We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

3,800
Open access books available

116,000
International authors and editors

120M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Ferroelectric-Dielectric Solid Solution and Composites for Tunable Microwave Application

Yebin Xu and Yanyan He

Huazhong University of Science and Technology
China

1. Introduction

Electric field tunable ferroelectric materials have attracted extensive attention in recent years due to their potential applications for tunable microwave device such as tunable filters, phased array antennas, delay lines and phase shifters (Maiti et al. 2007a; Rao et al. 1999; Romanofsky et al. 2000; Varadan et al 1992.; Zhi et al. 2002). Ba$_{1-x}$Sr$_x$TiO$_3$ and BaZr$_x$Ti$_{1-x}$O$_3$ have received the most attention due to their intrinsic high dielectric tunability. However, the high inherent materials loss and high dielectric constant has restricted its application in tunable microwave device. Various methods have been investigated to lower the dielectric constant and loss tangent of pure ferroelectrics. Forming ferroelectric-dielectric composite is an efficient method to reduce material dielectric constant, loss tangent and maintain tunability at a sufficiently high level. For binary ferroelectric-dielectric composite (such as BST+MgO) (Chang & Sengupta 2002; Sengupta & Sengupta 1999), with the increase of dielectrics content, the dielectric constant and tunability of composites decrease. In order to decrease the dielectric constant of binary composite, it is necessary to increase the content of linear dielectric, and the tunability will decrease inevitably due to ferroelectric dilution. Replacing one dielectric by the combination of dielectrics with different dielectric constants and forming ternary ferroelectric-dielectric composite can decrease the dielectric constant of composite and maintain or even increase the tunability. This is beneficial for tunable application. The Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Mg$_2$SiO$_4$-MgO and BaZr$_{0.2}$Ti$_{0.8}$O$_3$-Mg$_2$SiO$_4$-MgO composites exhibited relatively high tunability in combination with reduced dielectric permittivity and reduced loss tangent (He et al. 2010, 2011). With the increase of Mg$_2$SiO$_4$ content and the decrease of MgO content in Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Mg$_2$SiO$_4$-MgO composite, the dielectric constant decrease and the tunability remain almost unchanged. For BaZr$_{0.2}$Ti$_{0.8}$O$_3$-Mg$_2$SiO$_4$-MgO composite, an anomalous relation between dielectric constant and tunability was observed: with the increase of Mg$_2$SiO$_4$ content (>30 wt%), the dielectric constant of composite decreases and the tunability increases. The anomalous increased tunability can be attributed to redistribution of the electric field. Ba$_{1-x}$Sr$_x$TiO$_3$-Mg$_2$TiO$_4$-MgO can also form ferroelectric (Ba$_{1-x}$Sr$_x$TiO$_3$)-dielectric (Mg$_2$TiO$_4$-MgO) ternary composite and the dielectric constant can be decreased. With the increase of Mg$_2$TiO$_4$ content and the decrease of MgO content, the tunability of Ba$_{1-x}$Sr$_x$TiO$_3$-Mg$_2$TiO$_4$-MgO composite increase. The multiple-phase composites might complicate method to effectively deposit films, particularly if the dielectrics and ferroelectric are not compatible for simultaneous deposition or simultaneous adhesion with a substrate or with...
each other. But ferroelectric-dielectric composite bulk ceramics show promising application, especially in accelerator: bulk ferroelectrics composites can be used as active elements of electrically controlled switches and phase shifters in pulse compressors or power distribution circuits of future linear colliders as well as tuning layers for the dielectric based accelerating structures (Kanareykin et al. 2006, 2009a, 2009b).

Forming ferroelectric-dielectric solid solution is another method to reduce material dielectric constant and loss tangent. Ferroelectric Ba$_{1-x}$Sr$_x$TiO$_3$ can form solid solution with dielectrics Sr$_2$(Ga$_{0.5}$Ta$_{0.5}$)O$_3$, La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$, La(Zn$_{0.5}$Ti$_{0.5}$)O$_3$, and Nd(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ that have the same perovskite structure as the ferroelectrics (Xu et al. 2008, 2009). With the increase of the dielectrics content, the dielectric constant, loss tangent and tunability of solid solution decrease. Ba$_{1-x}$Sr$_x$TiO$_3$-La(Mg$_{0.5}$Ta$_{0.5}$)O$_3$ shows better dielectric properties than other solid solutions. Compared with ferroelectric-dielectric composite, forming solid solution can decrease the dielectric constant more rapidly when the doping content is nearly the same, and can also improve the loss tangent more effectively. On the other hand, ferroelectric-dielectric solid solution shows lower tunability than composites. The advantage of ferroelectric-dielectric solid solution is that single phase materials is favorable for the thin film deposition. The high dielectric field strength can be obtained easily in thin film to get high tunability.

In this chapter, we summarize the microstructures, dielectric tunable properties of ferroelectric-dielectric solid solution and composites, focusing mainly on our recent works.

