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1. Introduction 

1.1 Industry application of ESS  
Storing of energy allows balancing of the supply and demand of energy. Today, the energy 
storage system (ESS) in commercial use can be broadly categorized as mechanical, electrical, 
chemical, biological and thermal. In further we will discuss electrical and partly mechanical 
system. Accumulation of electrical energy presents a big problem solved by a lot 
of specialists and scientists. Many ways of accumulation has been put into practice (for 
example: systems using flywheel, battery, supercapacitor etc.). Today commonly used 
vehicles of light traction (trams, trolleybuses) are not able to accumulate their kinetic energy. 
Saving of this energy is possible only by regenerative braking. This method is possible when 
another tram starts up on the same part of trolley line. Nowadays electrical energy storage 
system can be found in transport vehicles and in power engineering systems. In general 
the energy-storage devices charge during low power demands and discharge during high 
power demands, to provide energy boost when needed. 
Carbon emissions, the depletion of natural resources by fast consumption, traffic congestion 
and the rising costs of fossil fuels are all issues pushing the world to search for alternative 
means of transportation. Mass-transit buses, fleet vehicles, long-haul trucks and other 
heavy-transportation vehicles such as trains, light rails, trams and subways, all benefit from 
the using of a hybrid power drives in relation to the energy storage system. The global 
number of vehicles around the World will triple in the next 50 years (Chan & Wong, 2004). 
Thus, methods of improving fuel economy have gained worldwide attention. The efficiency 
and all-electric range (AER) of hybrid electric vehicles (HEVs) depend on the capability 
of their energy-storage system (ESS), to store large amounts of energy and release it quickly 
according to load demands.  
In transport ESS allows accumulation of the braking energy in conventional vehicles and 
special racing vehicles such as Formula 1. The kinetic energy is accumulated into the ESS 
during vehicle braking. This energy can be used to the vehicle acceleration again. It is 
important to save the energy in the vehicles accelerating very often such public transport 
vehicles (we can think about stabile or mobile version according to the local specific 
conditions). 
Heavy transportation vehicles - such as trains, trams and subways - place particular 
demands on energy storage devices. Such devices must be very robust and reliable, 
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displaying both long operational lifetimes and low maintenance requirements. Further, 
the devices must operate efficiently under harsh conditions including handling peak 
currents, high duty cycles and frequent deep discharging.  
ESS can absorb and store all kinetic energy from a braking system, depends on total energy 
designed in ESS. The emission-free stored electrical energy in ESS is then available to assist 
in acceleration, to reduce fuel consumption and accompanying emissions or energy drain, as 
well as drive the air conditioner, operate power steering or perform other electrical 
functions. As an added bonus, regenerative braking takes most of the mechanical brakes 
load off, reducing brake maintenance and replacement expenses. 
Very important area of ESS is power engineering where the ESS covers small to large rated 
power range, including active PFC used to set the appropriate power factor and harmonic 
emission to the power grid. 
The important characteristics of ESSs include energy density, power density, lifetime, cost, 
energy storage time and maintenance (see Fig. 3 and Fig. 4). Currently, batteries and 
ultracapacitors are the most common options for vehicular ESSs. Batteries usually have high 
energy densities and store the majority of onboard electric energy. On the other hand, 
ultracaps have high power densities and present a long life cycle with high efficiency and 
a fast response for charging/ discharging (Burke, 2007; Khaligh & Li, 2010; Zhang et al., 
2008; Lu et al., 2007). A fuel cell (FC) is another clean energy source (Fig. 1 and Fig. 2); 
however, the long time constant of the FC limits its performance on vehicles. Very 
perspective ESS shows the flywheel system with low cost benefit and high energy density. 
However using flywheel in the transport is a bit disputable due to gyroscopic effect. 
Nevertheless for stationary systems the ESS with flywheels presents perspective topology 
with respect the low energy storage time (Fig. 4), this system cannot be used as back up 
power source as batteries and ultracaps.  
 

 

Fig. 1. City bus powered by Fuel Cells (TriHyBus.cz, 2008). 

