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1. Introduction 

Recent years, with the fossil oil crisis, biodiesel is no longer a new word for everyone. The 

internationally generally accepted definition is according to ASTM biodiesel standard 

D6751, which biodiesel is defined as a "fuel comprised of mono-alkyl esters of long-chain 

fatty acids derived from vegetable oils or animal fats, designated B100."  

1.1 History 

Using vegetable oil to make diesel is not a new idea, which can date back to 1853 by E. 

Duffy and J. Patrick (Feofilova et al., 2010). At the Paris International Exhibition in 1900, R. 

Diesel demonstrated a test engine sample working on peanuts oil. In 1912, Rudolf Diesel 

said, “The use of vegetable oils for engine fuels may seem insignificant today. But such oils 

may become in course of time as important as petroleum and the coal tar products of the 

present time”(Murugesan et al., 2009). During the following decades, because of fossil 

diesel’s low price, the demands and research on biodiesel was not that much required. On 

31 August 1937, G. Chavanne of the University of Brussels (Belgium) was granted a patent 

for a "Procedure for the transformation of vegetable oils for their uses as fuels" (Belgian 

Patent 422,877). This patent described the alcoholysis (often be called as transesterification) 

of vegetable oils using ethanol (and mentions methanol) in order to separate the fatty acids 

from the glycerol by replacing the glycerol with short linear alcohols. This appears to be the 

first account of the production of what is known as “biodiesel” today(Knothe, 2001). 

The 1970s’ energy crisis and people’s more attention in environment re-sparked the study of 

biodiesel and boomed it rapidly. In the period 2001 - 2009, the production of biodiesel in the 

world increased by more than 16 times (from 9.57 billion tons to 157.6 billion tons). Except 

the traditional biodiesel production countries – the EU and US, a significant increase of 

market has been expected in developing countries as China, Brazil, Japan, Indonesia, and 

Malaysia. 

1.2 Properties of biodiesel 

Biodiesel is a mixture of monoalkyl (mostly methyl or ethyl) esters of fatty acids obtained 

from renewable resources, such as plant oils or animals fats.  

Many industrial devices to produce biodiesel had been set up in Europe and USA, and 

certain standard of biodiesel had been formulated. EU and ASTM Standards on biodiesel 

listed in Table 1.  
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Properties EN14214 ASTM D6751 

FAME content ≥96.5% (m/m) - 

Density at 15°C ≥ 860, ≤ 900 (kg/m)³ - 

Viscosity at 40°C ≥ 3.5, ≤ 5.0 (mm²/s) ≥ 1.9, ≤ 6.0 (mm²/s) 

Flash point ≥ 101°C ≥ 130°C 

Sulfur content ≤ 10 mg/kg ≤ 50 mg/kg 

Carbon residue remnant (at 10% 
distillation remnant) 

≤0.3% (m/m) ≤0.05% (m/m) 

Cetane number ≥51.0 ≥47 

Sulfated ash content 
- 

≤ 0.02% (m/m) 
- 

≤ 0.02% (m/m) 

Water content ≤ 500 mg/kg ≤ 0.05%(v/v) 

Total contamination ≤ 24 mg/kg - 

Copper band corrosion (3 hours 
at 50 °C) 

Class 1 max No. 3 max 

Oxidation stability, 110°C ≥6 hours ≥3 hours 

Acid value ≤ 0.5 ≤ 0.8 

Iodine value ≤ 120 - 

Linolenic Acid Methylester ≤ 12% (m/m) - 

Polyunsaturated (≥4 Double 
bonds) Methylester 

≤1% (m/m) - 

Methanol content ≤0.2% (m/m) - 

Monoglyceride content ≤0.8% (m/m) - 

Diglyceride content ≤0.2% (m/m) - 

Triglyceride content ≤0.2% (m/m) - 

Free Glycerine ≤0.02% (m/m) ≤ 0.02 

Total Glycerine ≤0.25% (m/m) ≤ 0.25 

Group I metals (Na+K) ≤ 5 mg/kg ≤ 5 

Group II metals (Ca+Mg) ≤ 5 mg/kg - 

Phosphorus content ≤ 4 mg/kg ≤ 0.001%(m/m) 
 

Table 1. Biodiesel standards of EU and US 

1.3 Advantages & disadvantages of biodiesel 

Compared with fossil diesel, biodiesel has the following advantages (Feofilova et al., 2010; 

Murugesan et al., 2009) : 

1. Biodiesel is a renewable energy source as opposed to oil, the reserves of which are finite 

as the reserves of other fossil fuels. 

