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1. Introduction 

Osteoarthritis (OA), the most common form of arthritis, is a chronic degenerative joint 
disease that remains a leading cause of chronic disability in the aged population and a 
financial burden on healthcare resources. It affects approximately 15% of the world’s human 
population over 60 years of age (Wolf & Pfleger, 2003) and has even higher prevalence in 
dogs (Johnston, 1997), cats (Godfrey, 2005) and horses (Trumble et al., 2001). It is established 
that OA in dogs and horses has a model character for the human disease since it parallels 
the human form of OA in all aspects (Innes & Clegg, 2010). 
The pathogenesis of OA is characterized by an imbalance in the network of anabolic and 
catabolic processes through complex interactions of mechanical and biochemical forces 
(M.B. Goldring, 2001; Sandell & Aigner, 2001). This imbalance leads, inevitably, to 
progressive articular cartilage destruction, osteophyte formation, subchondral bone 
remodelling and chronic inflammation (M.B. Goldring & S.R. Goldring, 2007; Martel-
Pelletier & Pelletier, 2007). These events are further manifested by a loss of both tissue 
architecture and joint functionality, painful limited movement, disability and an inferior 
quality of life (Abramson & Yazici, 2006; Buckwalter et al., 2006; Pelletier et al., 2001). 
Despite major progress over the last few years, we still have a lot more to understand about 
the aetiology, pathogenesis and progression of OA. 
A complete therapy for OA still remains elusive as manifold efforts made in this direction 
failed to provide a successful long-term remedy. The therapeutic strategies for OA have 
been predominantly directed to (i) alleviate symptomatic pain by suppressing the 
inflammatory process, (ii) reducing the cartilage degenerative process or (iii) enhancing 
cartilage regeneration. However, none has so far been applied to achieve all the three 
objectives.  
Non-pharmacologic and pharmacologic treatments have been employed for early OA while 
surgical interventions for partial or total joint replacement are often indicated in advanced 
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OA when the symptoms cannot be controlled by non-invasive means. The long-term use of 
pharmacologics is commonly concomitant with side-effects while surgery contributes little 
to reduce the process of joint destruction and inflammation (Katz et al., 2010; Wei et al., 
1998).  
Articular cartilage destruction is a key pathological characteristic of OA and rheumatoid 
arthritis (RA). Therefore, attempts have been made to repair the OA-related cartilage 
defects. In this context, autologous chondrocyte transplantation (ACT) offers a practical 
solution (Brittberg et al., 1994). Evidence suggests that damaged cartilage plays a pivotal 
role in disease progression and severity (Buckwalter et al., 2006). ACT attempts to build 
hyaline repair tissue, delays total or partial joint replacement, helps to temporarily relieve 
pain and improves the joint function (Minas et al., 2010; Peterson et al., 2002). A further 
developed alternative technique is the matrix associated ACT, where the cultivated cells are 
seeded on a tissue-engineered (biomaterial) scaffold and the cell–scaffold complex is then 
implanted into the defect. The ACT/scaffold coupling paved the way for the use of 
functional tissue substitutes in the treatment of cartilage defects (Tuli et al., 2003). However, 
inflammatory mediators in the arthritic joint could negatively affect the implanted cells, 
potentiating the need to suppress inflammation (Hennerbichler et al., 2008). 
Gene therapy represents another promising approach for OA treatment (Bandara et al., 
1992; Evans et al., 2004; Evans et al., 2009). This concept utilizes viral or non-viral vectors to 
deliver genetic information encoding biological agents into the target tissue for their local 
expression. It appears that viral strategies provide high transfection efficiency and many 
additional assets for a clinical development (Mease et al., 2010) but immunogenicity and 
possible mutagenicity are their main drawbacks. Non-viral strategies, on the other hand, 
have a fascinating preclinical development in arthritis. They are safer but less efficient. Of 
major concern is the regulated expression of the therapeutic genes. Ideally, gene therapy 
outperforms the systemic intake of medicines by only affecting the transfected joint. 
Normally, drugs can be applied in a controlled dosage, while transgene expression is 
switched by intrinsic, normally immutable, regulatory elements. In other words, the 
expression of the therapeutic candidate gene should be limited to the site of OA occurrence 
and only applied in the presence of inflammation or other significant markers of OA arising 
in the affected joint. Moreover, the gene expression should ideally be self-limiting 
(=conditioned) and not constitutive (Geurts et al., 2007; Rachakonda et al., 2008a).  
The information presented above provides evidence for a limited success of several efforts 
towards achieving effective therapeutic strategies for OA. This is mainly because they are 
associated with one or the other limitation. Nonetheless, it is tempting to speculate that gene 
therapy (coupled with tissue-engineering) has great potential for improvement. It is 
therefore very likely that it becomes a leading force for future OA treatment if suitably 
improved. This chapter will provide extended information on this topic and discuss as well 
as suggest some novel ways to improve the current gene therapy procedures for their safe 
application. 