 

 

Fig. 2. Detail on fuel cells, the ESS is composed of Li-ion battery and supecapacitors  
(TriHyBus.cz, 2008) 
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As design engineers have found, batteries have high-energy capability while 
the ultracapacitors have high power capability. In an optimal hybrid alternative drive system, 
both technologies could be combined in a way that maximizes the benefits of both. In general 
vehicles have batteries to provide energy back up for control systems, start engine etc.  
The ESS of most of the commercially available HEVs is composed of only battery packs with 
a bidirectional converter connected to the high-voltage dc bus (the Toyota Prius, Honda 
Insight, and Ford Escape). 
Start-stop technology enables the engine in conventional, electric or hybrid-electric delivery 
trucks and refuse vehicles to shut down when they come to a stop at a red light, picking up 
or dropping off passengers, or when sitting in traffic. ESS then provides a short burst 
of energy that restarts the motor. ESS can save millions of barrels of oil over conventional 
gasoline-only powered vehicles. 
 

 

Fig. 3. Comparison of several ESS due to energy and power density 

 

 

Fig. 4. Comparison of Energy storage time of several ESS 

2. Battery 

Batteries have widely been adopted in ground vehicles due to their characteristics in terms 
of high energy density, compact size, and reliability (Lukic et al, 2008). 
The Batteries have a very wide field of applications in systems for the electrical ESS. They 
are used in stationary systems, as short time power sources (eg UPS).The other applications 
are in transport, used as the main source (eg, full-electric vehicle), or as the secondary 
sources (for covering of peak powers combinated with FC) - the main advantage is their 
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ability to accumulate electrical energy during braking. The batteries bonus proprieties are 
high energy density, excellent energy storage time and reliability. There must calculated 
with the fact that batteries are limited by operating temperature and exhibit the lower power 
density compared to the other electric ESS. Very important parameter of the battery is 
the price, that depends closely on the battery type. Among the other monitoring proprieties 
(batteries used in industry) there are charging and discharging currents, life time / cycles. 
 

 

Fig. 5. The dependence of Energy density on battery weight 

The basic types of batteries used in industry and their specifications are: 

Lead–Acid Batteries 

These types of batteries are composed of the spongy lead works as the negative active 
material, lead oxide is the positive active material, and diluted sulfuric acid is 
the electrolyte. During discharging, both materials (positive and negative) are transformed 
into lead sulfate (Williamson et al, 2005). The lead–acid battery presents several advantages 
for HEV applications. They are available in production volumes today, yielding 
a comparatively low-cost power source. In addition, lead–acid battery technology is 
a mature technique due to its wide use over the past 50 years. However, the lead–acid 
battery is not suitable for discharges over 20% of its rated capacity. When it operates at 
a deep rate of state of charge (SOC), the battery would have a limited life cycle. 
These batteries are still one of the most popular for its low price. The disadvantage of this 
battery is using of toxic lead and very low charging currents for ESS. 
Nickel–Metal Hydride (NiMH) Batteries 

The NiMH batteries use an alkaline solution as the electrolyte. The battery is composed 
of nickel hydroxide on the positive electrode and the negative electrode consists of an alloy 
of vanadium, titanium, nickel, and other metals. The components of the battery are harmless 
to the environment; moreover, the batteries can be recycled. The advantages of these 
batteries are long lifetime, wide operating temperature ranges and the resistance to over 
charge and over discharge. The batteries should not be repeatedly discharged by high load 
currents, because the lifetime of battery is reduced to about 200 cycles. Another 
disadvantage is the battery memory effect. 
Lithium-Ion Batteries 

These types of batteries are characterized by high energy density and low memory effect. 
The Li-ion battery uses an oxidized cobalt material as a positive electrode, the negative 
electrode is made of a carbon material and lithium salt in an organic solvent is used as 
the electrolyte. The advantages of these batteries are high energy density of 120 Wh/kg, 
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high power density of 300 W/kg, long battery life of 1000 cycles, low memory effect and 
environment harmless. The main disadvantage of this battery is still the high price 
and questionable availability in the future. 
Nickel–Zinc (Ni–Zn) Batteries 

Nickel–zinc batteries have high energy and power density, low-cost materials, and deep 
cycle capability and are environmentally friendly. The operation temperature of Ni–Zn 
batteries ranges from −10 ◦C to 50 ◦C, which means that they can be used under severe 
working circumstances. However, they suffer from poor life cycles due to the fast growth 
of dendrites, which prevents the development of Ni–Zn batteries in vehicular applications. 
Nickel–Cadmium (Ni–Cd) Batteries 