2. Ferroelectric-dielectric composite

2.1 Ba$_{1-x}$Sr$_x$TiO$_3$ based composites

Various non-ferroelectric oxides, such as MgO, Al$_2$O$_3$, ZrO$_2$, Mg$_2$SiO$_4$ and MgTiO$_3$, were added to Ba$_{1-x}$Sr$_x$TiO$_3$ to reduce the dielectric constant and loss tangent and maintain the tunability at sufficient high level (Chang & Sengupta 2002; Sengupta & Sengupta 1997, 1999). It is better that non-ferroelectric oxide doesn’t react with ferroelectric Ba$_{1-x}$Sr$_x$TiO$_3$. MgO has low dielectric constant and loss tangent, can form ferroelectric (Ba$_{1-x}$Sr$_x$TiO$_3$)-dielectric (MgO) composite. BST-MgO composite shows better dielectric properties. Mg$_2$SiO$_4$ is also a linear dielectrics with low dielectric constant, but it can react with Ba$_{1-x}$Sr$_x$TiO$_3$ to form Ba$_{1-x}$(TiO)(Si$_2$O$_7$), as shown in Fig. 1. For 10 mol% Mg$_2$SiO$_4$ mixed Ba$_{0.6}$Sr$_{0.4}$TiO$_3$, the major phase is Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ and no Mg$_2$SiO$_4$ phase can be found except for two unidentified peaks at 27.6° and 29.7° (relative intensity: ~1%). As the content of Mg$_2$SiO$_4$ increases from 20 to 60 mol%, the impurities phase of Ba$_2$(TiO)(Si$_2$O$_7$) is observed obviously and the relative content is increased with respect to the content of Mg$_2$SiO$_4$. For 60 mol% Mg$_2$SiO$_4$ mixed Ba$_{0.4}$Sr$_{0.6}$TiO$_3$ ceramics sintered at 1220°C, the strongest diffraction peak is the (211) face of Ba$_2$(TiO)(Si$_2$O$_7$) (not shown in Fig. 1). Therefore, for Mg$_2$SiO$_4$ added Ba$_{1-x}$Sr$_x$TiO$_3$, it is not as we expected that the ferroelectric (Ba$_{0.4}$Sr$_{0.6}$TiO$_3$)-dielectric (Mg$_2$SiO$_4$) composite formed. The dielectric constants and unloaded Q values at microwave frequencies were measured in the TEO$_{1/2}$ dielectric resonator mode using the Hakki and Coleman method by the network analyzer. Table 1 summarizes ε_r and the quality factor $Q\times f=f_0/\tan\delta$, where f_0 is the resonant frequency at microwave frequencies for some Ba$_{1-x}$Sr$_x$TiO$_3$-Mg$_2$SiO$_4$ ceramics. Increasing the Mg$_2$SiO$_4$ content results in a decrease of dielectric constant but has no obvious effect on the $Q\times f$ value. The low $Q\times f$ of Ba$_{1-x}$Sr$_x$TiO$_3$-Mg$_2$SiO$_4$ ceramics restricts their microwave application, and so the tunability has not been measured furthermore. The low $Q\times f$ is due to Ba$_2$(TiO)(Si$_2$O$_7$) which is a ferroelectrics with promising piezoelectric uses.
Fig. 1. The XRD patterns of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Mg$_2$SiO$_4$ ceramics. The Mg$_2$SiO$_4$ content is 10-60 mol%.

<table>
<thead>
<tr>
<th>Mg$_2$SiO$_4$ content (mol%)</th>
<th>Sintering temperature (°C)</th>
<th>f_0(GHz)</th>
<th>ε</th>
<th>tanδ</th>
<th>Q\timesf(GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1260</td>
<td>1.79</td>
<td>683.7</td>
<td>0.016</td>
<td>112</td>
</tr>
<tr>
<td>40</td>
<td>1240</td>
<td>2.98</td>
<td>169.2</td>
<td>0.024</td>
<td>124</td>
</tr>
</tbody>
</table>

Table 1. Microwave dielectric properties of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Mg$_2$SiO$_4$ ceramics

For Mg$_2$SiO$_4$-MgO added Ba$_{0.6}$Sr$_{0.4}$TiO$_3$, ferroelectric (Ba$_{0.6}$Sr$_{0.4}$TiO$_3$)-dielectric (Mg$_2$SiO$_4$-MgO) composite is formed, as shown in Fig. 2 (He et al., 2010). With the decrease of MgO content and the increase of Mg$_2$SiO$_4$ content, the diffraction peaks from MgO decrease gradually and the diffraction peaks from Mg$_2$SiO$_4$ increase. Therefore, Mg$_2$SiO$_4$-MgO combination can prohibit the formation of Ba$_2$(TiO)(Si$_2$O$_7$) phase. Fig. 3 shows the FESEM images of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Mg$_2$SiO$_4$-MgO composites sintered at 1350°C for 3h. The FESEM image and element mapping of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-12Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-48MgO as determined by energy dispersive spectroscopy (EDS) are shown in Fig. 4. Three kind of different grains can be found clearly: light grains with average grain size of about 2µm, nearly round larger grains and dark grains with sharp corners. The element mapping of Si Kα1 and Ti Kα1 in Fig. 4 can show the distribution of Mg$_2$SiO$_4$ and Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ grains clearly. Therefore, we can identify that light grains are Ba$_{0.6}$Sr$_{0.4}$TiO$_3$, the dark, larger grains are MgO, and dark grains with sharp corners are Mg$_2$SiO$_4$. With the decrease of MgO content and the increase of Mg$_2$SiO$_4$ content, more and more Mg$_2$SiO$_4$ grains with different size can be found (Fig. 4). It is consistent with the XRD results. We can conclude that Mg$_2$SiO$_4$ and MgO were randomly dispersed relative to ferroelectric Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ phase.
Fig. 2. The XRD patterns of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-60(Mg$_2$SiO$_4$-MgO) composite ceramics sintered at 1350°C for 3h. From bottom to top, the MgO content is 48 wt%, 36 wt%, 30 wt%, 24 wt% and 12 wt%, respectively.

Fig. 3. FESEM images of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-60(Mg$_2$SiO$_4$-MgO) composites ceramics sintered at 1350°C for 3h. From (a) to (e), the MgO content is 48 wt%, 36 wt%, 30 wt%, 24 wt% and 12 wt%, respectively.
Because of the relatively low dielectric constant and loss tangent of Mg$_2$SiO$_4$ and MgO, it is expected that Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Mg$_2$SiO$_4$-MgO composites have lower dielectric constant and loss tangent. Fig. 5 shows the dielectric constant and loss tangent of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Mg$_2$SiO$_4$-MgO composite ceramics at 1MHz. The dielectric constant of composites is much smaller than that of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ ($\varepsilon \approx 5160$ at 1MHz) (Chang & Sengupta, 2002; Senguptal & Sengupta 1999). The loss tangent of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ is ~0.0096 (Senguptal et al. 1999). Therefore, the composites have much smaller loss tangent than Ba$_{0.6}$Sr$_{0.4}$TiO$_3$.

The temperature dependence of dielectric properties for various Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Mg$_2$SiO$_4$-MgO composites (sintering temperature: 1350°C) measured at 100kHz is illustrated in Fig. 6. Broadened and suppressed dielectric peaks and shifts of Curie temperature T_C are observed. For 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-12Mg$_2$SiO$_4$-48MgO ceramics, its ε_{max} is ≈ 176.5 at $T_C \approx 224$K. As the relative content of Mg$_2$SiO$_4$ increase, T_C is shifted slightly to lower temperatures, thus resulting in a decrease in dielectric constant at a given temperature; at the meantime, ε_{max} decreases also. For 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-30Mg$_2$SiO$_4$-30MgO, ε_{max} is ~140.1 at ~216K and for 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-48Mg$_2$SiO$_4$-12MgO, ε_{max} is ~126.8 at ~214K. With the decrease of temperature, the loss tangent increase.