2. Non-pharmacological and pharmacological therapies 

Pain is the presenting symptom in OA. Thus, the therapeutic efforts for OA specifically aim 
at the pain relief through the combination of non-pharmacological and pharmacological 
interventions. Non-pharmacological approaches include exercise therapy, weight loss, social 
support, self-management and awareness of patients to OA (Clouet et al., 2009). These 
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approaches help partially prevent the disease, reduce pain and may delay the degenerative 
process in early-stage OA but do not offer a long-term remedy. Pharmacological therapy 
improves the quality of life of OA patients also through alleviating pain. Acetaminophen 
treatment followed by non-steroidal anti-inflammatory drugs (NSAIDs) inhibits the 
activation of immune cells while NSAIDs suppress the inflammatory process by intervening 
with the prostaglandin synthesis. Long-term usage of NSAIDs is often accompanied by 
adverse side-effects such as gastrointestinal, renal or cardiovascular disorders, as most of 
these compounds inhibit cyclooxygenases (COX)-1 and -2 indiscriminatorily (Hotz-Behofsits 
et al., 2003; Scarpignato & Hunt, 2010; Wolfe et al., 1999). 
Selective COX-2 inhibitors reduce pain through prostaglandin blockade, but owing to their 
harmful effects on cardiovascular events they were recalled from the market (Park et al., 
2006). Later on, the application of some disease-modifying OA drugs (DMOADs) was being 
enhanced by advances in imaging and biomarkers that serve as validated surrogate 
endpoints for key clinical outcomes (Abramson & Yazici, 2006). However, the clinical 
development program for DMOADs is complicated due to the slowly progressive nature of 
OA. 
Intra-articular injections of corticosteroids (Habib et al., 2010) or hyaluronic acid (Liao et al., 
2005) exert pain reducing effects that last for a couple of weeks but do not significantly 
improve the physical function of the joint. Nutritional supplements such as chondrotin 
sulphate and glucosamine are asymptomatic slow-acting safe drugs for the management of 
OA, but their efficacy in OA is questionable (Dougados, 2006) just like avocado, soybean, 
unsaponifiables and Vitamin E (Clouet et al., 2009). 

3. Surgical treatment 

Surgical intervention offers another option for OA therapy after medications have failed to 
restore joint function. Arthroscopic lavage and debridement of the arthritic joint is only 
indicated in cases of superimposed structural lesions in the affected joint such as meniscal 
tear (Katz et al., 2010). Osteotomy is performed by trimming the joint resulting in a spread 
of the mechanical load which relieves the defect area (Parker et al., 2011). Partial or total 
joint replacements are the last resorts in orthopaedic surgery for OA. But these procedures 
are more prone to fail in young and middle-aged patients (Wei et al., 1998). In addition, the 
evidence supporting the use of various surgical approaches is limited mainly by the poor 
study design and relatively small sample size (Katz et al., 2010). 

4. Concept of gene therapy in OA 

The term gene therapy is commonly understood to mean the use of molecular methods to 
replace defective or absent genes or to counteract those that are over-expressed. The key 
technologies needed for gene therapy are the methods by which genes are isolated (cloned), 
manipulated (engineered), and transferred (delivered) into host cells. Since its inception, the 
field of gene therapy in medicine has received much attention, but still remains a great 
challenge for routine clinical applications to treat diseases including OA and RA (Gibbons & 
Hyrich, 2009). 

4.1 In vivo gene delivery in the arthritic joint 

OA is well-suited for local, intra-articular gene delivery because it affects a limited number 
of joints and lacks obvious extra-articular manifestations (Bandara et al., 1992). Thus, the 
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delivery of locally expressed gene products may have therapeutic benefits for localized 
areas of cartilage damage with minimal systemic side-effects. In this approach genes 
encoding biological agents are introduced directly into the intra-articular tissues through 
viral and non-viral vectors. Despite its simplicity, the in vivo route has a number of 
disadvantages that limit its application. For example, targeting the appropriate cells may be 
difficult (Evans et al., 2004). In spite of that there are many published reports in which in 
vivo gene delivery has been the main subject (see Table 1). 
 

Vector Transgene Animal model Reference 

Adenovirus IL-1Ra Dog ACLT Pelletier et al., 1997 

Plasmid IL-1Ra Rabbit meniscectomy Fernandes et al., 1999 

Adenovirus IL-1Ra Horse osteochondral defects Frisbie et al., 2002 

rAAV bFGF Rabbit osteochondral defects Cucchiarini & Madry, 2005 

Plasmid BMP-2 Rabbit cartilage defects Di Cesare et al., 2006 

Plasmid HSP-70 Rat MIA injection Grossin et al., 2006 

Adenovirus TSP-1 Rat ACLT Hsieh et al., 2010 

Table 1. In vivo gene delivery in experimentally induced OA in animal models. 
Abbreviations: IL-1Ra=interleukin-1 receptor antagonist; ACLT=anterior cruciate ligament 
transection; rAAV=recombinant adeno-associated virus; bFGF=basic fibroblast growth 
factor; BMP-2= bone morphogenic protein-2; HSP-70=heat shock protein-70; MIA=mono-
iodoacetate; TSP-1=thrombospondin-1. 