These types of batteries are characterized by long lifetime and can be fully discharged 
without damage. The specific energy of Ni–Cd batteries is around 55 Wh/kg. 
The disadvantage of these batteries is using of cadmium. These batteries can be recycled, but 
the cadmium is a kind of heavy metal that could cause environmental pollution if not 
properly disposed of.  
A summary of the batteries properties used in industry can be seen in Table 1, or in detail 
(Buchmann, 2011). 
 
 Lead Acid NiCd NiMH Li-ion 

(Mn) 
Li-ion 
(phosphate) 

Li-ion 
(Co) 

Energy 
density 
(Wh/kg) 

30 – 50 
 

45 – 80 60 – 120 100 – 135 90 – 120 * 150 – 190 

Cycle life 
(80% of 
nominal 
capacity) 

200 – 300 1500 300 – 500 300 – 500 1000 – 5000 * 300 – 500 

Self 
discharge per 
month 

5 % 20 % 30 % low than 10 % low than 3 % * low than  
10 % 

Nominal 
voltage per 
cell 

2 V 1.25 V 1.25 V 3.6 V 3.3 V * 3.6 V 

Load current 
– peak 
–continuous 

 
5 C 
0.2 C 

 
20 C 
1 C 

 
5 C 
0.5 C 

 
30 C 
10 C 

 
20 C * 
5 C * 

 
3 C 
1 C 

Operating 
temperature 

-20°C to 60°C -40°C to 60°C -20°C to 60°C -20°C to 60°C -20°C to 60°C -20°C to 
60°C 

Safety Thermally 
stable 

Thermally 
stable, fuse 
recommended

Thermally 
stable, fuse 
recommended

Stable to 
250°C 
protection 
circuit 
recommended

Stable to 
250°C 
protection 
circuit 
recommended 

Stable to 
150°C 
protection 
circuit 
mandatory 

Toxicity Toxic lead 
and acids, 
harmful to 
environment

Highly toxic, 
harmful to 
environment 

Relatively, low 
toxicity, 
should be 
recycled 

Low toxicity Low toxicity Low 
toxicity 

* For the Li-ion (phosphate) battery it is necessary to know the type and used material 

Table 1. Comparison of selected types of batteries usable for ESS 
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One of the main indicators of the battery quality is energy density (Wh/kg), Fig. 5 and Table 1 
show that the best batteries are based on lithium-ion technology. In terms of safety and 
lifetime are today come to the fore a very advanced lithium-ion batteries with phosphate and 
that are widely using in electric traction. The leading manufacturers of these batteries are 
Valence Technology (LiFeMgPO4) and Winston Battery Limited (LiFeYPO4). In the data from 
the manufacturers can be found other important information about the batteries. Such as: 
• Cycle life (80% of nominal capacity) depends on operating temperature Fig. 6. 
• Discharge voltage behaviour (operable capacity) depends on temperature Fig. 7, Fig. 8. 
• Discharge voltage behaviour (operable capacity) depends on load current Fig. 9. 
• Battery self discharge behaviour per one year Fig. 10. 
 

 

Fig. 6. Battery cycle life depends on operating temperature (LiFeMgPO4) (Valence 
Technology, 2010) 

 

 

Fig. 7. Discharge Voltage depends on operating temperature (LiFeMgPO4) (Valence 
Technology, 2010) 
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Fig. 8. Discharge Voltage depends on operating temperature (LiFeYPO4) (Winston Battery 
Limited, n.d.) 

 

 

Fig. 9. Discharge Voltage depends on load current (LiFeYPO4) (Winston Battery Limited, 
n.d.) 
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Fig. 10. Battery self discharge behaviour (LiFeYPO4) (Winston Battery Limited, n.d.) 

The electrical ESS based on battery must contain the special electric circuit, that ensures 

the battery charging and discharging at the specified limits. The basic topology is depicted 

in Fig. 11, battery cell is connected to load/source via buck/boost converter. The battery 

voltage is lower than DC-link voltage and for charging the battery is used the buck 

converter (T1, D2 elements). During discharging of battery cycle the voltage should be 

increased by boost converter (T2, D1 elements). This topology is simply and very often used 

at electric traction and at back-up system for example (Drabek & Streit, 2009). 
 

