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1. Introduction  

Small-grain cereals are the food crops that are most widely grown and consumed in the 
world. Wheat and rice jointly supply more than 55% of total calories for human nutrition, 
occupying about 59% of the total arable land in the world (225 and 156 million ha, 
respectively). Global production is around 682 million metric tons for wheat and 650 million 
metric tons for rice (FAOSTAT, 2008). Wheat is a very widely adapted crop, grown in a 
range of environmental conditions from temperate to warm, and from humid to dry and 
cold environments. Demand for wheat and rice will grow faster in the next few decades, and 
yield increases will be required to feed a growing world population. Because land is limited 
and environmental and economical concerns constrain the intensification of such crops, 
yield increases will have to come primarily from breeding efforts aimed at releasing new 
varieties that provide higher productivity per unit area.  
The most integrative plant traits responsible for grain yield increases in small-grain cereals 
are the total biomass produced by the crop and the proportion of the biomass allocated to 
grains, the so-called harvest index (Van den Boogaard et al., 1996). The product of these 
traits provides a framework for expressing the grain yield in physiological terms and for 
contextualizing past yield gains in small-grain cereals, particularly wheat and barley. 
Retrospective studies conducted with wheat frequently associate increases in yield with 
increases in partitioning of biomass to the grain, with small or negligible increases (Austin et 
al., 1980, 1989; Royo et al., 2007; Sayre et al., 1997; Siddique et al; 1989; Waddington et al., 
1986), or even significant decreases (Álvaro et al., 2008a) in total biomass production. 
Increases in biomass have been reported in spring wheat (Reynolds et al., 1999; 2001), winter 
bread wheat (Shearman et al., 2005), and durum wheat (Pfeiffer et al., 2000; Wadington et 
al., 1987). 
Since harvest index has a theoretical maximum estimated to be 0.60 (Austin, 1980), increases 
in grain yield of more than 20 percent cannot be expected through increasing the harvest 
index above the maximum levels reached currently by some wheat genotypes (Reynolds et 
al., 1999; Richards, 2000; Shearman et al., 2005). It is therefore generally believed that future 
improvements in grain yield through breeding will have to be reached by selecting 
genotypes with higher biomass capacity, while maintaining the high partitioning rate of 
photosynthetic products (Austin et al., 1980; Hay, 1995). 
Total dry matter is mainly determined by two processes: i) the interception of incident solar 
irradiance by the canopy, which depends on the photosynthetic area of the canopy; and ii) 
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the conversion of the intercepted radiant energy to potential chemical energy, which relies 
on the overall photosynthetic efficiency of the crop (Hay & Walker, 1989). The relationship 
between above-ground biomass and yield has been demonstrated empirically in wheat. 
Positive associations (R2=0.56, P<0.05) have been reported between biomass at maturity and 
yield in durum wheat (Waddington et al., 1987), and between biomass at anthesis and yield 
in bread wheat (Reynolds et al., 2005; Shearman et al., 2005; Singh et al., 1998; Tanno et al., 
1985; Turner, 1997; Van der Boogaard et al., 1996), durum wheat (Royo et al., 2005), barley 
(Ramos et al., 1985) and rice (Turner, 1982). In a study conducted in Mediterranean 
conditions with 25 durum wheat cultivars, Villegas et al. (2001) found a strong association 
(R2=0.75, P<0.001) of the biomass accumulated from the first node detectable stage with 
anthesis and yield. Vegetative growth before anthesis becomes particularly important when 
stresses during grain filling such as those caused by rising temperatures and falling 
moisture supply ─usually occurring after anthesis in Mediterranean environments─ limit 
the crop photosynthesis, forcing yield to depend greatly on the remobilization to the grain 
of pre-anthesis assimilates accumulated in leaves and stems (Álvaro et al., 2008b; Palta et al., 
1994; Papakosta and Gagianas, 1991; Shepherd et al., 1987). The contribution of pre-anthesis 
assimilates to wheat grain yield and the efficiency of dry matter translocation to the filling 
grains seem to have increased in the last century as a consequence of breeding (Austin et al., 
1980; Álvaro et al., 2008a,b). 
Biomass assessment is thus essential not only for studies monitoring crop growth, but also 
in cereal breeding programs as a complementary selection tool (Araus et al., 2009). Tracking 
changes in biomass may also be a way to detect and quantify the effect of stresses on the 
crop, since stress may accelerate the senescence of leaves, affecting leaf expansion (Royo et 
al., 2004) and plant growth (Villegas et al., 2001).  
Biomass assessment in breeding programs, in which hundreds of lines have to be screened 
for various agronomical traits in a short time every crop season, is not viable by destructive 
sampling because it is a time-and labor-intensive undertaking, it is subject to sampling 
errors, and samplings reduce the final area available for determining final grain yield on 
small research plots (Whan et al., 1991). Originally used in remote sensing of vegetation 
from aircraft and satellites, remote sensing techniques are becoming a very useful tool for 
assessing many agrophysiological traits (Araus et al., 2002). The measurement of the spectra 
reflected by crop canopies has been largely proposed as a quick, cheap, reliable and non-
invasive method for estimating plant aboveground biomass production in small-grain 
cereals, at both crop level (Aparicio et al., 2000, 2002; Elliot & Regan, 1993; R.C.G. Smith et 
al., 1993) and individual plant level (Álvaro et al., 2007).  