2. Biodiesel can decompose easily under natural conditions, and over 90% pure biodiesel 

can be degrade in a few weeks. 

3. Compared with common diesel and petrol, biodiesel has higher combustible value that 

makes it relatively safe to be stored and transport. 

4. Biodiesel contains much less sulfur which not only provides lower share of toxic 

substances in the exhaust but also enables to provide the lubrication of movable parts 

during the work of the engine(Knothe & Steidley, 2005). The decrease of other harmful 
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compounds like PAHs and NOx occurs due to a big percentage of oxygen and more 

complete combustion of fuel. And pure or blend biodiesel also could suppress the net 

production of carbon dioxide.  

Although biodiesel is “greener” than fossil fuels, it still has a number of disadvantages: 
1. High viscosity and surface stress would lead to bigger drops which may cause 

problems with the system of fuel injection. 
2. Vegetable oil contains much more unsaturated compounds than diesel, so biodiesel 

from it is much easier subjected to oxidation. This parameter correlates with the iodine 
number. 

3. More expensive due to the raw material. Nowadays, the raw material of biodiesel 
usually soybean oil in US and peanuts oil in EU. 

2. Transesterification 

Generally, the main contents of vegetable oil and animal fats were triglycerides. The 
common and industrial method to produce biodiesel is chemically described as the 
transesterification of oil with short chain alcohol. The overall reaction equation is listed in 
Fig. 1. And this transesterification of triglycerides with alcohol is a three steps reversible 
reaction (Fig. 2.). This reaction proceeds essentially by mixing the reactants, however, it may 
accelerate with the presence of a catalyst. 
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Fig. 1. The overall transesterification reaction of oil with alcohol (left) 

 

Triglyceride R‘OH+ Diglyceride RCOOR’+

Monoglyceride RCOOR‘Diglyceride R’OH ++

GlycerolR‘OHMonoglyceride RCOOR’+ +
 

Fig. 2. Chemistry of transesterification process 

Methanol is most frequently used, mainly because the reaction rate is higher and the price is 
cheaper than any other commercial alcohols. The fuel qualities of alkyl esters have received 
varying evaluations in terms of alcohol used. Methyl ester was better than ethyl ester from 
the standpoint of engine performance: higher power and torque were achieved from the 
engine when methyl ester was used as fuel (Knothe, 2005). 

2.1 Mechanism 

The mechanism of alkali-catalyzed transesterification is described in Fig.3 (Ma & Hanna, 
1999). The first step is an attack on the carbonyl carbon atom of the triglyceride molecule by 
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the anion of methoxide ion to form a tetrahedral intermediate. In the second step, the 
tetrahedral intermediate reacts with a methanol to regenerate the anion of the alcohol 
methoxide ion. In the last step, rearrangement of the tetrahedral intermediate results in the 
formation of a fatty acid ester and a diglyceride. 
 

 

Fig. 3. The mechanism of alkali-catalyzed transesterification of triglycerides with alcohol 
(Ma & Hanna, 1999, as cited in Scridharan & Mathai, 1974)  

Transesterification can also be catalyzed by Brønsted-Lowry acids. These catalysts give very 

high yields in alkyl esters but reactions are slow, requiring typically temperature above 100 
℃ and hours to complete the conversion (Schuchardt et al., 1998). The mechanism of acid 

catalyzed transesterification of vegetable oil (for a monoglyceride) is shown in Fig. 4 (Meher 
et al., 2006). However, it can be extended to di- and tri-glycerides. The protonation of 
carbonyl group of the ester leads to the carbocation, which after a nucleophilic attack of the 
alcohol produces a tetrahedral intermediate. This intermediate eliminates glycerol to form a 
new ester and to regenerate the catalyst. 
 

 

Fig. 4. The mechanism of acid-catalyzed transesterification of triglycerides with alcohol 
(Meher et al., 2006) 
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2.2 Main factors affecting the transesterification reaction 

Except the effect of different catalysts, the process of transesterification is affected mainly by 
the following factors: temperature, molar ratio of methanol to oil, reaction time, mixing 
condition, amount of free fatty acid and moisture in the raw oil. 

2.2.1 Molar ratio of methanol to oil 

The methanol/oil molar ratio is one of the most important variables affecting the ester yield. 
The stoichiometric ratio for transesterification is 3:1 (methanol/oil). Since this is an 
equilibrium reaction, an excess of methanol will increase the oil conversion by shifting this 
equilibrium to producing FAME. An acid catalyzed reaction usually needs much more 
alcohol than an alkali catalyzed one.  