 

Fig. 11. The basic power circuit for ESS based on battery (standard buck/boost converter) 

Sophisticated topology uses the N-phase buck/boost converter. The principle is similar as 

the previous one, only the current is divided into three parallel branches, that are controlled 

by shifted carriers in PWM. 
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The advantage of this topology is in reducing of the current ripple caused by shifted carriers 
PWM control. The example of three phase buck/boost converter is shown in Fig. 12.  
This type of converter is practically used e.g. for photovoltaic systems (Lin et al., 2010), 
where is pressure to reduce converter losses. Another common use is at electric traction, 
where the reducing of the filtering inductor weight and size is welcome. 
 

 

Fig. 12. The three-phase buck/boost converter for ESS based on battery 

The modern power circuit topologies for electrical ESS based on battery is the bi-directional 
DC/DC converter with transformer binding for example Fig. 13. This type of converter is 
typically used for PV systems, because in relation to soft switching technology it has high 
efficiency (Shengyong et al., 2010). 
 

 

Fig. 13. Traction topology of ESS based on supercapacitors – high voltage version 
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The Fig. 14 – Fig. 16 show several transport vehicles powered by battery ESS. 
 

 

Fig. 14. Battery scooter (Vectrix Corp, 2010) Battery: Li: LiFeP04, 30Ah capacity 

 

 

Fig. 15. Battery car (CODA Automotive, 2010) Battery: LiFePO4, 728 cells (104s7p) 

 

 

Fig. 16. Battery bus (Zhongtong Bus Holding Co, (n.d.) Battery: Li-ion, 540 Ah capacity 

3. Supercapacitors (ultracapacitors) 

Supercapacitors (SC) are electrochemical capacitors with an unusually high energy density 
compared to common capacitors, typically thousand times greater than a high-capacity 
electrolytic capacitor. They are based on a structure that contains an electrical double layer 
(anode (aluminium foil) – active carbon – separator – active carbon – cathode (aluminium 
foil) - it is shown in Fig. 17) and therefore they have the high capacity. The carbon nanotubes 
have very large surface area. One gram of this carbon presents surface area about 2000m2/g. 
The SC stores energy by physically separating positive and negative charges. The charges 
are stored on two parallel plates divided by an insulator. Since there are no chemical 
variations on the electrodes, therefore, UCs have a long cycle life but low energy density. 
The power density of the UC is considerably higher than that of the battery; this is due to 
the fact that the charges are physically stored on the electrodes. Low internal resistance 
gives UC high efficiency but can result in a large burst of output currents if the SC is 
charged at a very low SOC. 
There are five UC technologies in development: carbon/metal fibre composites, foamed 
carbon, a carbon particulate with a binder, doped conducting polymer films on a carbon 
cloth, and mixed metal oxide coatings on a metal foil. Higher energy density can be 
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achieved with a carbon composite electrode using an organic electrolyte rather than 
a carbon/metal fibre composite electrode with an aqueous electrolyte (Lu et al., 2007). 
 

 

Fig. 17. Principle of supercapacitor (EPCOS AG, 2011) 

 

 

Fig. 18. Typical structure (layers) of supercapacitor  (EPCOS AG, 2011) 

Fig. 17 shows charge distribution in SC. Large surface area of carbon nanotube can soak up 
a lot of charge, therefore SC presents the high capacity. SC fills the gap between common 
capacitors and common batteries as you can see in the Fig. 3. 
Ultracapacitors quickly capture energy from braking and then use that energy to provide 
a short burst of power during acceleration and to dramatically reduce the use of fuel in 
a conventional internal combustion engine or electrical energy drain in an all electric or 
hybrid system. Generally used ultracapacitors in transportation are compact, high-
performance, have exceptionally long-life and fulfil many of the functions of batteries but 
with dramatically higher reliability and they are virtually impervious to any climate 
condition. 
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Fig. 19. The hybrid bus with supercapacitors (Maxwell Technologies, 2011) 

Supercapacitors are made in different modules and packages. Because the voltage of one cell 
is only two volts, the cells must be connected to series connection for increase of the voltage. 
Large industry SC has a nominal voltage of 125V. This 125V transportation module is shown 
in Fig. 20. 
 