2. Growth patterns and biomass spectra 

The growth cycle of small-grain cereals involves changes in size, form and number of plant 
organs. The external stages of cereal growth include germination, crop emergence, seedling 
growth, tillering, stem elongation, booting, inflorescence emergence, anthesis and maturity 
(Fig. 1). The classical monitoring of crop biomass requires destructive samplings of plants at 
different growth stages, counting of the number of plants contained in the sample and its 
weighing after oven-drying them. Crop biomass may be expressed as crop dry weight 
(CDW), which can be obtained from the plants sampled at a given stage as the product of 
average dry weight per plant (W, g) and the number of plants per unit area, and is 
frequently expressed as g m-2 (Villegas et al., 2001). The leaf area expansion of a cereal crop 
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may be monitored through changes in its leaf area index (LAI, a dimensionless value), 
which is the ratio of leaf green area to the area of ground on which the crop is growing. LAI 
may be calculated as the product of the mean one-sided leaf area per plant (LAP, m2 plant-1) 
and the number of plants per unit area in the sample (plants m-2). Changes in total green 
area of the crop may be described through the green area index (GAI, a dimensionless 
value), which is the ratio of total green area of the plants (leaves and stems, as well as spike 
peduncles and spikes when applicable) to the area of ground on which the crop is growing. 
It can be calculated as the product of total green area per plant (GAP, m2 plant-1) and the 
number of plants per unit area in the sample (plants m-2) (Royo et al., 2004).   
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Fig. 1. Growth stages of small-grain cereals. Numbers correspond to the Zadoks scale 
(Zadoks et al., 1974) 

Raw data from destructive sampling can be fitted to mathematical models, usually 
empirically based, to describe the growth pattern during the crop cycle. The logistic model 
of Richards (Richards, 1959), the expolinear equation of Goudriaan & Monteith (Goudriaan 
& Monteith, 1990), and the asymmetric logistic peak curve first used by Royo and Tribó 
(Royo & Tribó, 1997), have been used to describe the growth of crops. This last model has 
been useful for monitoring the biomass and leaf area expansion of triticale (Royo & Blanco, 
1999) and durum wheat (Royo et al., 2004; Villegas et al., 2001). The mathematical models 
present the variation in dry matter production, leaf area or green area expansion over time, 
allowing variations between species (Fig. 2), genotypes, years and environmental conditions 
to be assessed (Fig. 3). Similarly to the case of grain yield, variability induced by the genetic 
background in the growth pattern of small-grain cereals has been found to be lower than the 
environmental variation caused by either year or site effects (Royo et al., 2004; Villegas et al., 
2001). 
Crop growth conditions can be monitored by measuring the spectra reflected by crop 
canopies in the visible (VIS, λ=400-700 nm) and near-infrared (NIR, λ =700-1300 nm) regions 
of the electromagnetic spectrum (Fig. 4). Given that the amount of green area of a canopy 
determines the absorption of photosynthetic active radiation by photosynthetic organs, 
spectral reflectance measurements can provide an instantaneous quantitative assessment of 
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the crop’s ability to intercept radiation and photosynthesize (Ma et al., 1996). Therefore, the 
absorption by the crop canopy of very specific wavelengths of electromagnetic radiation is 
associated with certain morphological and physiological crop attributes related to the 
development of the total photosynthetic area of the canopy.  
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Fig. 2. Illustration of the differences between the patterns of biomass accumulation and leaf 
area expansion of barley (Δ), spring triticale (□), and winter triticale (●) from experiments 
conducted in 4 Mediterranean environments. Samples were taken at seedling (S), tillering 
(T), beginning of jointing (J), booting (B), anthesis (A), and physiological maturity (M). 
Biomass increased continually from anthesis to maturity in barley, but in triticale the peak of 
biomass took place between anthesis and maturity. The maximum LAI was reached at the 
booting stage in barley, but a little later in triticale. Adapted from Royo & Tribó (1997)   

