctions, range shifts, 
and exponential growth or decline of populations (Parker et al. 2003). And to reiterate, 
employing behavioral ecological concepts to reproduce the underlying mechanisms can aid 
in overcoming the issues typically associated with traditional SDMs. 
Our intent here is not to suggest ABMs replace statistical SDMs. They simply represent a 
promising alternative approach. Spatially-explicit, behavioral-ecological based ABMs are 
still rare; most models found in the literature are empirical and/or are based in implicitly-
structured spatial environs (see McLane et al. 2011 for a review). ABMs also need more 
testing and comparisons, of their own predictions and with those of other models, although 
there has been recent progress in this regard (Latombe et al. 2011). Nonetheless, while we 
perceive ABMs that encompass such a multidisciplinary approach as promising species 
distribution models for conservation research, the full potential of agent-based modeling in 
this domain still remains to be explored and fulfilled. 
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