 

Fig. 20. 125V Transportation Module (Maxwell Technologies, 2011) 

 

 

Fig. 21. SC on the roof of Scania bus (Green Car Congress - BioAge Group, 2010) 
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Features of 125V Transportation module: 
• More than 1 million of charge - discharge cycles 
• Operating temperature -40° C to +65° C 
• Nominal capacitance 63F 
• Internal resistance 18mΩ 
• Constant current 150A 
• Peak current 750A (1s 10% duty cycle) 
• Energy about 100Wh (discharging to half voltage) 
• Weight 59,5kg 
• Size 619 x 425 x 265 mm 
In principal the configuration of DC/DC converter should be following: 
• Classical buck/boost converter (two-quadrant converter – one voltage polarity with 

current reversal) – Supercapacitor voltage cannot be higher than voltage in DC line due 
to diode (Fig. 22) 

• Two buck/boost converters (two-quadrant converter according to CSC – one voltage 
polarity with current reversal) – Supercapacitor voltage can be higher than voltage in 
DC line (Fig. 23). 

 

 

Fig. 22. Traction topology of ESS based on supercapacitors – low voltage version 

 

 

Fig. 23. Traction topology of ESS based on supercapacitors – high voltage version 
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Example of using SC in light rail 

Fig. 24 shows principle schema of energy storage system with supercapacitors. This topic is 

described in the (Drabek & Streit, 2009). 

 

 
 

Fig. 24. Topology of energy storage system in light rail vehicle 

The Energy Storage System is created with the DC/DC converter and with the block 

of supercapacitors. Charging of supercapacitors (braking of vehicle) and discharging 

(acceleration of vehicle) is controled by DC/DC pulse converter.  

Voltage of supercapacitors corresponds with quantum of accumulated energy. It is 

necessary to connect SC by DC/DC converter to set voltage of SC independent of DC circuit 

of traction converter voltage. Controlling of DC/DC converter ensures using SC in right 

time. Energy accumulation during braking vehicle and using of the energy by first 

accelerating request appears as the best way of controlling idea.  

Transferring of kinetic energy to the SC (means charging and discharging) can be done by 

appropriate control strategy of Buck/Boost converter. This accumulated energy can be used 

for acceleration of the vehicle. PI controller ensures current from ESS (Energy Storage 

System) as an equivalent with current of traction converter. It means that PI controller 

controls trolley line current to zero. This idea saves a lot of energy needed for repeated 

accelerations. 

Simulations have been provided for a tram vehicle with rated power of 348 kW, weight 22t. 

Block of supercapacitors 125V, 63F by MAXWELL (Fig. 20) was chosen. We have used block 

of 4 supercapacitors - that means 500V and 15,75F (nominal voltage of trams is 600V and 

due to used converter in Fig. 22 it is necessary to use ESS with low voltage). 

Basic settings for control of DC/DC convertor: 

• UCS has not exceed level of 500V and decrease under level of 250V (it depends on 

manual of SC MAXWELL, the common minimum voltage is 50% according to the 

lifetime cycles). 

• ICS has not to exceed level of 750A (it depends on manual of SC MAXWELL according 

to the lifetime cycles). 

It is possible to use few ways to control energy storage system. Firstly, to control voltage UF 

to nominal value of trolley voltage (e.g. 600 V) – to discharge SC at lower voltage of UF and 
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charge SC at lower voltage of UF. The control of charging and discharging according to 

driving cycle of the vehicle (braking – charging, acceleration – discharging). The second 

method is used for described system. 

 

 

 

 

Fig. 25. Light rail topology - Buck (TD)/Boost (TU) convertor for SC 

Proposed control strategy: 

• Firstly to discharge SC by every request for acceleration and prepare SC for charging 

during braking. 

Fig. 26 shows behaviour of energy storage system for chosen grading of track. Shown values 

correspond to schema in Fig. 25. Current is filtered to better view. In time period 1-2s 

current of traction motor is fully supplied by energy storage system SC as you can see in Fig. 