The reflectance spectra of a healthy crop-canopy shows a relative maximum around 550 nm, 
a relative minimum around 680 nm and an abrupt increase around 700 nm, remaining fairly 
constant beyond this point (Fig. 4). The spectral reflectance in the VIS wavelengths depends 
on the absorption of incident radiation by leaf chlorophyll and associated pigments such as 
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carotenoid and anthocyanins. Crop reflectance is very low in the blue (400-500 nm) and red 
(600-700 nm) regions of the spectrum, because they contain the peaks of chlorophyll 
absorbance. Beyond 700 nm the reflectance of the NIR wavelengths is high since it is not 
absorbed by plant pigments and is scattered by plant tissues at different levels in the canopy 
(Knipling, 1970).  
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Fig. 3. Illustration of the effect of water input on the pattern of biomass accumulation 
(CDW), leaf area index (LAI), and green area index (GAI) of durum wheat grown under 
irrigated (⃝) and rainfed conditions (Δ). Data are means of 25 durum wheat cultivars grown 
in 1998 under Mediterranean conditions. The crop received 384 and 194 mm of water under 
irrigated and rainfed conditions, respectively. Samples were taken at seedling (S), tillering 
(T), beginning of jointing (J), booting (B), heading (H), anthesis (A), milk grain stage (L), and 
physiological maturity (M). Upper figure adapted from Villegas et al. (2001). LAI and GAI 
figures adapted from Royo et al. (2004) 
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Fig. 4. Variation of the reflectance spectra of a healthy wheat canopy at different growth 
stages compared with the bare soil spectrum. H, heading; A, anthesis; M, milk-grain stage; 
PM, physiological maturity. The magnitude of the increase in reflectance at around 700 nm 
indicates differences in biomass 

3. Methodology for capturing spectra  

3.1 Field equipment 
High spectral resolution devices have recently improved in sensitivity, decreased in cost, 
and increased in availability. The equipment for field measurements consists of a portable 
spectroradiometer, which measures the irradiance at different wavelengths with a band 
width of about 1-2 nm through the VIS and NIR regions of the spectrum. This unit is 
connected to a computer, which stores the individual scans, a fore-optics sensor for 
capturing the radiation, and some complements such as reference panels and supports (Fig. 
5). The sensor appraises the radiation reflected by the crop canopy, delimiting the field of 
view to a given angle, generally between 10° and 25°, which limits the area of the crop 
scanned to 20-100 cm2. The angle of incident light and the angle of observation of the sensor 
determine the proportion of elements in the observation field. The sensor is usually 
mounted on a fixed or hand-held tripod, which allows all measurements to be taken at the 
same angle and distance from the surface of the crop ─usually from 0.5 m to around 1.0 m 
above the canopy facing the center of the plot. A fiber optic cable transmits the captured 
radiation to the spectrum analyzer. To convert captured spectra to reflectance units the 
spectra reflected by the crop canopy must be calibrated against light reflected from a 
commercially available white reference panel of BaSO4 (Jackson et al., 1992). Each 
measurement takes around 1-2 s and between 5 and 10 scans are usually averaged per 
measurement. 
The classical spectroradiometers measure about 250-500 bands, evenly spaced from a 
wavelength of 350 to 1110 nm, so a wide range of spectral reflectance indices can be 
calculated or the complete VIS/NIR reflectance spectra can be used. Cheaper units, such as 
Green SeekerTM, which give only the basic spectroradiometric indices of green biomass, such 
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as the normalized difference vegetation index (NDVI) and the simple ratio (SR, see section 
4), have been designed more recently for diagnosing nitrogen status and biomass 
assessment (Li et al., 2010b). The methodology allows sampling at a rate of up to 1000 
samples per day. 
 

 
Fig. 5. Measurements of spectral reflectance on field plots and layout of the tube used by 
Álvaro et al. (2007) to capture the spectra of individual plants  

3.2 Factors affecting the reflectivity of the canopy surface 
Measurements of the reflectance spectra of crop canopies are affected by both sampling 
conditions and canopy features. The most important are detailed in the following sections. 

3.2.1 Sensor position 
The angles between sun, sensor and canopy surface may lead to the appearance of shadow 
or soil background in the field of view of the apparatus, causing disturbing effects in the 
spectra measured (Aparicio et al., 2004; Baret and Guyot, 1991; Eaton & Dirmhirn, 1979). The 
angle of the sun is more important in canopies with low LAI (Kollenkark et al., 1982; Ranson 
et al., 1985). Variability in reflectance due to variation in the sensor view angle has been 
reported to depend on the stage of development of the crop (J.A. Smith et al., 1975), the 
structure of the vegetative canopy (Colwell, 1974) and the leaf area index (Aparicio et al., 
2004). Angles between the sensor azimuth and the sun azimuth of between 0° and 90° 
minimize the variability caused by changes in the elevation of the sensor or the sun 
(Wardley, 1984).  However, when off-nadir view angles are used, the analysis of the remote 
sensing data could be complicated due to the non-Lambertian characteristics of vegetation 
(unequal reflection of incident light in all directions and reflection depending on the 
wavelength) (Ranson et al., 1985). The degree of canopy cover captured by the sensor is 
minimum at nadir position, and increases with the angle of observation. The effect of angle 

www.intechopen.com



 
Biomass – Detection, Production and Usage 

 

34

is particularly important in crops arranged in rows, which may have different orientations 
in relation to the solar angle and the observation angle (Ranson et al., 1985; Wanjura & 
Hatfield, 1987). The nadir position of the sensor (sensor looking vertically downward) is the 
most widely used, because it has a low interaction with sun position and row orientation 
and delays the time at which spectra become saturated by LAI (Araus et al., 2001).  