2.2.2 Temperature & reaction time 

Transesterification can occur in different temperatures depending on the type of  
oil employed (Ma & Hanna, 1999). A few works reported the reaction at room temperature 
(Encinar et al., 2002; Graboski & McCormick, 1998). With sodium and potassium hydroxides 
as catalysts, the transesterification reaction between Cynara cardunculus L. oils and ethanol 
could obtain a conversion of 91.6% at room temperature(Encinar et al., 2002). Being an 
equilibrium reaction, the equilibrium constant is influenced by temperature and pressure. 
High temperature and pressure is benefit for the conversion of oil, however, as usually this 
reaction occurs under atmosphere and the oil has a relatively higher boiling point, the 
boiling point of alcohol used in transesterification is considered as the best reaction 
temperature (Bo et al., 2007; Cui et al., 2007; Gao et al., 2008). 
The conversion rate increases with reaction time. Ma et al. (Ma et al., 1999) studied the effect 
of reaction time on transesterification of beef tallow with methanol. The reaction was very 
slow during the first minute due to mixing and dispersion of methanol into beef tallow. 
From one to 5 min, the reaction proceeds very fast. The production of beef tallow methyl 
esters reached the maximum value at about 15 min. 

2.2.3 Mixing condition 

The transesterification reaction employing methanol commences as two immiscible phases as a 
result of the very low solubility of TAG in methanol (Boocock et al., 1996a; Boocock et al., 
1996b; Zhou & Boocock, 2006a, 2006b), which is about only 7.5 g of soybean oil soluble in 1 L of 
methanol at 30°C (Boocock et al., 1996b). Sufficient magnitude Stirring can make TAG 
transport into small drops which contact the methanol phase more effectively, and then 
convert into FAME and glycerin (Moser, 2009). The rate at which FAME are produced during 
the transesterification reaction is thus controlled by mass-transfer limitations, which results in 
a lag time before conversion to FAME begins (Boocock et al., 1998; Doell et al., 2008; Zhou & 
Boocock, 2006b). This condition is more obvious when the reaction is catalyzed by solid 
catalysts. In order to omit the mass transferring resistance between oil phase and alcohol 
phase, cosolvents like tetrahydrofuran (THF), 1, 4-dioxane, isopropyl ether and diethyl ether 
were added into the reaction system to obtain a one phase reaction (Meher et al., 2006).  

2.2.4 Free fatty acid and moisture  

The free fatty acid and moisture content are key parameters for determining the viability of 
the vegetable oil transesterification process. The starting materials used for base catalyzed 
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alcoholysis should meet certain specification which is that a free fatty acid (FFA) value 
lower than 3% is needed to carry the base catalyzed reaction to completion (Meher et al., 
2006). If the reaction conditions do not meet the above requirements, ester yields are 
significantly reduced. When catalyzed by NaOH, without adding FFA and water, the 
apparent yield of beef tallow methyl esters (BTME) was highest, and when only 0.6% of FFA 
was added, the apparent yield of BTME got to the lowest, less than 5% (Ma et al., 1998). 
When 0.9% of water was added, without addition of FFA, the apparent yield was about 17% 
(Ma et al., 1998).  

2.2.5 Catalyst concentration 

Catalyst concentration can affect the yield of the biodiesel product(Leung et al., 2010). 
Usually, the conversion of triglycerides and the yield of biodiesel increase with the 
catalyst concentration increasing. This is because an insufficient amount of catalysts result 
in an incomplete conversion of the triglycerides into the fatty acid esters(Leung & Guo, 
2006). However, if the catalyst amount over the optimal concentration, the biodiesel yield 
would decrease a little with a further increase, which is due to the excess alkali catalyst 
causing more triglycerides to react with the alkali catalyst and form more soap (Dorado et 
al., 2002). 

2.2.6 Case study: Effect of reaction parameters in the transesterification of palm oil 
with methanol by KF/ hydrotalcite 