4.2 Ex vivo gene delivery in arthritic joint 

An efficient targeting of specific types of cells in vivo by using vectors is presently not 

possible. Therefore, most applications requiring selective cell transduction involve the 

removal of cells from the body and their genetic manipulation in vitro before re-

implantation. This is known as ex vivo gene delivery. The logic behind such an approach is 

mainly to augment the expression of a therapeutic gene of interest or an inhibition of the 

expression of disease-associated genes (Jorgensen & Apparailly, 2010). Through ex vivo gene 

transfer the amount of genetic material introduced in a target cell can be controlled and 

expression levels monitored before application. A selection of transfection methods used in 

routine lab and clinical studies is listed in Table 2 and a comparison of in vivo and ex vivo 

gene transfer methods is presented in Figure 1. 

4.3 Selective anti-catabolic gene products 

The pro-inflammatory cytokines interleukin-1 beta (IL-1ǃ) and tumour necrosis factor alpha 

(TNFǂ) secreted by chondrocytes, synovial cells and invading immune cells, are important 

mediators of matrix degeneration and cell apoptosis in OA (M.B. Goldring, 2001). Therefore, 

inhibitors of these cytokines may counteract inflammatory destruction of cartilage. Besides 

cytokines, matrix metalloproteinases (MMPs) and aggrecanases such as ADAMTS-4 (a 

disintegrin and metalloproteinase with thrombospondin-like motif-4) and -5 (ADAMTS-5) 

secreted by the chondrocytes degrade a surplus of matrix in OA (Heinegård & Saxne, 2011). 

In order to diminish the lysis of cartilage and thus to reduce OA progression, tissue 

inhibitors of metalloproteinases (TIMPs) can be over-expressed through gene therapy 

(Celiker et al., 2002; van der Laan et al., 2003). 
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Target cell Transgene Vector Animal model Reference 

Chondrocytes 

LacZ-neo Retrovirus Rabbit Kang et al., 1997 
BMP-7 Adenovirus Horse Hidaka et al., 2003 
IGF-1 Plasmid Rabbit Madry et al., 2005 
bFGF rAAV Rabbit Yokoo et al., 2005 
bFGF Plasmid Rabbit Kaul et al., 2006 

Synovial cells 
LacZ-neo Retrovirus Rabbit Bandara et al., 1992 

IL-1Ra
IL-10

Retrovirus Rabbit Zhang et al., 2004 

Perichondrium-
derived stem cells

BMP-1
IGF-1

Adenovirus Rat Gelse et al., 2003 

Bone-marrow-
derived stem cells

CDMP1 Plasmid Rabbit Katayama et al., 2004 

Fibroblasts TGF-ǃ Retrovirus Rabbit Lee et al., 2001 
Muscle-derived cells LacZ Retrovirus Rabbit Adachi et al., 2002 

Table 2. Ex vivo gene delivery to various cell types in animal models for cartilage damage. 
Abbreviations: LacZ-neo=ǃ-galaktosidase-neomycin phosphotransferase; BMP-7=bone 
morphogenic protein-7; IGF-1=insulin-like growth factor-1; bFGF=basic fibroblast growth 
factor; rAAV=recombinant adeno-associated virus; IL-1Ra=interleukin-1 receptor 
antagonist; IL-10=interleukin-10; CDMP1=cartilage-derived morphogenic protein 1; TGF-
ǃ=transforming growth factor ǃ. 

 

 

Fig. 1. In vivo and ex vivo gene transfers to the arthritic joint. In vivo gene delivery involves a 
direct injection of the transgenic vector, in the form of a naked DNA or coupled with a virus 
vehicle into the joint. In an ex vivo approach, gene transfer includes an intermediate step of 
transfection of the explanted, allogeneic cells (chondrocytes/synoviocytes) with the 
transgenic vector (a). The transfected cells can be injected directly into the joint 
(synoviocytes) or to the cartilage defect (chondrocytes) (b) or be embedded into a scaffold 
followed by the reimplantation into the cartilage lesion (c). 
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4.4 Selective anabolic gene products 

While inhibition of catabolic pathways will diminish OA damage, it will not enhance repair 

of already degraded matrix. Therefore, gene products with anabolic functions are of special 

interest. These gene products comprise anabolic enzymes and growth factors that promote 

matrix synthesis and morphogenic mediators for chondrogenic differentiation. Matrix 

synthesis can be enhanced by expressing enzymes required for the synthesis of precursors of 

matrix constituents (J.N. Gouze et al., 2004). An overview of genes employed for OA gene 

therapy is provided in Table 3. 