Fig. 6 shows the effect of applied field on the tunability of the Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Mg$_2$SiO$_4$-MgO composites at 100kHz. The tunability of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-12Mg$_2$SiO$_4$-48MgO at 100kHz under at 2kV/mm is 10.5%. With the increase of Mg$_2$SiO$_4$ content, the tunability of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-24Mg$_2$SiO$_4$-36MgO decreases slightly to 9.2%. Further increasing Mg$_2$SiO$_4$ content results in a slight increase of tunability: 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-48Mg$_2$SiO$_4$-12MgO composite has tunability of 10.2%.
Fig. 5. Dielectric constant (solid) and loss tangent (open) of $40\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$-$60(\text{Mg}_2\text{SiO}_4-\text{MgO})$ composite ceramics sintered at different temperature (measure frequency: 1MHz).

Fig. 6. Variation of dielectric constant (solid) and loss tangent (open) with temperature for $40\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$-$60(\text{Mg}_2\text{SiO}_4-\text{MgO})$ ceramics measured at 100kHz.
The tunability of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-60(Mg$_2$SiO$_4$-MgO) composites at 100kHz (sintering temperature: 1350°C).

Table 2. Microwave Dielectric Properties of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-60(Mg$_2$SiO$_4$-MgO) ceramics

<table>
<thead>
<tr>
<th>MgO content (wt.%)</th>
<th>f_0(GHz)</th>
<th>ε</th>
<th>tanδ</th>
<th>Q\timesf(GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5.74</td>
<td>74.59</td>
<td>0.023</td>
<td>250</td>
</tr>
<tr>
<td>24</td>
<td>5.74</td>
<td>77.72</td>
<td>0.019</td>
<td>302</td>
</tr>
<tr>
<td>30</td>
<td>5.80</td>
<td>77.12</td>
<td>0.021</td>
<td>276</td>
</tr>
<tr>
<td>36</td>
<td>5.96</td>
<td>74.39</td>
<td>0.017</td>
<td>351</td>
</tr>
<tr>
<td>48</td>
<td>5.33</td>
<td>93.86</td>
<td>0.014</td>
<td>381</td>
</tr>
</tbody>
</table>

The room temperature microwave dielectric properties of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-60(Mg$_2$SiO$_4$-MgO) composites were summarized in Table 2. With the increase of Mg$_2$SiO$_4$ content, the dielectric constant remain almost the same and the Q\timesf value decrease. Mg$_2$TiO$_4$ is a low loss tangent linear dielectrics and Mg$_2$TiO$_4$ added Ba$_{1-x}$Sr$_x$TiO$_3$ shows better tunable dielectric properties (Chou et al. 2007; Nenasheva et al. 2010). The XRD patterns of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-xMgO-(60-x)Mg$_2$TiO$_4$ (Fig. 8) show that ferroelectric (Ba$_{0.6}$Sr$_{0.4}$TiO$_3$)-dielectric (MgO-Mg$_2$TiO$_4$) composite is formed. On the other hand, impurity phase BaMg$_6$Ti$_6$O$_{19}$ is found in Mg$_2$TiO$_4$ doped Ba$_{0.6}$Sr$_{0.4}$TiO$_3$. The fomation of BaMg$_6$Ti$_6$O$_{19}$ depends on Ba/Sr ratio. BaMg$_6$Ti$_6$O$_{19}$ forms in Mg$_2$TiO$_4$ doped Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ and Ba$_{0.55}$Sr$_{0.45}$TiO$_3$ but not Ba$_{0.6}$Sr$_{0.4}$TiO$_3$. Mg$_2$TiO$_4$-MgO combination can prohibit the formation of BaMg$_6$Ti$_6$O$_{19}$ phase. The FESEM images (Fig. 9) show clearly three kind of grains: Ba$_{0.6}$Sr$_{0.4}$TiO$_3$, Mg$_2$TiO$_4$ and MgO.

Table 3 shows the microwave dielectric properties of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-xMgO-(60-x)Mg$_2$TiO$_4$ ceramics. With the increase of MgO content, the dielectric constant decrease due to lower
dielectric constant of MgO. For x=0-36 wt%, the Q × f value remain unchanged. As a whole, the loss tangent is too high to be used for tunable microwave application.

![Fig. 8. The XRD patterns of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-xMgO-(60-x)Mg$_2$TiO$_4$ ceramics](image)

Fig. 8. The XRD patterns of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-xMgO-(60-x)Mg$_2$TiO$_4$ ceramics

![Fig. 9. FESEM images of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-xMgO-(60-x)Mg$_2$TiO$_4$ composites ceramics sintered at 1400°C for 3h.](image)

Fig. 9. FESEM images of 40Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-xMgO-(60-x)Mg$_2$TiO$_4$ composites ceramics sintered at 1400°C for 3h.
Increasing Sr/Ba ratio can decrease the dielectric constant and loss tangent of $Ba_{1-x}Sr_xTiO_3$. $40Ba_{0.5}Sr_{0.5}TiO_3$ will have lower dielectric constant and loss tangent than $40Ba_{0.6}Sr_{0.4}TiO_3$ and $40Ba_{0.5}Sr_{0.5}TiO_3-(60-x)Mg_2TiO_4$. We prepared $40Ba_{0.5}Sr_{0.5}TiO_3-(60-x)Mg_2TiO_4$ ceramics and measured the tunability (Fig. 10). With the increase of Mg$_2$TiO$_4$ content, the tunability of composite increases. The tunability of $40Ba_{0.5}Sr_{0.5}TiO_3-12Mg_2TiO_4$ is 16.6% at 2kV/mm and 28.5% at 3.9kV/mm, respectively. The corresponding value of $40Ba_{0.5}Sr_{0.5}TiO_3-60Mg_2TiO_4$ is 13.6% and 24.0%, respectively. The higher tunability of $40Ba_{0.5}Sr_{0.5}TiO_3-12Mg_2TiO_4$ is due to its higher dielectric constant ($\varepsilon=150.2$) than $40Ba_{0.5}Sr_{0.5}TiO_3-60Mg_2TiO_4$ ($\varepsilon=127.8$).

Table 3. Microwave dielectric properties of $40Ba_{0.6}Sr_{0.4}TiO_3-(60-x)Mg_2TiO_4$ ceramics

<table>
<thead>
<tr>
<th>MgO content (wt.%)</th>
<th>f_0(GHz)</th>
<th>ε</th>
<th>$\tan\delta$</th>
<th>$Q\times f$(GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.83</td>
<td>193.40</td>
<td>0.034</td>
<td>83</td>
</tr>
<tr>
<td>12</td>
<td>2.67</td>
<td>226.76</td>
<td>0.034</td>
<td>79</td>
</tr>
<tr>
<td>24</td>
<td>2.96</td>
<td>220.25</td>
<td>0.035</td>
<td>85</td>
</tr>
<tr>
<td>36</td>
<td>3.00</td>
<td>207.66</td>
<td>0.036</td>
<td>83</td>
</tr>
<tr>
<td>48</td>
<td>3.53</td>
<td>199.71</td>
<td>0.034</td>
<td>104</td>
</tr>
<tr>
<td>60</td>
<td>4.80</td>
<td>109.63</td>
<td>0.013</td>
<td>369</td>
</tr>
</tbody>
</table>

Fig. 10. The tunability of $40Ba_{0.5}Sr_{0.5}TiO_3-(60-x)Mg_2TiO_4$ composites at 10kHz.