3.2.2 Environmental conditions 
Environmental factors can cause undesired variation in the captured spectra. Light intensity, 
sun position, winds or nebulosity may interfere with the way in which the interaction 
between solar irradiation and crop is captured (Baret & Guyot, 1991; Huete 1987; Jackson 
1983; Kollenkark et al., 1982). Green biomass may be overestimated when measurements are 
taken on cloudy days because the increased diffuse radiation improves the penetration of 
light into the canopy. Brief changes in canopy structure caused by winds may also induce 
variations in the captured spectra (Lord et al., 1985). The presence of people or objects near 
to the target view area should be avoided, since they can cause alterations in the measured 
spectra by reflecting radiation. The instruments should be painted a dark color and people 
should preferable wear dark clothes (Kimes et al., 1983). As a means of minimizing the 
variability induced by sun position, it has also been recommended that measurements be 
taken at about noon on rows oriented east to west.  

3.2.3 Canopy attributes 
The reflectivity of a crop canopy may be affected by a number of internal and external 
factors. The crop species, its nutritional status, the phenological stage (Fig. 4), the 
glaucousness, the geometry of the canopy and the spatial arrangement of its constitutive 
elements greatly affect the optical properties of the canopy surface. Under severe nitrogen 
deficiencies, chlorosis in leaves causes plants to reflect more in the red spectral region 
(Steven et al., 1990). The presence of non-green vegetation or non-leaf photosynthetically 
active organs (such as spikes and leaf sheaths of cereals) and changes in leaf erectness can 
also affect the spectral signature of the canopy (Aparicio et al. 2002; Bartlett et al., 1990; Van 
Leeuwen & Huete, 1996); for high LAI values, the reflectivity decreases with greater leaf 
inclination in both the VIS and the NIR wavelengths (Verhoef & Bunnik, 1981). Radiation 
reflected perpendicularly from plant canopies has been reported to be greater for planophile 
than for erectophile canopies (Jackson & Pinter, 1986; Zhao et al., 2010). 

3.2.4 Soil interferences 
When the crop canopy does not cover the entire soil surface, the target view area may 
include measurements of soil background, which may disturb the spectra measurements. 
Soil reflectances in the red and NIR wavelengths are usually linearly related (Hallik et al., 
2009). As shown in Fig. 4, reflectance of bare soil differs from that of the crop canopy, 
because green vegetation reduces the values of red reflectance and increases the values of 
NIR reflectance when compared with those of the soil background. A number of studies on 
the effect of the soil reflectivity on the crop reflectance (Colwell, 1974; Huete et al., 1985), 
concluded that the most important factors are the chemical composition and water content 
of the soil. Greater discrimination power between wheat plots differing in biomass has been 
found on dark soils than on light soils (Bellairs et al., 1996). 
In an attempt to minimize the variability induced by external factors, reflectance values 
recorded by the spectroradiometer are seldom taken directly but rather used to calculate 
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different indices ─usually  formulas based on simple operations between reflectances at 
given wavelengths. 

4. Traditional and new spectral reflectance indices for biomass appraisal 

Spectral reflectance indices were developed using formulations based on simple 
mathematical operations, such as ratios or differences, between the reflectance at given 
wavelengths. Most spectral indices use specific wavebands in the range 400 to 900 nm and 
their most widespread application is in the assessment of plant traits related to the 
photosynthetic size of the canopy, such as LAI and biomass.  
The most widespread vegetation indices (VI), for measurements not only at ground level but 
also at aircraft and satellite level (Wiegand & Richardson, 1990) are the normalized 
difference vegetation index (NDVI = RNIR-RRED /RNIR +RRED) and the simple ratio (SR= 
RNIR/RRED) (see Table 1 for their definition). The ratio between the reflectances in the near-
infrared (NIR) and red (RED) wavelengths is high for dense green vegetation, but low for 
the soil, thus giving a contrast between the two surfaces. For wheat and barley a wavelength 
(λ) of around 680 nm is the most commonly used for RRED, and one of 900 nm for RNIR 
(Peñuelas et al., 1997a). These indices have been positively correlated with the absorbed 
photosynthetically active radiation (PAR), the photosynthetic capacity of the canopy and net 
primary productivity (Sellers, 1987). According to Wiegand & Richardson (1984, as cited in 
Wiegand et al., 1991), the fraction of the incident radiation used by the crops for 
photosynthesis (FPAR) may be derived from vegetation indices through their direct 
relationship with LAI, according to Equation (1): 

 FPAR(VI) = FPAR(LAI) × LAI(VI)                         (1) 