 

Candidate 
transgene 

Effect Reference 

Anti-catabolic 

IL-1Ra 
Blocks IL-1R on articular 
cells 

Evans & Robbins, 1994 

sIL-1R Neutralizes secreted IL-1 Ghivizzani et al., 1998 

sTNFR Neutralizes secreted TNFǂ Ghivizzani et al., 1998 

IL-4 
Down-regulates IL-1 and 
TNFǂ expression 

Geurts et al., 2007; Rachakonda et al., 
2008a; Woods et al., 2001 

IL-10 
Down-regulates IL-1 and 
TNFǂ expression 

Amos et al., 2006; Müller et al., 2008; Zhang 
et al., 2004 

IL-13 Anti-inflammatory action Nabbe et al., 2005 

TIMPs Matrix proteinase inhibitor Celiker et al., 2002; van der Laan et al., 2003 

Anabolic 

IGF-1 Chondrocyte growth factor Madry et al., 2002 

TGF-ǃ Chondrocyte growth factors Lafeber et al., 1997; Watson et al., 2010 

BMPs Chondrocyte growth factors Hidaka et al., 2003 

bFGF Chondrocyte growth factor Madry et al., 2004 

SOX-9 Transcription factor  Cucchiarini et al., 2007 

GFAT Enhances matrix synthesis J.N. Gouze et al., 2004 

GlcAT-I Enhances matrix synthesis Venkatesan et al., 2004 

Table 3. Examples of candidate transgenes for OA gene therapy. Abbreviations: IL-
1Ra=Interleukin-1 receptor antagonist; sIL-1R=soluble IL-1 receptor; sTNFR=soluble tumour 
necrosis factor-ǂ receptor; IL-4, -10, -13=interleukin-4,-10,-13; TIMPs=tissue inhibitors of 
metalloproteinases; IGF-1=insulin like growth factor 1; TGF-ǃ=transforming growth factor 
ǃ; BMPs=bone morphogenic proteins; bFGF = basic fibroblast growth factor; SOX-9=sex-
determining region Y box 9; GFAT=glutamine fructose-6 phosphate aminotransferase; 
GlcAT-I= ǃ1,3-glucuronosyltransferase-I. 

4.5 Viral gene transfer 

Viruses provide a natural system for horizontal gene transfer into a variety of cells. Several 

virus types (given below) infect mammalian cells and are adopted as vehicles for gene 

transfer. Retroviral transfection systems derived from Moloney murine leukaemia 

oncoretrovirus and others require dividing cells for infection and integration and have 

therefore been used mainly in ex vivo transfection (Evans et al., 2005) and occasionally in vivo 

(Ghivizzani et al., 1997). Retroviruses insert parts of their genome non-specifically into the 
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host cell DNA, thus enabling stable transfection of the cells but carry the risk of insertional 

mutagenesis. 

Lentiviruses, derived from the human immunodeficiency virus, are able to infect resting-

state cells with high efficiency, show low immunogenicity and can integrate transgenes 

into the cell DNA. To avoid possible insertion mutagenesis, non-integrating lentiviruses 

have been developed which maintain the high transduction efficiency (Philpott & 

Thrasher, 2007) and can be used for in vivo and ex vivo transduction of articular cells (E. 

Gouze et al., 2007). 

Adenoviruses readily transduce dividing and non-dividing cells. The integration frequency 

of adenoviral genome into host DNA is very low (Harui et al., 1999), and engineered 

replication deficient adenoviruses enhance biosafety. Many adenoviruses, however, elicit 

immune responses from the patient, which excludes them from in vivo approaches. To 

circumvent their immunogenicity, either adenovirus strains which normally infect different 

host species are used, or immunogenic viral proteins are deleted from the constructs (Evans 

et al., 2001). Adeno-associated viruses have low immunogenicity, are small in size and can 

carry only small gene constructs. They possibly penetrate the cartilage matrix and could 

therefore transduce chondrocytes in vivo (Madry et al., 2003). 

In general, viral gene transfer is highly efficient. Synovial cells can be transduced in vivo, 

and chondrocytes ex vivo with high transduction rates. Drawbacks of viral systems are 

biosafety issues, the need of extra cell lines for virus generation and propagation, and 

special plasmids for viral delivery. Therefore, several non-viral methods are used parallel to 

viral approaches (Capito & Spector, 2007; Thomas et al., 2003). 

4.6 Non-viral gene transfer 

Non-viral gene transfer delivers plasmid DNA into the target cells with selected chemical 

and physical methods. In general, non-viral methods are less elaborate than the generation 

of transduction viruses. All non-viral methods achieve transient transfection (Welter et al., 

2004). 