2.2 BaZr$_x$Ti$_{1-x}$O$_3$ based composites

BaZr$_x$Ti$_{1-x}$O$_3$ can form ferroelectric-dielectric composite with MgO (Maiti et al. 2007b, 2007c, 2008). High tunability and low loss tangent of the BaZr$_x$Ti$_{1-x}$O$_3$: MgO composites are
Fig. 11. The XRD patterns of $40\text{BaZr}_{0.2}\text{Ti}_{0.8}\text{O}_3-(60-x)\text{Mg}_2\text{SiO}_4-x\text{MgO}$ composites ceramics sintered at 1350°C for 3h. (a) $x=48\,$wt\%, (b) $x=36\,$wt\%, (c) $x=30\,$wt\%, (d) $x=24\,$wt\%, (e) $x=12\,$wt\%.

Fig. 12. FESEM images of $40\text{BaZr}_{0.2}\text{Ti}_{0.8}\text{O}_3-(60-x)\text{Mg}_2\text{SiO}_4-x\text{MgO}$ composites ceramics sintered at 1350°C for 3h. From (a) to (e), $x=48\,$wt\%, 36 wt\%, 30 wt\%, 24 wt\% and 12 wt\%, respectively.
reported, but the sintering temperature is as high as 1500°C. We prepared BaZr$_{0.2}$Ti$_{0.8}$O$_3$-Mg$_2$SiO$_4$-MgO composite ceramics at 1350°C (He et al. 2011). The formation of ferroelectric (BaZr$_{0.2}$Ti$_{0.8}$O$_3$)-dielectric (Mg$_2$SiO$_4$-MgO) composite was proved by XRD patterns (Fig. 11). Similar to Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Mg$_2$SiO$_4$-MgO composites, three kind of grains: BaZr$_{0.2}$Ti$_{0.8}$O$_3$, Mg$_2$SiO$_4$ and MgO, can be identified (Fig. 12 and Fig. 13).

![FESEM image and element mapping of 40BaZr$_{0.2}$Ti$_{0.8}$O$_3$-12Mg$_2$SiO$_4$-48MgO as determined by energy dispersive spectroscopy (EDS).](image1)

![Graph showing dielectric constant and loss tangent of 40BaZr$_{0.2}$Ti$_{0.8}$O$_3$-(60-x)Mg$_2$SiO$_4$-xMgO composites ceramics sintered at various temperature (measured frequency: 1MHz).](image2)
Fig. 14 shows the dielectric constant and loss tangent of BaZr$_{0.2}$Ti$_{0.8}$O$_3$-Mg$_2$SiO$_4$-MgO composite ceramics at 1MHz. With the increase of sintering temperature from 1300°C to 1350°C, the dielectric constant of the composites increase and the loss tangent decrease.

Fig. 15. Variation of dielectric constant (solid) and loss tangent (open) with temperature for 40BaZr$_{0.2}$Ti$_{0.8}$O$_3$-(60-x)Mg$_2$SiO$_4$-xMgO ceramics (sintering temperature: 1350°C) measured at 100kHz.

Fig. 16. The tunability of 40BaZr$_{0.2}$Ti$_{0.8}$O$_3$-(60-x)Mg$_2$SiO$_4$-xMgO composite ceramics at 100kHz at room temperature (sintering temperature: 1350°C).
Increasing Mg$_3$SiO$_4$ content tends to decrease the dielectric constant of composites. The dielectric constant and loss tangent of composite sintered at 1350°C is ~125-183 and ~0.0010-0.0016, respectively, which is smaller than that of BaZr$_{0.2}$Ti$_{0.8}$O$_3$ (Maiti et al. 2007b).

The temperature dependence of dielectric properties for BaZr$_{0.2}$Ti$_{0.8}$O$_3$-Mg$_3$SiO$_4$-MgO composites (sintering temperature: 1350°C) measured at 100kHz is illustrated in Fig. 15. Compared with pure BaZr$_{0.2}$Ti$_{0.8}$O$_3$ bulk ceramic (Maiti et al. 2007b), broadened and suppressed dielectric peaks and shifts of Curie temperature T_c are observed with the addition of Mg$_3$SiO$_4$ and MgO. The results are similar to that of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Mg$_3$SiO$_4$-MgO. For 40BaZr$_{0.2}$Ti$_{0.8}$O$_3$-12Mg$_3$SiO$_4$-48MgO ceramics, its ε_{max} decreases to ~215.5 and T_c shifts to lower temperature ~246K. For 40BaZr$_{0.2}$Ti$_{0.8}$O$_3$-48Mg$_3$SiO$_4$-12MgO, ε_{max} is ~157.7 at ~240K.

Fig. 16. shows the tunability of the BaZr$_{0.2}$Ti$_{0.8}$O$_3$-Mg$_3$SiO$_4$-MgO composites at 100kHz temperature. The tunability of 40BaZr$_{0.2}$Ti$_{0.8}$O$_3$-12Mg$_3$SiO$_4$-48MgO under 2kV/mm is 15.6%. With the increase of Mg$_3$SiO$_4$ content, the tunability of 40BaZr$_{0.2}$Ti$_{0.8}$O$_3$-30Mg$_3$SiO$_4$-30MgO decreases slightly to 14.2%. Further increasing Mg$_3$SiO$_4$ content results in an anomalous increase of tunability: 40BaZr$_{0.2}$Ti$_{0.8}$O$_3$-48Mg$_3$SiO$_4$-12MgO composite has lower dielectric constant than 40BaZr$_{0.2}$Ti$_{0.8}$O$_3$-12Mg$_3$SiO$_4$-48MgO but slightly higher tunability (17.9%).

3. Ferroelectric-dielectric solid solution

Forming ferroelectric-dielectric solid solution is another method to reduce material dielectric constant and loss tangent. Some non-ferroelectric complex oxides with perovskite structures have relatively low dielectric constant and low loss tangent. It is expected that they can be combined with barium strontium titanate to reduce material dielectric constant and loss tangent. Furthermore, it is possible for them to form solid solutions with barium strontium titanate because they have the same perovskite structure as barium strontium titanate. Single phase material is favorable for the thin film deposition. On the other hand, some perovskite oxide has positive temperature coefficient of dielectric constant and it can decrease the temperature coefficient of dielectric constant of barium strontium titanate above Curie temperature.