The following part describe the main parameters effect of the transesterification reaction 
between palm oil and methanol, which catalyzed by a solid base KF/hydrotalcite. In this 
case, it is clearly shown the effect of methanol/oil molar ratio, temperature, catalyst amount, 
and reaction time.  
Figure 5 a) showed the influence of methanol to oil molar ratio on FAME yields. The ester 
yields increased as the amount of methanol increased, and reach the maximum value of   
85 % with a molar ratio of 12:1. The increased ester yield with increasing methanol amount 
below 12:1 can be explained by the pushing effect of excess methanol on the reaction 
balance. And the decreasing of yield should be due to the large amount of methanol diluting 
the oil and reducing the reaction rate. 
Figure 5 b) showed the yields of FAME obtained over various amount of catalyst. As can be 
observed, the best results were reached with a concentration of 3 %. The excess catalyst over 
3 % did not raise the FAME yield but caused a little decrease. This can be explained by the 
theory that the catalyst only changes the reaction rate and do not affect the balance of an 
equilibrium reaction. Therefore, in a fixed reaction time, sufficient amount catalyst is 
necessary to obtain a reaction rate fast enough. In this case, with 3 % catalyst, reacting 3h is 
enough to reach the balance, and the more catalyst could not shifting the balance to get 
higher FAME yield.  
In Figure 5 c), as indicated, reaction temperature was varied between 318 ~ 348 K. For the 
same final reaction time, yield of FAME increased with the increasing of reaction 
temperature. The equilibrium constant of a reaction is influenced by temperature and 
pressure. And in this case, which carried out under atmospheric pressure, the former factor, 
reaction temperature, affected the equilibrium constant much. Therefore, as the temperature 
rose, the conversion of the oil went up. Moreover, mass-transfer effect was another factor 
which hinders the transesterification. High temperature is benefit to the mass transfer. 
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Based on the two reasons above, higher temperature could get higher yield. However, from 
the results in Figure 5 c), when the temperature exceeded 338 K, the FAME yield dropped 
obviously. That voluminous methanol gasified and reduced the amount of it in the liquid, 
when the temperature rose over 338 K (the boiling point of methanol), might be the reason 
of lower yield. 
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Fig. 5. a) Effect of the molar ratio of methanol/oil on the FAME yield; b) Effect of catalyst 
amount used on the FAME yield; c) Effect of reaction temperature on the FAME yield; d) 
Effect of reaction time on the FAME yield. (The mass ratio of KF/HT is 80 %).(Gao et al., 
2008) 

In Figure 5 d), the influence of reaction time has also been studied. The FAME yield 
increased with the prolonging of reaction time. From this figure, 3 h is the proper contact 
time, and longer time didn’t enhance the yields obviously. 

3. Catalysts in transesterification 

Both base and acid can catalyze the transesterification reaction between oil and alcohol. 
Generally, the reaction catalyzed by base is faster than the one by acid. On the other hand, 
base catalysts have much more demands on the raw materials, especially the amount of free 
fatty acid and water, while acid catalyst don’t need. Hundreds of researches have been done 
on each kind of catalyst. 

3.1 Homogeneous catalyst 

Industrially, Biodiesel is commonly produced using homogenous basic catalysts such as 
sodium (or potassium) hydroxide or methoxide because the transesterification reaction is 
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generally faster, less expensive, and more complete with these materials than with acid 
catalysts (Boocock et al., 1996a). The biodiesel industry currently uses sodium methoxide, 
because methoxide cannot form water upon reaction with alcohol such as with hydroxides, 
which influence the reaction and the quality of the production biodiesel (Zhou & Boocock, 
2006a). Furthermore, base-catalyzed reactions are performed at generally lower 
temperatures, pressures, and reaction times and are less corrosive to industrial equipment 
than acid-catalyzed methods (Moser, 2009). Therefore, fewer capital and operating costs are 
incurred by biodiesel production facilities in the case of the base-catalyzed 
transesterification method (Demirbas & Dincer, 2008; Freedman et al., 1986) . 
The liquid acid-catalyzed transesterification process is not much popular as the base-
catalyzed process. Homogeneous acid catalyzed reaction is about 4000 times slower than the 
homogeneous base-catalyzed reaction(Srivastava & Prasad, 2000). However, the 
performance of the acid catalyst is not strongly affected by the presence of FFAs in the 
feedstock. Actually, acid catalysts simultaneously catalyze both esterification of FFAs with 
alcohol and transesterification of oil with alcohol. Thus, acid catalysts can directly produce 
bio-diesel from low-cost lipid feedstocks, generally associated with high FFA 
concentrations, which expands the raw materials to low-cost feedstocks, such as used 
cooking oil and greases, commonly have FFAs levels of >6% (Lotero et al., 2005). For acid-
catalyzed systems, sulfuric acid(Al-Widyan & Al-Shyoukh, 2002; Wang et al., 2006),  
HCl, BF3, H3PO4, and organic sulfonic acids, have been used by different researchers (Lotero 
et al., 2005). 