For this reason, vegetation indices have proven to be useful for estimating the early vigor of 
wheat genotypes (Bellairs et al., 1996; Elliot & Regan, 1993), monitoring wheat tiller density 
(J.H. Wu et al., 2011), and assessing green biomass, LAI and the fraction of radiation 
intercepted in cereal crops (Ahlrichs & Bauer, 1983; Aparicio et al., 2000, 2002;  Baret & 
Guyot, 1991; Elliott & Regan, 1993; Gamon et al., 1995; Peñuelas et al., 1993, 1997a; Price & 
Bausch, 1995; Tucker 1979; Vaesen et al., 2001). They tend to minimize spectral noise caused 
by the soil background and atmospheric effects (Baret et al., 1992; Collins, 1978; 
Demetriades-Shah et al., 1990; Filella & Peñuelas, 1994; Mauser & Bach, 1995).  
Positive and significant correlations of SR and NDVI with LAI (Fig. 6), GAI and biomass 
(either on a linear or a logarithmic basis) have been reported in bread wheat and barley 
(Bellairs et al., 1996; Darvishzadeh et al., 2009; Fernández et al., 1994; Field et al., 1994; 
Peñuelas et al., 1997a). In a study conducted with 25 bread wheat genotypes, NDVI 
explained around 40% of the variability found in biomass (Reynolds et al., 1999). Studies 
involving 20-25 durum wheat genotypes have demonstrated a strong association between 
SR and NDVI and biomass under both rainfed and irrigated field conditions (Aparicio et al., 
2000, 2002; Royo et al., 2003). Spectral reflectance measurements are also being used 
increasingly as a tool to detect the canopy nitrogen status and allow locally adjusted 
nitrogen fertilizer applications during the growing season (Mistele & Schmidhalter, 2010). 
Since grain yield is closely associated with crop growth and the vegetation indices are 
sensitive to canopy variables such as LAI and biomass that largely determine this growth, 
spectral data have also been proposed as suitable estimators in yield-predicting models 
(Aparicio et al., 2000; Das et al., 1993; Ma et al., 2001; Royo et al., 2003). 
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Fig. 6. Patterns of the relationships of leaf area index (LAI) with the normalized difference 
vegetation index (NDVI) and the simple ratio (SR). Data correspond to 7 field experiments 
involving 20-25 durum wheat genotypes and conducted under contrasting Mediterranean 
conditions for 2 years, with spectral reflectance measurements done at anthesis and milk-
grain stage. Each point corresponds to the mean value of a genotype, experiment and 
growth stage. Adapted from Aparicio et al. (2002) 

Another way to formulate the relationship between biomass and VI is to use the light use 
efficiency (┝) model (Kumar & Monteith, 1981) based on the fact that the growth rate of a 
crop canopy is almost proportional to the rate of interception of radiant energy. Thus, the 
crop dry weight of a crop canopy at a given moment (t) may be expressed as a function of 
the incident radiation (Io), the fraction of the radiation intercepted by the crop canopy 
(FPAR), and the radiation use efficiency (┝), as follows: 

 CDW =
t

0

I    FPAR(LAI)   ┝o     dt                (2) 

Small increases in biomass in a small period (expressed as days or thermal units) may then 
be calculated as a function of LAI from the derivative of Equation (2) 

  ├CDW
I   FPAR LAI  ┝

├t
o    (3) 