3.1 Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ solid solution

Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ has a comparatively small dielectric constant (27 at 1MHz), a positive temperature coefficient of dielectric constant (120ppmK$^{-1}$) and a low dielectric loss (Q=8600 at 10.6 GHz) (Takahashi et al. 1997). The lattice constant (a=0.3949nm) of cubic perovskite structure Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ is very close to that of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ (a=0.3965nm). Therefore, Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ will be possible to form solid solution with Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ and reduce the dielectric constant of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$. The XRD results (Fig. 17.) prove that solid solution can be formed between Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ and Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ under the preparative conditions (Xu et al. 2008).

Fig.18 shows the FESEM images of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ ceramics sintered at 1600°C for 3h. The effect of Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ content on the average grain size in not very obvious. We can also see that 0.9Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.1Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ has higher porosity than other compositions. The morphology of 0.5Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.5Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ shows difference from that of other three compositions.

The temperature dependence of dielectric properties for various Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-
Fig. 17. The XRD patterns of $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$-$\text{Sr} (\text{Ga}_{0.5}\text{Ta}_{0.5})\text{O}_3$ ceramics sintered at 1600°C for 3h. From bottom to top, the $\text{Sr}(\text{Ga}_{0.5}\text{Ta}_{0.5})\text{O}_3$ content is 10, 20, 30 and 50mol%, respectively. The intensity is plotted on a log scale.

Fig. 18. FESEM images of $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$-$\text{Sr}(\text{Ga}_{0.5}\text{Ta}_{0.5})\text{O}_3$ ceramics sintered at 1600°C for 3h. From (a) to (d), the $\text{Sr}(\text{Ga}_{0.5}\text{Ta}_{0.5})\text{O}_3$ content is 10, 20, 30 and 50mol%, respectively.
Sr(Ga_{0.5}Ta_{0.5})O_3 ceramics (sintering temperature: 1600°C) measured at 100kHz is illustrated in Fig. 19. Broadened and suppressed dielectric peaks and shifts of Curie temperature T_C are observed with the addition of Sr(Ga_{0.5}Ta_{0.5})O_3. For 0.9Ba_{0.6}Sr_{0.4}TiO_3-0.1Sr(Ga_{0.5}Ta_{0.5})O_3 ceramics, its ε_{max} decreases to ~ 686 and T_C shifts to lower temperature ~250K. As more Sr(Ga_{0.5}Ta_{0.5})O_3 is added to Ba_{0.6}Sr_{0.4}TiO_3, T_C shifts to lower temperatures, thus resulting in a decrease in dielectric constant at a given temperature and ε_{max}. For 0.8Ba_{0.6}Sr_{0.4}TiO_3-0.2Sr(Ga_{0.5}Ta_{0.5})O_3, ε_{max} is ~335 at ~200K and for 0.5Ba_{0.6}Sr_{0.4}TiO_3-0.5Sr(Ga_{0.5}Ta_{0.5})O_3, ε_{max} is ~95 at ~100K. On the other hand, loss tangent increases on cooling. For 0.9Ba_{0.6}Sr_{0.4}TiO_3-0.15Sr(Ga_{0.5}Ta_{0.5})O_3 ceramics, there is small peak around ~250K. The loss tangent of 0.5Ba_{0.6}Sr_{0.4}TiO_3-0.5Sr(Ga_{0.5}Ta_{0.5})O_3 ceramics (not shown) is almost independent on temperature and fluctuates around 0.004 at the temperature range of 60K-300K.

Fig. 19. Variation of dielectric constant (solid) and loss tangent (open) with temperature for Ba_{0.6}Sr_{0.4}TiO_3-Sr(Ga_{0.5}Ta_{0.5})O_3 ceramics (sintering temperature: 1600°C) measured at 100kHz: From (a) to (c), the Sr(Ga_{0.5}Ta_{0.5})O_3 content is 10, 20, and 50 mol%, respectively.

Fig. 20. The tunability of 0.9Ba_{0.6}Sr_{0.4}TiO_3-0.1Sr(Ga_{0.5}Ta_{0.5})O_3 and 0.7Ba_{0.6}Sr_{0.4}TiO_3-0.3Sr(Ga_{0.5}Ta_{0.5})O_3 at 100 kHz (sintering temperature: 1600°C).
Fig. 20 shows the tunability of the Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ solid solutions at 100 kHz, showing that the tunability decreases as the dielectric Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ content increases. The decrease in the dielectric constant and tunability of 0.9Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.1Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ results from the Ga and Ta substitution into B-site Ti and Sr substitution into A-site Ba in barium strontium titanate. 0.9Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.1Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ has a dielectric tunability 16% under 2.63 kV/mm versus a dielectric constant ε=534. The tunability of 0.7 Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.3Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ drops to be 5.7% under 2.63 kV/mm.

The microwave dielectric properties of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ solid solutions were listed in Table 4. With the increase of Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ content, the dielectric constant decrease and the $Q\times f$ value increase. The $Q\times f$ value of the solid solution is not high except 0.5Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.5Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$. The low relative density maybe is the main reason: the relative density of 0.9Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.1Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$, 0.8Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.2Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ and 0.7Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.3Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ ceramics sintered at 1600°C for 3h is 82%, 89% and 88%, respectively.

<table>
<thead>
<tr>
<th>Sr(Ga${0.5}$Ta${0.5}$)O$_3$ content(mol%)</th>
<th>f_0(GHz)</th>
<th>ε</th>
<th>tanδ</th>
<th>$Q\times f$(GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.73</td>
<td>592.4</td>
<td>0.015</td>
<td>115</td>
</tr>
<tr>
<td>20</td>
<td>2.05</td>
<td>375.3</td>
<td>0.013</td>
<td>158</td>
</tr>
<tr>
<td>30</td>
<td>2.49</td>
<td>236.9</td>
<td>0.012</td>
<td>208</td>
</tr>
<tr>
<td>50</td>
<td>4.68</td>
<td>79.6</td>
<td>0.0039</td>
<td>1200</td>
</tr>
</tbody>
</table>

Table 4. Microwave dielectric properties of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-Sr(Ga$_{0.5}$Ta$_{0.5}$)O$_3$ solid solutions

3.2 Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ solid solution

La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ with low dielectric constant and loss tangent can form solid solutions with BaTiO$_3$ or SrTiO$_3$ in the whole compositional range (Avdeev 2002; Lee 2000). As shown in Fig. 21, La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ form solid solution with Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ (Xu et al. 2009).