3.2 Heterogeneous catalysts  

Although homogeneous catalysts are cheap and showed great performance toward 
transesterification, the drawbacks of them are evident. The first is corrosion of the reactor 
and pipelines by dissolved acid/base species, which inevitably raises the material cost for 
process construction. The second is the impossibility of catalyst recovery from the reactant-
product mixture, which also causes the problems of product separation. A third drawback 
of homogenously catalyzed transesterification is the limitation in establishing a continuous 
process. The heterogeneous catalysts was introduced and studied to solve the drawbacks 
that homogeneous catalysts caused (Lotero et al., 2005). Heterogeneous catalysts can be 
separated more easily from reaction products(Di Serio et al., 2008). Saponification reactions 
can also be avoided by using heterogeneous acid catalysts, which expand the raw materials 
to vegetable oils or animal fats with high contents of FFAs, such as deep-frying oils from 
restaurants and food processing (Garcia et al., 2008). Bio-diesel synthesis using solid 
catalysts could potentially lead to cheaper production costs because of reuse of the catalyst 
and the possibility for carrying out both transesterification and esterification simultaneously 
(Lopez et al., 2005).  

3.2.1 Solid base 

i. Metal oxides 
The early studies on heterogeneously catalyzed transesterification were focused on the 
catalysis by single metal oxides. The structure of metal oxides is made up of positive metal 
ions (cations) which possess Lewis acid and negative oxygen ions (anions) which possess 
Bronsted base. In methanolysis of oils, it provides sufficient adsorptive sites for methanol, in 
which the O–H bonds readily break into methoxide anions and hydrogen cations. And 
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methoxide anions then react with triglyceride molecules to form corresponding FAMEs 
(Zabeti et al., 2009).Bancquart compared the activities of La2O3, MgO, CaO, and ZnO 
(Bancquart et al., 2001), for the transesterification of glycerol with fatty acid methyl esters 
(FAME) at 220 °C. The author concluded that the reaction rates by single metal oxides 

directly depend on the basicity of the oxide, especially of the strong basic sites. The order of 

activity followed that of the intrinsic basicity of oxides is La2O3 >MgO >> ZnO. Magnesium 
oxide which is produced by direct heating of magnesium carbonate or magnesium 
hydroxide has the weakest basic strength and solubility in methanol among group ΙΙ oxides 
and has been rarely used for biodiesel production. This catalyst showed activity at high 
temperature and pressure. Under supercritical temperature of 523 °C and high pressure of 
24 MPa, Nano magnesium oxide catalyzed transesterification of soybean oil and yields of 
99% were obtained in 10 min (Wang & Yang, 2007).  
Calcium oxide is the single metal oxide catalyst catches more attention for biodiesel 
synthesis, due to its cheap price, minor toxicity and relatively high availability. Gryglewicz 
(Gryglewicz, 1999) compared heterogeneous catalysis by CaO with typical homogeneous 
catalysts like alkaline-earth metal hydroxides and alkoxides for the transesterification of 
rapeseed oil by methanol at the boiling point of methanol. The reaction rate over the 
heterogeneous catalysts, however, was much lower than that of the homogeneous catalysts 
such as NaOH. The rate of CaO catalysis is accelerated in the presence of water, because 
methoxide ions, which are thought to be the true catalytic agent for transesterification, are 
increased through the hydrolysis of monoglyceride molecules (Liu et al., 2008). However, if 
too much water (more than 2.8% by weight of soybean oil) is added to methanol, the FAME 
will hydrolyze under basic conditions to generate fatty acid, which can react with CaO to 
form soap (Lee et al., 2009). Demirbas believes that the calcium oxide catalytic performance 
is quite weak at low temperatures since only 5% methyl ester yields were obtained at 60 °C 
after 3 h (Demirbas, 2007). However, the active surface sites of CaO were easily poisoned 
with CO2 and covered with H2O (Granados et al., 2007). Therefore, some careful handling is 
required in order to use CaO as a base catalyst. Increasing the surface basicity of CaO by 
chemical treatment is a method to increase its catalytic activity (Zhu et al., 2006). Immersed 
CaO into ammonium carbonate solution and calcined the catalyst at high temperature of 900 
°C. With this catalyst, a FAME yield of 94% was obtained for the transesterification of 
jatropha curcas oil with a relatively lower methanol/oil ratio (9:1) and catalyst amount (1.5 
wt%) at a reaction temperature of 70 °C (Zhu et al., 2006). 
ii. Layered Double Hydroxides (LDHs) & mixed Metal Oxides 