The most common method uses non-ionic or cationic lipids to form DNA-lipid particles. 

These particles are taken up by the cell and transcribed after transfer into the nucleus. 

Several compounds are available, which transfect cells with variable efficiencies (Madry et 

al., 2000). Many protocols for ex vivo gene transfer with lipofection are established despite of 

the drawback of relatively low transfection efficiency. The cytotoxicity of most transfection 

agents causes limited damage to target cells and thus this method is not suitable for in vivo 

use. Intra-articular injection of naked DNA plasmids without addition of liposomal agents is 

also feasible for synoviocyte transfection (Sant et al., 1998). On the other hand, 

electroporation achieves high transfection rate and does not need cytotoxic chemicals 

(Welter et al., 2004). By applying intra-articular DNA injection and external electric pulses to 

knee joints, in vivo transfection of articular chondrocytes can be achieved (Grossin et al., 

2003). Binding plasmid DNA to magnetic microparticles allows the complexes to be forced 

into cells by strong directional magnetic fields and does not require cytotoxic transfection 

reagents. This approach has been used on chondrocytes in monolayer (Plank et al., 2003), 

but its feasibility in vivo has not been tested yet. A selection of viral and non-viral gene 

transfer procedures are compiled in Table 4.  
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Gene transfer 
 method 

Efficiency Reference 

Viral 

Retrovirus 
Low transduction efficiency in vivo, 
integrating 

Evans et al., 2005 

Lentivirus 
High transduction efficiency of 
dividing and non-dividing cells, 
integrating 

E. Gouze et al., 2002 

Adenovirus 
Immunogenic, high transduction 
efficiency 

Ghivizzani et al., 1998 

AAV 
Moderate transduction efficiency in 
vivo, only small ORFs as transgenes 

Jorgensen & Apparailly, 
2010 

Non-viral 

Lipofection 
Cytotoxic, varying transfection 
 efficiency, low cost 

Madry et al., 2005 

Electroporation Efficient, high equipment costs Welter et al., 2004 

Matrix bound DNA 
Long lasting, low transfection 
efficiency 

Capito & Spector, 2007 

Table 4. Comparison of gene transfer methods for articular gene therapy. Abbreviations: 
AAV=adeno-associated viruses; ORFs=open reading frames. 

5. Tissue-engineered scaffolds for ACT 

In the context of OA, repair of cartilage surface defects through biological regeneration and 
transplantation of various tissues or cells have been investigated (Goehring et al., 2010; 
Stoop, 2008). The technology of scaffold-free ACT pioneered by Brittberg and colleagues has 
been widely applied to repair small cartilage lesions. Herein, a biopsy is taken from non-
weight-bearing regions of cartilage; the chondrocytes are enzymatically extracted, expanded 
in monolayer culture, and then injected beneath a periosteal flap sutured over the cartilage 
lesion (Brittberg et al., 1994). This strategy has been used to treat thousands of patients 
worldwide and offers a transient but practical solution for cartilage repair. 
Porous 3-dimensional scaffolds are increasingly used to facilitate cellular attachment and at 
the same time provide superior mechanical properties. This technique is particularly useful 
given the lack of cell retention when cell suspensions are directly transplanted at the 
cartilage defect site. It also reduces potential donor site morbidity associated with 
procedures that utilize a periosteal flap to increase cellular retention (Brittberg et al., 1994). 
A wide range of materials have been produced to serve as scaffolds for cartilage repair. 
Generally they can be classified into three categories: natural, synthetic and biosynthetic 
materials (Goehring et al., 2010; Langer & Tirrell, 2004; Stoop, 2008). In the following 
paragraphs, we will highlight some of the important scaffolds from these categories. 