![Fig. 21. The XRD patterns of (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 and (f) 60 mol% La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ mixed Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ ceramics.](www.intechopen.com)
The microwave dielectric properties of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-La(Zn$_{0.5}$Ti$_{0.5}$)O$_3$ ceramics were investigated. For different composition, the optimal sintering temperature is different. If the sintering temperature exceeds the corresponding value, the sample’s rim and then interior became dark-blue in color, due to partial reduction of Ti$^{4+}$ (d0) to Ti$^{3+}$ (d1) associated with the oxygen loss from the lattice. Fig. 22 show the dielectric constant and Qf of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ ceramics sintered at optimal temperature. ε decreases with the increase of La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ content, from $\varepsilon_r=338.2$ for 0.9Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.1La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ to $\varepsilon_r=47$ for 0.4Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.6La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$. Qf value increases with increasing amounts of La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$. High Qf value of 9509 GHz with dielectric constant of 46.7 was obtained for 0.4Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.6La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ at 5.69 GHz.

Fig. 22. Dielectric constant and quality factor of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ compositions as a function of La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ content.

Fig. 23. The tunability of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ compositions measured at 100kHz and room temperature.
The tunability of $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3-\text{La(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$ ceramics is shown in Fig. 23. $\text{La(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$ decreases the tunability of $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$ abruptly. The tunability of $0.9\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3-0.1\text{La(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$ is only 3.7% under 1.67 kV/mm, although its Qf reaches 979GHz. Increasing $\text{La(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$ content decreases the tunability further: the tunability of $0.8\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3-0.2\text{La(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$ is 0.5% under 2.08 kV/mm.

The typical FESEM images of $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3-\text{La(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$ ceramics sintered at optimal temperature and the energy dispersive spectroscopy of $0.9\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3-0.1\text{La(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$ were shown in Fig. 24. For $0.4\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3-0.6\text{La(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$ dense ceramics were obtained, but higher porosity can be observed for the other three compositions. The high Qf value of $0.4\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3-0.6\text{La(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$ can be related to its higher relative density. The chemical composition calculated from energy dispersive spectroscopy were listed in Table 5. We can see that the measured At% is consistent with the theoretical value within the error range. The result also proves the formation of solid solution further.

![Image](https://www.intechopen.com)

Table 5. The chemical composition of $0.9\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3-0.1\text{La(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$

<table>
<thead>
<tr>
<th>Element</th>
<th>Wt%</th>
<th>At%</th>
<th>Theoretical At%</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>21.15</td>
<td>56.99</td>
<td>60.61</td>
</tr>
<tr>
<td>MgK</td>
<td>0.53</td>
<td>0.95</td>
<td>1.01</td>
</tr>
<tr>
<td>SrL</td>
<td>18.65</td>
<td>9.18</td>
<td>7.27</td>
</tr>
<tr>
<td>BaL</td>
<td>28.76</td>
<td>9.03</td>
<td>10.91</td>
</tr>
<tr>
<td>TiK</td>
<td>24.19</td>
<td>21.77</td>
<td>19.19</td>
</tr>
<tr>
<td>LaL</td>
<td>06.71</td>
<td>2.08</td>
<td>2.02</td>
</tr>
</tbody>
</table>

![Image](https://www.intechopen.com)
3.3 \text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$-$\text{La(Zn}_{0.5}\text{Ti}_{0.5})\text{O}_3$ and $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$-$\text{Nd(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$ solid solution

$\text{La(Zn}_{0.5}\text{Ti}_{0.5})\text{O}_3$ have a comparatively small dielectric constant ($\varepsilon=34$ at 10GHz), a negative temperature coefficient of the resonance frequency ($\tau_f=-52\text{ppmK}^{-1}$) and a low dielectric loss.

Fig. 25. The XRD patterns of (a) 10, (b) 20, (c) 30, (d) 40, and (e) 50 mol\% $\text{La(Zn}_{0.5}\text{Ti}_{0.5})\text{O}_3$ mixed $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$ ceramics.

Fig. 26. The XRD patterns of (a) 10, (b) 20, (c) 30, (d) 40, and (e) 50 mol\% $\text{Nd(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3$ mixed $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$ ceramics.
For Nd(Mg_{0.5}Ti_{0.5})O_{3}, the corresponding value is 26, -49 ppmK^{-1} and 36900GHz, respectively (Cho et al. 1999). XRD analysis showed that they can form solid solution with Ba_{0.6}Sr_{0.4}TiO_{3} (Fig. 25 and 26), but their microwave dielectric properties is inferior to that of Ba_{0.6}Sr_{0.4}TiO_{3}-La(Mg_{0.5}Ti_{0.5})O_{3}.

Fig. 27. Dielectric constant and Qf of Ba_{0.6}Sr_{0.4}TiO_{3}–La(Zn_{0.5}Ti_{0.5})O_{3} compositions as a function of La(Zn_{0.5}Ti_{0.5})O_{3} content.

Table 6. Microwave dielectric properties of Ba_{0.6}Sr_{0.4}TiO_{3}-Nd(Mg_{0.5}Ti_{0.5})O_{3} solid solutions

<table>
<thead>
<tr>
<th>Nd(Mg_{0.5}Ti_{0.5})O_{3} content (mol%)</th>
<th>Sintering temperature (°C)</th>
<th>(f_0) (GHz)</th>
<th>(\varepsilon)</th>
<th>Qf (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1500</td>
<td>2.68</td>
<td>198.3</td>
<td>535</td>
</tr>
<tr>
<td>20</td>
<td>1550</td>
<td>2.83</td>
<td>193.0</td>
<td>615</td>
</tr>
<tr>
<td>30</td>
<td>1500</td>
<td>4.05</td>
<td>93.0</td>
<td>880</td>
</tr>
<tr>
<td>30</td>
<td>1550</td>
<td>4.30</td>
<td>94.7</td>
<td>1137</td>
</tr>
</tbody>
</table>

Table 6 lists the microwave dielectric properties of some Ba_{0.6}Sr_{0.4}TiO_{3}-Nd(Mg_{0.5}Ti_{0.5})O_{3} ceramics. Although increasing Nd(Mg_{0.5}Ti_{0.5})O_{3} content can increase the Qf value, the Qf value is not ideal: they are even lower than that of Ba_{0.6}Sr_{0.4}TiO_{3}-La(Zn_{0.5}Ti_{0.5})O_{3} system.
The tunability of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-La(Zn$_{0.5}$Ti$_{0.5}$)O$_3$ ceramics is shown in Fig. 28. The tunability of 0.9Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.1La(Zn$_{0.5}$Ti$_{0.5}$)O$_3$ is only 2.7% under 1.67 kV/mm. It is even smaller than that of 0.9Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.1La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ although 0.9Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.1La(Zn$_{0.5}$Ti$_{0.5}$)O$_3$ has higher dielectric constant and loss tangent than that of 0.9Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.1La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$. Similarly, increasing La(Zn$_{0.5}$Ti$_{0.5}$)O$_3$ content decreases the tunability of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-La(Zn$_{0.5}$Ti$_{0.5}$)O$_3$ further. We can see that the dielectric properties of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ is better than that of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-La(Zn$_{0.5}$Ti$_{0.5}$)O$_3$.