Layered double hydroxides (LDHs) , which also be called as hydrotalcite or hydrotalcite-like 
compound, is a kind of based upon layered double hydroxides with brucite (Mg(OH)2) like  
hydroxide layers containing octahedrally coordinated M2+ and M3+ cations (Roelofs et al., 
2002). The general formula of LDHs is [M2+(1-x)M3+x(OH)2]x+(An-) x/n· yH2O, and its idealized 
layered structure is shown in Fig. 6. In this formula, M2+ (M = Mg, Ca, Fe, Co, Cu, Ni, or Zn) 
and M3+ (M = Al, Cr, Ga, Mn or Fe) are di- and trivalent cations, respectively, the value of x 
is equal to the molar ratio of M2+/(M2+ + M3+) and is generally in the range 0.2–0.33; An- is an 
anion to balance the charge. As a result, a large class of isostructural materials with versatile 
physical and chemical properties can be obtained by changing the nature of the metal 
cations, the molar ratios of M2+/M3+, as well as the types of interlayer anions. 
Conventionally, HT is synthesized by co-precipitation, wherein metal nitrates and 
precipitants are added slowly and simultaneously at a fixed pH under stirring, followed by 
a long (about 1 day) ageing time and/or hydrothermal treatment in order to improve the  
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Fig. 6. The structure of LDHs 

crystallinity. A particular chemical composition and the method of synthesis, i.e., 
temperature, solution pH, and ageing time of the gels, have a strong influence on the final 
basicity of the mixed oxides (Morato et al., 2001; Schulze et al., 2001). The change of the 
Mg/Al ratio in Mg–Al hydrotalcite leads to the variation of the basic property that is 
induced by the redistribution of acid-base sites, change of structure and transformation of 
the cation environment (Diez et al., 2003). Increasing Al content, the relative abundance of 
low and medium strength basic sites increased. For the Mg–Al hydrotalcites featuring Al 
contents of 1<Mg/Al<5, the basic site density increased because the Al3+ cations within the 
MgO lattice created a defect in order to compensate for the positive charge generated, and 
the adjacent oxygen anions became coordinatively unsaturated (Di Cosimo et al., 1998). In 
the biodiesel synthesis process, the Mg/Al molar ratio of hydrotalcites is usually set from 2 
to 4, with the ratio 3 being chosen as the best in terms of basic activity by many authors 
(Cantrell et al., 2005; Fishel & Davis, 1994; Xie et al., 2006a; Zeng et al., 2008). However, the 
transesterification catalyzed with Mg–Al HT catalysts prepared by coprecipitaion, the best 
ester conversions from soybean oil and triglycerides were below 80% (Barakos et al., 2008; 
Cantrell et al., 2005; Xie et al., 2006a). But, if the transesterification reaction occurs under 
high temperature and pressure, the uncalcined hydrotalcite could show higher activity 
(Barakos et al., 2008).  
Calcining hydrotalcite materials at high temperature, the interlayer water is lost first, 
followed by dehydroxylation and decomposition of interlayer carbonate to CO2, which 
generate an interactive, high surface (ranging from 150 to 300 m2/g) area and well-dispersed 
mixed oxides that completely destroyed the layered structure (Corma et al., 2005; Mckenzie 
et al., 1992). These effects combine to make the catalyst quite competitive as a heterogeneous 
basic catalyst. The basic properties of these sites depend on the Mg–Al ratio in the precursor 
hydrotalcite (Di Cosimo et al., 1998). These mixed mental-oxides show higher activity in the 
transesterification reaction than LDHs. The Calcined Li–Al and Mg–Al LDHs (Corma et al., 
1998)are able to catalyze the glycerolysis of fatty acid methyl esters to monoglycerides (the 
reverse of biodiesel synthesis). Shumaker(Shumaker et al., 2007; Shumaker et al., 2008) also 
used calcined Li-Al LDHs to catalyzed soybean oil with methanol, and Liu et al. (Liu et al., 
2007) used calcined Mg-Al hydrotalcite to catalyzed poultry fat with methanol. All of these 
studies showed that LDHs, except the Li-Al LDHs, performed low activities at the lower 
temperature, and when the reaction was performed in autoclave at high temperature, the 
conversion of soybean oil or acid cotton oil could reach 90 %(Barakos et al., 2008; Di Serio et 
al., 2006). 
If the mixed oxides obtained by calcined under certain temperature (generally below  
550 °C) encounter water, the typical layered structure of hydrotalcite would represent. 
This is the well known “memory” property of hydrotalcite(Corma et al., 2005). The 
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reconstruction of decomposed Mg–Al HT by rehydration at room temperature reportedly 
enhanced the catalytic activity(Rao et al., 1998).And during this reformed process, some 
other cations or anions could be introduced into the structure. Therefore, based on the 
hydrotalcite properties, loading some active substance can improve the activity of the HT. 
KNO3/HT (Sun et al., 2006) showed stronger alkalescency and more active in methylation 
of cyclopentadiene than KNO3/Al2O3. Catalyzed by the hydrotalcite loaded with 
CH3COOK (Trakarnpruk & Porntangjitlikit, 2008), at the condition of a 30:1 methanol to 
oil molar ratio at 373 K for 6 h and 7 wt.% catalyst, the FAMEs content could get to 96.9 %. 
Gao et al. studied KF loaded hydrotalcites KF/Mg-Al hydrotalcite(Gao et al., 2008), 
KF/Ca-Al hydrotalcite(Gao et al., 2010b) and KF/Ca-Mg-Al hydrotalcite(Gao et al., 
2010a), found that different kinds and ratio of cations in LDHs leaded different catalytic 
activities. And they obtained a FAMEs highest yield over 99% (by KF/Ca-Mg-Al 
hydrotalcite) in 10 mins in the transesterification reaction between palm oil and methanol 
at 65 °C. K2CO3/Mg-Al hydrotalcite also showed very encouraged activity in biodiesel 
synthesis (Teng et al., 2010).  
iii. Metal salt on porous support 
Loading alkali metal or alkali-earth metal salt is the most familiar way to synthesis solid 