The incident radiation (Io) may be obtained from meteorological stations or, alternatively, it 
can be estimated from air temperatures (Allen et al., 1998). FPAR(LAI) may be calculated 
from vegetation indices on the basis of the linear relationship existing between vegetation 
indices and the FPAR of green canopies (Daughtry et al., 1992), and particularly between 
NDVI and FPAR (Bastiaansen & Ali, 2003). Radiation use efficiency (┝) is assumed to be 
constant during the crop growing season (Casanova et al., 1998). Values of radiation use 
efficiency have been summarized by Russell et al. (1989) for different crops and 
environmental conditions; moreover, ┝-values can also be derived for a particular species 
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and environment from the slope of the relationship between total aboveground biomass and 
absorbed PAR energy (Liu et al., 2004; Serrano et al., 2000).  
An example of use of Kumar & Monteith’s model to assess the pattern of changes in biomass 
from the LAI estimated from spectral reflectance measurements is shown in Fig. 7. In the 
example, LAI and CDW values were calculated from destructive samplings, and a 
comparison is made between the pattern of changes in CDW derived from the mathematical 
model and that assessed by destructive samplings (Fig. 7b). The model requires frequent 
reflectance measurements to accurately assess the pattern of changes in LAI over time 
(Christensen & Goudriaan, 1993), and proper estimations of the incident radiation. 
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Fig. 7. Estimation of CDW from LAI data through the light use efficiency model (Kumar & 
Monteith, 1981). Fig. 7a. The solid line represents the mean pattern of changes in LAI of 25 
durum wheat cultivars grown in 1998 under irrigated conditions, assessed through 
destructive biomass sampling (see Fig. 3). The discontinuous line shows daily increments in 
CDW, calculated from Eq. (3). Fig. 7b. The solid line shows the pattern of changes in CDW 
calculated from destructive sampling (see Fig.3), while the discontinuous line represents the 
CDW values calculated from the integration of the daily CDW increments represented in 
Fig. 7a   
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Studies conducted in bread wheat (Asrar et al., 1984; Serrano et al., 2000; Wiegand et al., 
1992) and durum wheat (Aparicio et al., 2002) have demonstrated that SR increases linearly 
with increases in LAI, while NDVI shows a curvilinear response (Fig. 6). When the LAI of 
wheat canopies exceeds a certain level, the addition of more leaf layers to the canopy does 
not entail great changes in NDVI (Aparicio et al., 2000; Sellers, 1987), because the reflectance 
of solar radiation from the underlying soil surface or lower leaf layers is largely attenuated 
when the ground surface is completely obscured by the leaves (Carlson & Ripley, 1997). The 
consequence is that for LAI values higher than 3, NDVI becomes relatively insensitive to 
changes in canopy structure (Aparicio et al., 2002; Curran, 1983; Gamon et al., 1995; Serrano 
et al., 2000; Wiegand et al., 1992), which constitutes an important limitation for the use of 
NDVI to estimate LAI. In this context the linearity of the relationship between SR and LAI is 
not advantageous, because SR may be directly derived from NDVI as SR=(1+NDVI)/(1-
NDVI), thus leading to similar statistical significances of both indices when LAI values are 
predicted (J.M. Chen & Cihlar, 1996). Because of the sensitivity of NDVI and SR to external 
factors ─particularly the soil background at low LAI values─and the developments in the 
field of imaging spectrometry, a set of new vegetation indices have been developed in order 
to minimize the effect of disturbing elements in the capturing of the spectra (Baret & Guyot, 
1991; Broge & Mortensen, 2002; Gilabert et al., 2002; Meza Diaz & Blackburn, 2003; 
Rondeaux et al., 1996). 
In order to compare the suitability of the classical vegetation indices and the new ones 
mentioned in the literature as being appropriate for estimating growth traits in wheat and 
other cereals (P. Chen et al., 2009; Haboudane et al., 2004; Li et al., 2010a; Prasad et al., 2007), 83 
hyperspectral vegetation indices were tested using durum wheat data from our own research. 
The indices were calculated from spectral reflectance measurements taken at different growth 
stages in 7 field experiments each involving 20-25 durum wheat genotypes, conducted under 
contrasting Mediterranean conditions for 2 years. Principal component analysis performed 
with the complete set of vegetation indices and LAI, GAI and CDW revealed that the 
vegetation indices most closely correlated with durum wheat growth indices were the 29 
shown in Table 1. The correlation coefficients between growth traits and the selected indices 
are shown in Fig. 8. The results show that the majority of indices explained more than 50% of 
variation in LAI, GAI and CDW when determined at anthesis and milk grain stages, most 
correlation coefficients being statistically significant at P<0.001. However, the correlation 
coefficients were significant only for a small number of indices when measurements were 
taken at physiological maturity. From these results we can conclude that despite the large 
number of vegetation indices described to improve the appraisal of growth indices given by 
NDVI and SR, this objective was attained in only a few cases. 
Fig. 8 shows that some indices changed from positive values determined at milk-grain to 
negative ones determined at physiological maturity, confirming that the utility of vegetation 
indices to assess growth traits decreases drastically when the crop starts to senesce (Aparicio et 
al., 2000). Young wheat plants normally absorb more photosynthetically active radiation and 
therefore reflect more NIR. As the plants progress in growth stage, new tissues are formed but 
older green tissues lose chlorophyll concentration, turning chlorotic and then necrotic. These 
senescent tissues increase reflectance at the visible wavelengths and decrease reflectance at the 
NIR wavelengths, causing a decrease in the values of the vegetation indices compared with 
that obtained at earlier growth stages. Aparicio et al. (2002) concluded that genotypic 
differences were maximized in durum wheat when growth traits were determined by spectral 
reflectance measurements taken at anthesis and milk-grain stage.  
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Identification Definition Equation Reference 

NDVI 
Normalized difference 
vegetation index (R900-R680)/ (R900+R680) 

Peñuelas et 
al. (1993) 

SR Simple ratio R900/R680 
Peñuelas & 
Filella (1998) 

CI Canopy index R415/R695 
Read et al. 
(2002) 

CIG 
Green chlorophyll 
index

(R800/R550)-1 
C.Y. Wu et 
al. (2010) 

DD 
Double difference 
index

(R750-R720)-(R700-R670) 
Le Maire et 
al. (2004) 

MCARI 
[705,750] 

Modified chlorophyll 
absorption ratio index 

    750
750 705 750 550

705

0.2 ( )
R

R R R R
R

        C.Y. Wu et 
al. (2008) 

MCARI/OSAVI
[705,750] 

MCARI[705,750]/ 
OSAVI[705,750] 

   

 

750
750 705 750 550

705

750 705 750 705

0.2 ( )

1 0.16 ( ) /( 0.16)

R
R R R R

R

R R R R

      

    
 

C.Y. Wu et 
al. (2008) 