5.1 Natural scaffold materials 

Natural materials are composed of native biocompounds which mimick the natural surface 
for cell adhesion and maintain the required physiological environment. In addition, these 
materials (i) are non-toxic, (ii) follow a physiological biodegrading mechanism and (iii) are 
used to produce scaffolds for cartilage tissue-engineering (Hunziker, 2002; Stoop, 2008). 
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Collagen-based biomaterials are widely used in clinical practice and have been employed as 
carriers for chondrocytes (Wakitani et al., 1998) and mesenchymal stem cells (MSCs) (Im et 
al., 2001). Collagen type I hydrogels resemble hyaline cartilage. They are biodegradable, 
elicit no inflammation and can be metabolized by MSCs through the action of endogenous 
collagenases. Rat-tail extracted, collagen type I has been recently developed to construct 
scaffolds termed cartilage regeneration system (CaReS; Amedrix, Esslingen, Germany). It 
has been reported that patellofemoral transplantation of CaReS scaffolds for two years 
showed a significant improvement in cartilage repair in patients (Andereya et al., 2007) 
resulting in complete defect filling with superior quality repair tissue (Welsch et al., 2010). 
Both fibrinogen and its polymer fibrin have been shown to play major roles in healing 
osteochondral defects (Shapiro et al., 1993), but owing to the exceedingly high 
concentrations and protein densities, the glue impeded rather than facilitated cell invasion, 
thus limiting its use (Brittberg et al., 1994). Hyaluronic acid is a non-sulphated 
glycosaminoglycan (GAG) that makes up a large part of cartilage extracellular matrix. In its 
unmodified form, it has a high biocompatibility and plays an important role in determining 
the biophysical microenvironment for chondrocyte growth and proliferation (Poole et al., 
1990).  
Cell-seeded agarose hydrogels enhance the matrix elaboration upon dynamic deformational 
loading (Häuselmann et al., 1994). Despite its suitability for implantation, the non-
degradable nature of the gel limits its application in tissue-engineering. Alginate, a naturally 
derived polysaccharide gel, has been successfully shown to support cell retention and the 
chondrocytic phenotype by maintaining cell shape through encapsulation (Guo et al., 1989; 
Häuselmann et al., 1994; Rai et al., 2009). On the other hand, its inferior biomechanical 
properties as well as concerns over its immunogenicity have raised biocompatibility issues 
(Kulseng et al., 1999). Alginates are easy to use and suitable for the repair of small cartilage 
defects but fragile during surgery.  

5.2 Synthetic scaffold materials 

Many synthetic scaffolds commonly used in cartilage tissue-engineering are fabricated using 

poly(ǂ-hydroxy acid) polymers such as poly-L-lactide, polyglycolic acid and their 

copolymers poly-DL-lactide-co-glycolide and poly-є-caprolactone (Li et al., 2006; Nöth et al., 

2002). They offer optimal fibre diameter, pore size, degradation time and reproducibility in 

production. The major advantages associated with the use of synthetic polymers are their 

design flexibility and elimination of disease transmission. Disadvantages of some synthetic 

polymers are the potential increase in local pH resulting from acidic degradation products, 

excessive inflammatory responses and poor clearance and chronic inflammation associated 

with these high molecular weight polymers (Stoop, 2008). 

5.3 Biosynthetic scaffold materials 

In recent years, a wide array of novel biosynthetic materials has been developed based on 
natural materials such as silk or cellulose and synthetic materials such as poly(1,8-octanediol 
citrate) or poly(ether ester) copolymer scaffolds. In addition, numerous attempts have been 
sought to optimize scaffold properties by combining several different materials. For 
example, scaffolds have been produced from gelatine, hyaluronic acid and chondroitin-6-
sulphate and mixed with fibrin glue or polylactic-co-glycolic acid. To support bone as well 
as cartilage formation, hydroxyapatite was combined with chitosan to produce scaffolds 
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that allow the treatment of osteochondral defects. Conversely, most of these developments 
show promise for future clinical application, so far they have mainly been investigated 
using in vitro systems or at the most, in animal models. Translation of these developments to 
the clinical and commercial setting will take longer (Stoop, 2008).  

6. Obstacles and challenges in clinical application of gene therapy 

Gene therapy for OA has been described extensively for the last twenty years and a large 

body of impressive preclinical safety and efficacy information has been documented 

(Bandara et al., 1992; Trippel et al., 2004). Despite this fact, only a few clinical trials of this 

therapeutic strategy have been conducted mainly due to scientific, technological, financial 

and sociological hurdles (Evans et al., 2011). A single phase II study has been reported 

recently and this slow pace indicates the unlikelihood of gene therapy to become clinically 

available in the near future (Mease et al., 2010). One of the most serious reason for the 

current slow progress in gene therapy research in OA (and RA) lies in the widespread 

public scepticism with anything relating to genes. The term gene is simply not understood 

by the average citizen and any genetic intervention in research has a priori a negative 

connotation. Fitting with this general attitude, regulatory bodies demand extremely hard 

safety precautions with any genetic intervention with patients which leads to an explosion 

of cost and duration for the development of these very promising therapies.  

Nonetheless, this should not disappoint gene therapy researchers. Despite its slow progress, 

gene therapy promises to fulfil unmet needs in the treatment of OA and allied joint 

disorders and therefore has a bright future in the long run. It will eventually offer a 

focussed, local and perhaps personalized therapy avenue which may well cover the non-

responders to the conventional treatment of joint disorders which in the case of RA amount 

to a substantial percentage (Gibbons & Hyrich, 2009). Furthermore, by applying local gene 

therapy it will certainly be possible to avoid the widely observed side-effects that occur with 

the present therapeutics. 