Fig. 28. The tunability of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-La(Zn$_{0.5}$Ti$_{0.5}$)O$_3$ compositions measured at 100kHz and room temperature.

4. Discussion

Forming ferroelectric-dielectric solid solution and composite both can reduce the dielectric constant of ferroelectrics efficiently, but has different effect on the dielectric properties of ferroelectrics. (1) Forming solid solution can decrease the dielectric constant of ferroelectrics more rapidly when the doping content is nearly the same. The dielectric constant of 0.5Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.5La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ is 55, which is far lower than that of 60 wt% MgO-mixed Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ (ε=118) (Chang & Sengupta 2002; Sengupta & Sengupta 1999) although the doping content in 60 wt% MgO-mixed Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ is higher and MgO has lower dielectric constant than La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$. (2) Forming solid solution can improve the loss tangent of ferroelectrics more effectively. The Qf value of 0.5Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.5La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ and 60 wt% MgO-mixed Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ is 9367GHz and 750GHz (Chang & Sengupta 2002; Sengupta & Sengupta 1999), respectively. Even for loose 0.9Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.1La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ ceramics, its Qf value (979GHz) is much higher than that of Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-MgO. In the preparation process of microwave dielectric ceramics, the formation of secondary phase should be prevented. (3) Forming multiphase composite can maintain sufficiently high tunability. 0.5Ba$_{0.6}$Sr$_{0.4}$TiO$_3$-0.5La(Mg$_{0.5}$Ti$_{0.5}$)O$_3$ has lost tunability completely, but the tunability of 60 wt% MgO-mixed Ba$_{0.6}$Sr$_{0.4}$TiO$_3$ at 2kV/mm and 8kV/mm is 10% and 38%, respectively (Chang & Sengupta 2002; Sengupta & Sengupta 1999).
Some authors addressed the dielectric response of ferroelectric-dielectric composites theoretically and various composite models were used to evaluate the dielectric constant, tunability, and loss tangent (Astafiev 2003; Sherman et al. 2006; Tagantsev et al. 2006). As Tagantsev stated (Tagantsev et al. 2006), mixing a tunable ferroelectric with a linear dielectric may modify the electrical properties of the material due to mainly two effects: (i) “doping effect” – effect of doping of the ferroelectric lattice via the substitution of the ions of the host material and (ii) “composite effect” – effects of redistribution of the electric field in the material due to the precipitation of the non-ferroelectric phase at the grain boundaries or in the bulk of the material. The first effect results primarily in a shift and smearing of the temperature anomaly of the permittivity. The second effect leads to a redistribution of the electric field in the material. For ferroelectric-dielectric solid solutions, “composite effect” can be excluded. We can deduce that the addition of low loss perovskite dielectric influenced the chemistry and microstructure of the material, which resulted in the change of dielectric properties of materials. In ferroelectric-dielectric solid solution, a high degree of structural disorder due to random cation arrangement in both A- and B-sites is present, addition of perovskite dielectrics apparently destroys the ferroelectric state, leading to the sharp decrease of tunability. For ferroelectric-dielectric composites, “doping effect” can be ignored. The effect of the dilution-driven field redistribution in the material is the main manifestation of addition of the dielectric into ferroelectrics in two-phase or multiphase composite. The reduction of the volume of ferroelectric, which is responsible for tuning, causes suppression of the tunability of the material. In ferroelectric-dielectric composites, ferroelectrics host lattice remains unchanged and the decrease of tunability is mainly due to ferroelectric dilution. “Destruction” in solid solution and “dilution” in composite has different effect on the tunability. Therefore, forming ferroelectric-dielectric solid solution can cause the decrease of tunability more sharply.

In ferroelectric-dielectric composite, the big contrast in the values of dielectric constants of linear dielectrics and the ferroelectric affects the redistribution of the electric field around the dielectrics. The dielectric constant of the ferroelectric under applied electric field becomes inhomogeneously distributed over the volume of the ferroelectric. The overall tunability of the composite, thus changes. Two competitive phenomena affect the tunable properties of the ferroelectric when it is diluted with a dielectric (Sherman et al. 2006). First, the reduction of the volume of ferroelectric, which is responsible for tuning, will cause suppression of the tunability of the material. Second, the redistribution of the electric field surrounding the linear dielectrics will affect the local tuning of the ferroelectric. Depending on the shape of the linear dielectrics and on the dielectric constants of the components, the impact of each of these two effects on the composite tunability is different and the second effect may be stronger (Sherman et al. 2006). In ferroelectric-dielectric composite BaZr_{0.2}Ti_{0.8}O_3-Mg_2SiO_4-MgO, with the increase of Mg_2SiO_4 content and the decrease of MgO content, the volume of ferroelectric BaZr_{0.2}Ti_{0.8}O_3 decrease due to smaller density of Mg_2SiO_4 than that of MgO, the tunability of composite will be suppressed. It is the fact as MgO content decreases from 48 wt% to 30 wt%. The anomalous increased tunability in BaZr_{0.2}Ti_{0.8}O_3-Mg_2SiO_4-MgO composite with MgO content < 30 wt% can be attributed to redistribution of the electric field. Mg_2SiO_4 and MgO have different dielectric constants, they will have different effects on the redistribution of the electric field. The combination of linear dielectrics with different dielectric constants can result in the change of dielectric constant and loss tangent and even increase the tunability by affecting the redistribution of the electric field in the composite. As MgO content decreases from 30 wt% to 12 wt%, the increase of the
tunability due to redistribution of the electric field exceeds the decrease of the tunability due to ferroelectric dilution, so the tunability of composite ceramics increases anomalously. The almost unchanged tunability in $\text{Ba}_{0.5}\text{Sr}_{0.4}\text{TiO}_3$-$\text{Mg}_2\text{SiO}_4$-$\text{MgO}$ composite can also be explained. No similar result was observed in $\text{BST-Mg}_2\text{TiO}_4$-$\text{MgO}$ composite: with the increase of MgO content and the decrease of Mg_2TiO_4 content, the dielectric constant and tunability decrease monotonously. The tunability of $40\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$-$48\text{Mg}_2\text{TiO}_4$-$12\text{MgO}$ ceramics at 2kV/mm is 16.6%, but the corresponding tunability of $40\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$-$12\text{Mg}_2\text{TiO}_4$-$48\text{MgO}$ is only 5.7%.