MCARI2 Modified chlorophyll 
absorption ratio index 2

   
   

800 670 800 550

800 800 670

1.5 [2.5 1.3 ]

2 1 2 6 5 0.5

R R R R

R R R

  

   
 Haboudane 

et al. (2004) 

mSR705 Modified simple ratio 
705 (Rばのど-Rねねの)/(R705-Rねねの) Sims and 

Gamon 
(2002) 

MTVI Modified transformed 
vegetation index 1.2×[1.2×(Rぱどど-Rののど)-2.5×(Rはばど-Rののど)] Haboudane 

et al. (2004) 

ND705 Normalized difference 
vegetation index 705 (Rばのど-Rばどの)/(Rばのど+Rばどの) Sims & 

Gamon 
(2002) 

NDI1 Normalized difference 
index 1 (Rばぱど-Rばなど)/(Rばぱど-Rはぱど) Datt (1999) 

NDI2 Normalized difference 
index 2 (Rぱのど-Rばなど)/(Rぱのど-Rはぱど) Datt (1999) 

NDVI2 Normalized difference 
vegetation index 2 (Rぱどど-Rはどど)/(Rぱどど+Rはどど) Ma et al. 

(1996) 

NWI-1 Normalized water 
index-1 (Rひばど-Rひどど)/(Rひばど+Rひどど) Prasad  et 

al. (2007) 

NWI-2 Normalized water 
index -2 (Rひばど-Rぱのど)/(Rひばど+Rぱのど) Prasad et al. 

(2007) 

NWI-3 Normalized water 
index -3 (Rひばど-Rひにど)/(Rひばど+Rひにど) Prasad et al. 

(2007) 

NWI-4 Normalized water 
index -4 (Rひばど-Rぱぱど)/(Rひばど+Rぱぱど) Prasad et al. 

(2007) 

OSAVI Optimal soil adjusted 
vegetation index (1+0.16)×(Rぱどど-Rはばど)/(Rぱどど+Rはばど+0.16) Rondeaux et 

al. (1996) 

OSAVI [705, 
750] 

Optimal soil adjusted 
vegetation index [705, 
750]

(1+0.16)×(Rばのど-Rばどの)/(Rばのど+Rばどの+0.16) C.Y. Wu et 
al. (2008) 

PSNDc Pigment specific 
normalized difference c (Rぱどど-Rねばど)/(Rぱどど+Rねばど) Blackburn 

(1998) 

R780/R740 R780/R740 Rばぱど/Rばねど Mistele and 
Schmidhalter 
(2010) 

RI Ratio index Rぱなど/Rのはど Xue et al. 
(2004) 
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RM Red-edge model index (Rばのど/Rばにど)-1 Gitelson et 
al. (2005) 

RR Reflectance ratio Rばねど/Rばにど Vogelmann 
et al. (1993) 

RTVI Red-edge triangular 
vegetation index     700

750 730 750 550
670

(100 10 ) ( )
R

R R R R
R

     P. Chen et 
al. (2009) 

SRPI Simple ratio pigment 
index R430/R680 

Peñuelas et 
al. (1994) as 
read in Li et 
al. (2010a) 

TVI Transformed 
vegetation index

0.5×[120×/R750-R550)-200×(R670-R550)] 
Broge & Le 
Blanc (2000) 

VI Vegetation index R750/R550 
Gitelson et 
al. (1996) 

WI Water index R900/R970 
Peñuelas et 
al. (1997b) 

Table 1. Definition of some of the spectral reflectance indices most closely associated with 
growth traits of small-grain cereals. Rn = reflectance at the wavelength (in nm) indicated by 
the subscript 
Though a large number of studies demonstrate the utility of vegetation indices for assessing 
growth traits in small-grain cereals when there is a wide range of variability involved in the 
experimental data, the results indicate that the value of the indices decreases drastically 
when the range of variation caused by the environment or the crop canopies is low 
(Aparicio et al., 2002; Royo et al., 2003). In such cases the success of the indices at tracking 
changes in growth traits becomes much more experiment-dependent (Babar et al., 2006; 
Christensen & Goudriaan, 1993). Nevertheless, as stressed above, one of the practical 
applications of spectral reflectance may be its use as a routine tool for screening germplasm 
in breeding programs, when measurements are taken on a genotype basis, usually in one or 
a reduced number of experiments. Moreover, vegetation indices are more appropriate for 
assessing LAI than for estimating biomass (Aparicio et al., 2000, 2002; Serrano et al., 2000), 
particularly when measurements are taken with low variability backgrounds. 