26. In time 6s supercapacitor is fully discharged, therefore current for traction motor is fully 

supplied by trolley line. SC is charging by first braking in time 10-13s and it is discharging 

by next accelerating in time 14-17s. In time 23s SC is fully charge and redundant energy is 

taking out by braking resistors RBR (if the recuperating to the trolley line is not possible due 

to over voltage). 
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Fig. 26. Application of energy storage  system for grading of track 

4. EES with flywheel 

Interesting energy storage system used in industry is flywheel. It is a mechanical ESS, which 
is again interesting for use in electric traction vehicle, as well as stationary ESS. The flywheel 
is a rotating device, this device accumulate kinetic energy as: 

 2E  ½ . m.v=  (1) 

Same as 

 2E  ½ .J= ω  (2) 

E...energy [J] 
m...weight [kg] 
v...speed [m.s-1] 
J... moment of inertia [kg.m2] 

ω...angular velocity [s-1] 
The quantity of kinetic energy, that is accumulated by flywheel directly depends on 
the rotor moment of inertia, also it square depends on angular velocity.  Therefore, it is 
advantageous to adjust the flywheel for high speed as possible. The aspect of the saving 
weight with maximizing of the flywheel energy is especially important in traction vehicles. 
Nowadays the well-known application is in the racing cars Formula 1, the system ESS is 
called KERS (Kinetic Energy Recovery System - Fig. 31). 
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As a perspective electric drive in ESS with flywheel is used the switching reluctance motor 
(SRM), that brings advantages in simple motor design, low cost, robust construction. 
On other hand it needs advanced control system (Talla & Stehlik, 2008). The energy storing 
and removing from flywheel can be done by mechanical means (Flybrid Systems, 2010), or 
by electrically Fig. 27. 
 

 

Fig. 27. Flywheel energy storage done electrically 

The Fig. 28 shows a complete ESS device with flywheel and Fig. 29 shows the configuration 
of the flywheel as a presented by VYCON company (VYCON, 2011). 
 

 

Fig. 28. Flywheel energy storage systems (VYCON, 2011) 

A summary of the flywheel properties can be seen in Table 2, or in detail (AutoSpeed - Web 
Publications Pty Limited, 2011; Cibulka, 2009) 
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Fig. 29. The flywheel composition (VYCON, 2011) 

 

 BATTERY 
LiFePO4 

SUPERCAPACITOR FLYWHEEL 

Energy 
density 
(Wh/kg) 

90-120 1-4 40-60 metal 
140-350 composite 

Cycle life 
 

500-1500 
(3000)* 

1 000 000 5 000 000 

Self 
discharge  

lower than 10 % 
(3%)* 
per month 
 

50% of initial voltage 
per month 

2-5% per minute 

Operating 
temperature 

-30°C +60°C  
(-45°C +85°C)* 

-40°C +65°C -40°C +150°C 

Safety + + - 

Toxicity - + + 

* For the Li-ion (phosphate) battery is necessary to know the type and used ingredients 

 (donated) 

Table 2. Comparison of ESS used in industry 
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Flywheel advantages and disadvantages 

+ - 
High reliability Gyroscopic effect 

Very low maintenence High energy losses (2-5% per min) 
High temperature range Special (expensive) bearings 

High power density Dangerous if failure 
No capacity decreasing in time Vibration (producing and sensitive) 

Enviromental friendly Complicated control 
Unneeded cooling  

Long lifetime  
Easy energy remaining information  

 

In Fig. 30 - Fig. 33 are shown different flywheel devices used at modern road vehicle.  
 

 

Fig. 30. Flywheel construction (Flybrid Systems, 2010) 

 

 

Fig. 31. The original CVT based Formula One KERS (Flybrid Systems, 2010) 

The next practical using of flywheel is at light traction vehicle as a tram. The fig. 34 presents 
hydrogen train using flywheel for energy storage. 
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Fig. 32. The Jaguar flywheel module with integrated vacuum and lubrication pumps 
(Flybrid Systems, 2010) 

 

 

Fig. 33. The Flybrid Flywheel Capacitor (Flybrid Systems, 2010) 

 

 
Fig. 34. Hydrogen train (ALSTOM, 2011) 
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