base catalysts. Na, K, Li, Ba, and Mg are frequently used in the metallic form or as various 

ionic forms of halide, carbonate, hydroxide and nitrate. The metal ion-supported catalysts 

are usually calcined at 400– 600 °C to obtain active sites. The catalysts generally exhibit the 

preferential dependence of activity on the surface basicity, rather than on the other 

properties such as specific surface area and pore volume (Lee et al., 2009).  All researchers 

believe that the different activities of these catalysts were all mainly attributed to the 

difference in impregnated metal amount (Bo et al., 2007; Cui et al., 2007). Another key factor 

determining the surface basicity of alkali metal salt-supported catalysts is the calcination 

temperature. The support for alkali metal species could be diversified from alumina (Bo et 

al., 2007; Cui et al., 2007; Teng et al., 2009; Xie & Li, 2006; Xie et al., 2006b) to basic oxides 

such as ZnO (MacLeod et al., 2008; Xie & Huang, 2006), CaO (MacLeod et al., 2008; 

Watkins et al., 2004) and MgO(MacLeod et al., 2008). In every case, supported alkali metals 

on alkaline earth oxides are partly dissolved into the liquid phase and the catalysis section 

invariably becomes homogeneous, regardless of whether the calcination step was included 

in the preparation procedure of the catalysts or not.  

3.2.2 Solid acid 

Researches on the direct transesterification of lipid feedstocks into biodiesel by solid  

acid catalysts are not examined extensively. Among the catalysts reported, sulfuric acid 

prepared by impregnation method has shown the highest activity. Impregnation method 

prepared solid acid catalysts showed higher activities. However, leaching of sulfate species 

restricted the reusability of the catalyst, and on another hand, the use of solid acids still need 

high temperatures and high methanol-to-oil molar ratio(60:1) for a feasible process 

(Jothiramalingam & Wang, 2009). 

Zirconium oxide, titanium oxide and zinc oxide can all be used as solid acid catalyst  
in biodiesel production. In transesterification reaction of palm kernel oil at supercritical 
methanol, zinc oxide and zirconium oxide both showed activity as solid acid catalysts. After 
1 h of reaction time, using 3 wt.% catalyst and 6:1 molar ratio of alcohol/oil, 86.1% FAMEs 
yields were obtained for zinc oxide while only 64.5% for zirconium oxide(Jitputti et  
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al., 2006). However, using sulfated zirconia (SO4 2−/ZrO2), the yields considerably increased 
to 90.3%.  
SO4 2−/ZrO2 and WO32− / ZrO2 was considered as super acid catalysts in the methanolysis 

of triacetin was compared (Lopez et al., 2005). The results indicate that SO4 2−/ZrO2 showed 

more activity(conversion of 57%) than WO32− / ZrO2 (conversion of 10%) under the same 

conditions of 60 °C and 8 h of reaction time. The activity of WO32− / ZrO2 was attributed to 

the formation of tetragonal phase of ZrO2. Beyond 500 °C the tetragonal phase transferred to 

the monoclinic phase which caused a decrease in the activity(Ramu et al., 2004). However, 

the transesterification reaction catalyzed by SO4 2−/ZrO2 at low temperature is very slow. It 

was taken over 8h to obtain a FAMEs yield over 80% at 65 °C, while only 2h at 120 °C (Fu et 

al., 2009). 