5. Field measurements of growth traits  in individual plants  

Biomass assessment of individual plants by conventional methodologies involves 
destructive sampling, which is inappropriate for studies aiming to monitor the growth of 
specific individuals during their growth cycle, or when the grain produced by the plant has 
to be harvested at ripening, as in breeding programs. In such cases growth traits such as dry 
weight per plant (W), green area per plant (GAP) and leaf area per plant (LAP) may be 
properly estimated through vegetation indices. 
Since the devices commercially available at present only allow measurements at canopy 
level, spectral reflectance measurements of individual plants require some adaptation of 
common equipment to avoid background effects. In studies conducted with wheat by 
Casadesus et al. (2000) and with four cereal species by Álvaro et al. (2007), the plants were 
covered by a tube of reflecting walls provided by an artificial source of light (Fig. 5). In order 
to provide a homogeneous background, aluminum foil was placed around the base of each 
plant, covering the entire tube base. The spectroradiometer was fitted to a receptor for 
diffuse spectral irradiance, centered at the top of the tube. The spectra obtained were 
standardized with the spectrum previously sampled in the empty tube with the soil covered 
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Fig. 8. Pearson correlation coefficients of some hyperspectral vegetation indices (see Table 1 
for index definition)with the following  durum wheat growth traits:  a) leaf area index (LAI), 
b) green area index (GAI), and c) crop dry weight (CDW) considering pooled data of 7 field 
experiments involving 20-25 durum wheat genotypes, and conducted under contrasting 
Mediterranean conditions for 2 years. Destructive samples of biomass and reflectance 
measurements were taken at anthesis (⃝), milk-grain (+) and physiological maturity (x). Full 
symbols correspond to the classical vegetation indices, NDVI and SR. Unpublished data 
from Royo and Villegas 
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with a homogeneous white reflecting surface. This method allows measurements to be taken 
at any time of the day, regardless of the environmental conditions (sun light angle and 
intensity, weather conditions, etc.), while avoiding background disturbances such as soil 
color. In this case each spectral reflectance measurement takes 20-30 s and five scans per 
plant are sufficient to obtain reliable results.  
Consistent associations of NDVI and SR with W (R2=0.91, P<0.001), GAI (R2=0.88-0.89, 
P<0.001) and LAP (R2=0.66-0.69, P<0.001) measured on spaced plants (Álvaro et al., 2007) 
have been reported. The accuracy of reflectance measurements to detect differences between 
individual plants seems to be comparable to that obtained by destructive measurements of 
growth traits (Álvaro et al., 2007), so this methodology is a promising tool for assessing 
growth traits in spaced individual plants. However, the time needed to prepare the plants 
and to take measurements may constrain its extensive use.  

6. Limitations and future challenges of using spectral reflectance field 
measurements for biomass assessment 

Despite the possibilities that spectral reflectance measurements offer for monitoring growth 
traits in plots and individual plants (e.g. in breeding programs), their use until now has been 
very limited. One of the main reasons is that a wide range of variability must exist for the 
target growth traits within the experimental units to be detected by the apparatus (Royo et 
al., 2003). The strongest associations between growth traits and spectral reflectance indices 
have been found in studies in which a wide range of variability is induced by experimental 
treatments, such as rates of seed or nitrogen fertilizer, varying levels of water availability or 
soil salinity, or the combined analysis of data recorded at different plant stages. However, 
when the range of variation is low, particularly when the differences are only in the genetic 
background, and the predictive ability of vegetation indices is tested in specific 
environments and growth stages, the value of spectral reflectance measurements for 
estimating growth traits has proven to be much more limited (Aparicio et al., 2002; Royo et 
al., 2003). The fact that the pattern of changes in biomass is quite similar among modern 
wheat varieties (Villegas et al., 2001) may be an additional obstacle to the implementation of 
remote sensing techniques as a screening tool in breeding programs. 
Another limitation to the extensive use of spectral reflectance measurements to track 
changes in biomass derives from the huge number of indices reported in the literature and 
their misleading use (Araus et al., 2009). In addition, the lack of equipment specially 
designed to take measurements at individual plant level restricts the use of spectral 
reflectance in breeding programs, where selection in early segregating generations involves 
the screening of thousands of individual plants or small plots, and only reliable, fast, and 
cheap screening tools may be helpful. Prediction models are not of general use and need to 
be developed for specific situations, such as in farmer’s fields, where evidence indicates a 
decrease in the performance of classical and newly identified indices (Li et al., 2010b). Other 
great challenges are the development of functions to calculate sensor-specific spectral signal-
to-noise ratios for a number of different conditions, which would allow the models to 
include the effects of sensor-related noise (Broge & Leblanc, 2000), and the development of 
new sensors more adapted to practical applications. 

7. Conclusions 

The use of spectral reflectance measurements for the assessment of growth traits in small-
grain cereals offers several benefits. Their non-destructive nature allows repetitive 
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measurements to be taken over time on the same plot or plant, so the grain produced on the 
measured plants is available at the end of their growth cycle. In addition, the method avoids 
the errors associated with destructive samplings of biomass, and is fairly quick. However, 
the use of canopy spectra for biomass assessment requires a thorough knowledge of the 
conditions of use and the constraints imposed by the measurement-related noise caused by 
the sensor system, the canopy structure, and the environment, which should be carefully 
taken into consideration in order to obtain reliable results.  
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