Another leading challenge facing gene therapy today is the improvement of current vectors 
and this area continues to be another limiting factor in gene therapy applications. Even in 
the field of viral vectors, attempts have been made to combine their application with 
immunomodulating agents (Ikeda et al., 2000), still obvious problems exist with this 
approach (Zhou et al., 2004). Similarly, in the area of non-viral gene transfer, researchers are 
generating new transfection methods/strategies with a number of new products becoming 
commercially available every year (Donkuru et al., 2010; Haag et al., 2009; Madeira et al., 
2011). Yet, an ideal agent that satisfies the requirements for application with the relevant 
target cells for OA gene therapy is not in sight. 
Although the tissue-engineering scaffolds described above are becoming increasingly 
popular due to the high standards of cellular attachment and mechanical stability, their role 
in a pro-inflammatory environment in arthritic condition raises some doubts and has not 
been completely evaluated. An effective therapy of OA in the context of inflammation, 
however, may be achieved through genetic modification of suitable target cells present in 
the scaffolds to deliver therapeutic transgenes to the site of disease. Below we elaborate on 
the choice of cells that can be utilized in this approach and on the question which are the 
best vehicles for gene delivery mechanism as well as the type of scaffolds for engineering 
cartilage defects. 
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7. Controlled expression from “Smart Transplants” 

As we all know that the conventional gene therapy has many potential limitations and 
therefore the need of customized gene therapy arises. The customized form of gene therapy 
could be defined as a therapy in which autologous cells are genetically modified by species-
specific genes under the control of endogenous and disease-responsive elements and made 
clinically applicable by seeding in the scaffolds. As these scaffolds harbour cells that deliver 
therapeutic proteins in a fine-tuned manner to the defect site based on the severity of 
inflammation in the joint, we termed them smart transplants. Each component of smart 
transplants has been summarized below and is depicted in Figure 2. 
 

 

Fig. 2. A diagrammatic sketch showing the components of the smart transplant approach 
favoured by our research unit for future clinical application in veterinary as well as human 
medicine. Through recombinant DNA technology, (a) anti-inflammatory (IL-4) and/or 
anabolic (IGF-1) genes (a) are cloned with non-viral vectors (b) and endogenous responsive 
elements like COX-2 (c). Then the gene/vector cassette is introduced into autologous 
chondrocytes or MSCs (d) through an efficient transfection approach. The conditioned cells 
are finally seeded into collagen scaffolds (e) and finally implanted into the defected joint. 
Here it should secure a fine-tuned and regulated expression (f) of therapeutic proteins at the 
time when they are needed, i.e. when inflammatory mediators dominate the surrounding 
milieu. 

7.1 Selection of genes for OA gene therapy 

Though various biological factors have been independently identified as necessary for 

reducing inflammation or promoting regeneration in the diseased joint, the most promising 

therapeutic agents are those that modulate the activities of the pro-inflammatory cytokines 

IL-1ǃ and TNFα (Fukui et al., 2003; M.B. Goldring, 1999; Martel-Pelletier et al., 1999). Several 

(anti-inflammatory) agents have been tested that suppress the production of pro-
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inflammatory mediators (Fernandes et al., 2002). Among these IL-4 (Woods et al., 2001), IL-

10 (Amos et al., 2006), and IL-13 (Jovanovic et al., 1998) are of utmost significance in the 

context of OA. IL-4 compared to IL-10, has a higher potential to inhibit IL-1ǃ (Rachakonda et 

al., 2008a, 2008b) and only IL-4 (not IL-10) can induce the production of IL-1Ra (Relic et al., 

2001). Further, IL-4 can antagonize the effects of TNFα by inducing down-regulation and 

shedding of both forms of TNFα receptors while IL-13 failed to produce such effects (Manna 

& Aggarwal 1998) and unlike IL-4, it does not appear to directly regulate the growth of TH2-

type cells (Chomarat & Banchereau, 1998).  

OA – particularly in its later stages – is characterized by inflammation and catabolism going 
side by side (M.B. Goldring & S.R. Goldring, 2007; Pelletier et al., 2001). Therefore, 
simultaneous expression of both anti-inflammatory and regenerative (anabolic) genes 
should be taken into consideration. One of the main anabolic mediators, which naturally 
aids in the protection of cartilage from regular wear and tear, is insulin-like growth factor-1 
(IGF-1). IGF-1 is known to maintain homeostasis in articular cartilage by stimulating the 
synthesis of cartilage matrix proteins noted by an increased production of aggrecan and 
type II collagen (Manning et al., 2010). IL-4 and IGF-1 would offer a more complete therapy 
to combat the different aspects of the disease. We consider the dual expression of both 
proteins and surmise that an effective therapy should comprise the expression of both anti-
inflammatory cytokines and cartilage anabolic factors to counteract the effects of catabolic 
mediators. 