Fe–Zn double metal cyanide complex has been studied as a solid acid catalyst for 

methanolysis of sunflower oil (Sreeprasanth et al., 2006). The specific surface area of the 

catalyst was 51.6m2/g.When the transesterification reaction was performed at 170 °C, 

with oil/alcohol molar ratio of 1:15 and 3 wt.% of catalyst, the oil conversion reached 97% 

after 8 h of reaction. The catalyst activity was attributed to the Lewis acid active sites of 

probably Zn2+ on the surface of catalyst. Moreover, the catalyst converted the oil with up 

to 20% of water content which implies the surface hydrophobicity of the catalyst. The 

activity of catalyst was successfully tested for esterification of high amount of FFA in the 

oil. In addition, the catalyst was stable after many cycles since no significant loss of 

activity was detected. 

4. Other transesterification methods  

Except traditional chemical catalyzed method (base and acid), new methods has been 

introduced into biodiesel synthesis process. These new method mostly focus on the 

following goals. First, “greener”, means causing less pollution as waste water. Second, 

“faster”, indicate obtaining high FAMEs yield in relatively short time. 

4.1 Enzyme  

Enzymatic transesterification catches attentions for reasons of easy product separation, 

minimal wastewater treatment needs, easy glycerol recovery and the absence of side 

reactions (Jegannathan et al., 2008). The transesterification is typically catalyzed by lipases 

such as Candida antarctica (Watanabe et al., 2002), Candida rugasa (Linko et al., 1998), 

Pseudomonas cepacia (Shah & Gupta, 2007), Pseudomonas spp. (Lai et al., 1999) or Rhizomucar 

miehei (Lai et al., 1999). The yield of biodiesel from this process can vary depending on the 

type of enzyme used. The enzyme-catalyzed system normally requires a much longer 

reaction time than the base catalyzed systems. 

While enzyme reactions are highly specific and chemically clean, the main problem of the 

lipase-catalyzed process is the high cost of the lipases. Du et al. reported that there are two 

ways to reduce the lipase cost. One is to reduce the production cost of the lipase, which can 

be realized through new lipase development, fermentation optimization, and downstream 

processing improvement. Another way is to improve/extend the operational life of the 

lipase, and this can be achieved through enzyme immobilization, alcoholysis reaction 

optimization, etc. (Du et al., 2008). 
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4.2 Supercritical & subcritical alcohol  

Mass transfer between oil and alcohol phases inhibits the transesterification. As is known, 

when a fluid or gas is subjected to temperatures and pressures in excess of its critical point, 

a number of unusual properties are exhibited. Under the supercritical conditions, the 

mixture becomes a single homogeneous phase, which will accelerate the reaction because 

there is no interphase mass transfer to limit the reaction rate(Pinnarat & Savage, 2008). 

Another positive effect of using supercritical conditions is that the alcohol is not only a 

reactant but also an acid catalyst(Alenezi et al., 2010).  

Supercritical transesterification is carried out in a high pressure reactor, with heat supplied 

from an external heater. Reaction occurs during the heating period. After the reaction is 

complete, the gas is vented and the product in the reactor is poured into a collecting vessel. 

The remaining contents are removed from the reactor by washing it with methanol 

(Bunyakiat et al., 2006). During the whole process, several variables (i.e. reaction pressure 

and temperature) affect the yield of the biodiesel product and the highest yield can be 

obtained under the optimal conditions.  

Synthesis of bio-diesel by supercritical methanol has a drawback with the high cost  

of apparatus due to the high temperature and pressure, which are not viable in the large 

scale practice in industry. So, researches have focused on how to decrease the severity  

of the reaction conditions. Co-solvents and subcritical alcohol with small amount of catalyst, 

can decrease the operating temperature, pressure and the amount of alcohol (Vyas et  

al., 2010). 

5. Biodiesel Industry: Opportunity & challenge 

Sooner or later, petroleum will become the huge barrier to human development. Searching 

substitute is an extremely urgent thing. Although hydrogen energy or solar energy has the 

chance to use as main energy resource, the day of their wide application is still far away. 

Biodiesel is the most ideal substitute for fossil oil in a relatively short time. The primary 

market for biodiesel in the near to long-term future is likely to be as a blend component in 

petrodiesel.  

Despite its many advantages as a renewable alternative fuel, biodiesel presents a number of 

technical problems that must be resolved before it will be more attractive as an alternative to 

petrodiesel. These problems include improving the relatively poor low-temperature 

properties of biodiesel as well as monitoring and maintaining biodiesel quality against 

degradation during long-term storage. The raw material of biodiesel is also a restraining 

factor. The 70% cost of biodiesel is coming from its raw material oil. Therefore, development 

of alternative feedstocks is another important area research. Additionally, genetic 

modification oil plants may provide a solution of this problem. 
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