We can also see that ternary compositions ferroelectric-dielectric composite shows some advantages over binary compositions. (1). We can decrease the dielectric constant of ternary composites and remain the tunability almost unchanged (in $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$-$\text{Mg}_2\text{SiO}_4$-$\text{MgO}$), even increase the tunability (in $\text{BaZr}_{0.2}\text{Ti}_{0.8}\text{O}_2$-$\text{Mg}_2\text{SiO}_4$-$\text{MgO}$), without increasing the content of linear dielectrics. In order to decrease the dielectric constant of $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$-$\text{MgO}$, it is necessary to increase the content of linear dielectrics MgO, and the tunability will decrease inevitably. The tunability of $\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$-$\text{MgO}$ decreases with the increase of MgO content (Chang & Sengupta 2002). For $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$-$\text{Mg}_2\text{SiO}_4$-$\text{MgO}$ composite, their dielectric constant decrease to $85-97$, the tunability at 2kV/mm can be kept at around 10%. (2). The sintering temperature of ternary compositions $\text{BaZr}_{0.2}\text{Ti}_{0.8}\text{O}_2$-$\text{Mg}_2\text{SiO}_4$-$\text{MgO}$ and $\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3$-$\text{Mg}_2\text{SiO}_4$-$\text{MgO}$ can be reduced to 1350-1500 C, which is 100-150 C lower than the normal sintering temperature of BST-MgO (~ 1450 C) and BZT-MgO (~ 1500 C), respectively. The sintering temperature of $\text{BST-Mg}_2\text{TiO}_4$-$\text{MgO}$ composite is also lower than that of BST-MgO.

On the other hand, ternary composition is helpful for the formation of ferroelectric-dielectric composite and can prevent from the formation of undesired phase. Forming ferroelectric-dielectric composite is an effective method to reduce the dielectric constant and loss tangent of ferroelectric and maintain higher tunability. The key is that the linear dielectrics with low dielectric constant and loss tangent should not react with ferroelectrics. For binary composition $\text{Ba}_{0.5}\text{Sr}_{0.4}\text{TiO}_3$-$\text{Mg}_2\text{SiO}_4$, it is expected to form ferroelectric ($\text{Ba}_{0.5}\text{Sr}_{0.4}\text{TiO}_3$)-dielectric ($\text{Mg}_2\text{SiO}_4$) composite, but undesired impurity phase $\text{Ba}_2(\text{TiO})(\text{Si}_2\text{O}_7)$ is formed among $\text{Ba}_{0.5}\text{Sr}_{0.4}\text{TiO}_3$-$\text{Mg}_2\text{SiO}_4$ composite. $\text{Ba}_2(\text{TiO})(\text{Si}_2\text{O}_7)$ deteriorate the properties of composites. MgO and Mg_2SiO_4 combination can prevent from the formation of $\text{Ba}_2(\text{TiO})(\text{Si}_2\text{O}_7)$ and ferroelectric ($\text{Ba}_{0.5}\text{Sr}_{0.4}\text{TiO}_3$) and dielectric ($\text{Mg}_2\text{SiO}_4$ and MgO) composite is obtained. Similarly, Mg$_2$TiO$_4$ can react with $\text{Ba}_{1-x}\text{Sr}_x\text{TiO}_3$ ($x=0.5$ and 0.6) to form $\text{BaMg}_3\text{Ti}_6\text{O}_{19}$, but no $\text{BaMg}_3\text{Ti}_6\text{O}_{19}$ formed in $\text{BST-Mg}_2\text{TiO}_4$-$\text{MgO}$ composite. Therefore, maybe ternary compositions can open a new route to decrease the dielectric constant and loss tangent of ferroelectrics and remain higher tunability. In future work, it is necessary to search new combination of linear dielectrics. Even if one linear dielectric may react with ferroelectrics, some linear dielectrics combination is possible to form ferroelectric-dielectric composite with ferroelectrics. This will expand the select range of linear dielectrics.

The multiple-phase ferroelectric-dielectric composites are useful for tunable microwave applications requiring low dielectric constant and make the impedance match more easily. The ferroelectric-dielectric composite bulk ceramics show promising application, especially in accelerator, as active elements of electrically controlled switches and phase shifters in pulse compressors or power distribution circuits of future linear colliders as well as tuning layers for the dielectric based accelerating structures (Kanareykin et al. 2006, 2009a, 2009b). The ferroelectric bulk ceramics can also be used in ferroelectric lens (Rao et al. 1999).
The ferroelectric-dielectric composites might complicate the method to effectively deposit films. Therefore, the advantage of ferroelectric-dielectric solid solution over composite is that single phase materials is favorable for the thin film deposition. At the meantime, the tunability of solid solution can be increase to relatively high level by increasing applied electric field. Generally, linear dielectric with perovskite structure can form solid solution with ferroelectric BST. Different linear dielectrics have different effects on the dielectric properties. Among studied solid solution, \(\text{Ba}_{0.6}\text{Sr}_{0.4}\text{TiO}_3-\text{La(Mg}_{0.5}\text{Ti}_{0.5})\text{O}_3 \) shows better properties. It is necessary to increase the density of the solid solution, meanwhile, prevent the reduction of \(\text{Ti}^{4+} \).

5. Conclusion

Forming ferroelectric-dielectric composite and solid solution can reduce the dielectric constant of ferroelectrics efficiently, but the mechanisms affecting dielectric properties differ in composites and solid solutions. Forming ferroelectric-dielectric solid solution can improve the loss tangent of ferroelectrics more effectively and is beneficial to film deposition. Forming ferroelectric-dielectric composite is more efficient to decrease the dielectric constant of ferroelectrics to a low value and maintain tunability at a sufficiently high level.

6. Acknowledgment

This work is supported by the Natural Science Foundation of China under grant number 10975055 and 60771021.

7. References

www.intechopen.com

www.intechopen.com

Ferroelectric materials have been and still are widely used in many applications, that have moved from sonar towards breakthrough technologies such as memories or optical devices. This book is a part of a four volume collection (covering material aspects, physical effects, characterization and modeling, and applications) and focuses on ways to obtain high-quality materials exhibiting large ferroelectric activity. The book covers the aspect of material synthesis and growth, doping and composites, lead-free devices, and thin film synthesis. The aim of this book is to provide an up-to-date review of recent scientific findings and recent advances in the field of ferroelectric materials, allowing a deep understanding of the material aspects of ferroelectricity.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