7.2 Selection of non-viral vectors 

The most worrisome weakness of gene therapy is that many of the immunological defence 
systems which normally tackle wild-type infections are activated against the vectors and 
new transgene products might be recognized as foreign. In the past, great advances have 
been made to create new systems for the efficient production of gene-deleted less 
immunogenic vectors. These include the improvements such as expansion of the repertoire 
of vector tropisms and the evasion of pre-existing immune responses through the 
development of alternative viral serotypes (Hill et al., 1999; Thomas et al., 2003). Non-viral 
gene delivery is potentially safer than virus-mediated delivery with the exception of a few 
promising applications, such as vaccines. However, non-viral systems are, at the present, 
limited by their relatively low transfer efficiency (Thomas et al., 2003). Nevertheless, we 
prefer the use of non-viral vectors because of their higher safety level. 
There is still a tremendous amount of work to be done in gene therapy research. We have 

encountered many obstacles so far, and will probably encounter more, but these obstacles 

are not insurmountable. By continuing to identify and address potential hurdles and by 

maintaining a strong focus on improving vectors and delivery protocols, gene therapy will 

eventually play a significant role in the treatment of severe inflammatory joint diseases. 

7.3 Selection of suitable target cells 

The most obvious source for cells that can regenerate cartilage is the tissue itself. 
Chondrocytes are the cells which reside within and retain and remodel this tissue (M.B. 
Goldring, 2006). They represent a homogenous population with limited (cell) number and 
tend to rapidly de-differentiate upon expansion in vitro with a complete loss of phenotype. 
Adequate tissue repair strategies may require specific cellular targeting to the site of injury 
as retention and engraftment of transplanted cells are inadequate. Besides clinically applied 
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tissue-specific chondrocytes, undifferentiated bone-marrow origin MSCs are of special 
interest as promising candidates due to multiple advantages over the conventional 
chondrocytes (Pittenger et al., 1999). These advantages include, for instance, the trophic 
production of bioactive factors to initiate endogenous regenerative activities in OA (Nöth et 
al., 2008), their anti-inflammatory and immunosuppressive properties (Jorgensen& 
Apparailly, 2010) and their capacity to differentiate into chondrocytes. 

7.4 Regulation of gene expression 

Most gene therapy protocols involve constitutive delivery of therapeutic genes due to the 
transient nature of expression. In such instances, efficient gene transfer, expression, or 
stability have encountered limitations in preclinical and clinical applications mainly due to 
pleiotropic effects of the inducer, low-level basal expression and toxicity of the inducing 
agents. However, a non-toxic regulation of transgene expression may offer an effective 
means to control the expression levels of proteins with a narrow therapeutic index such as 
cytokines and hormones. Obviously, it would be most desirable to control the expression of 
therapeutic proteins in a disease-dependent manner. This would add considerably to the 
safety level of the gene therapy application. Incidentally, constitutive over-expression of 
transgenes typically would lead to detrimental effects under disease conditions. Therefore, 
regulation of gene expression is warranted. We have previously designed and reported a 
self-limiting promoter construct that expresses an anti-inflammatory gene only in the 
presence of inflammation (Patent: PCT/EP 2008/061408 published as US-2010-0255572-A1). 
The use of this construct for the expression of anti-inflammatory genes allows the 
production of a therapeutic gene product that is controlled by the severity of the disease. 
The effectiveness of this promoter construct for combating inflammation makes it a suitable 
candidate for the development of a new local gene therapy strategy for the treatment of OA 
(Rachakonda et al., 2008a). Furthermore, the ability to effectively control gene expression 
should also facilitate gene therapy studies because it will permit the expression of 
therapeutic genes and subsequently proteins to be regulated within the host. Thus, the 
application of inflammation-regulated therapeutic gene expression in arthritis conditions 
increases the efficiency of gene therapy by self-limiting the transgene. 
Such elegant approaches have been adopted by applying disease-regulated promoters in a 

number of published reports (Cui et al., 2006; Godbey & Atala, 2003; Meynier de Salinelles 

et al., 2002; Miagkov et al., 2002; Rygg et al., 2001; Uhlar et al., 1997; Varley et al., 1995). 

Elements of the IL-1 and IL-6 promoter or of the COX-2 promoter, which are activated 

under inflammatory conditions, should up-regulate the transcription of transgenes such as 

IL-4 during acute OA and decrease expression rates after cessation of inflammation (Geurts 

et al., 2007; Rachakonda et al., 2008a). These self-regulating approaches may lead to safer 

stable transplants, which smartly react to the OA status of the joint.  

7.5 Selection of suitable scaffolds 

The selection of suitable scaffolds represents an important step to restore the damaged 

cartilage. Therefore, the selection of a suitable matrix composition may stabilize the 

transplant and support the regenerative process. Furthermore, the delivery of 

therapeutic genes will be more effective in a matrix that provides suitable protection, 

since the target cell population must often be exposed to factors throughout the entire 

course of repair, or at least for an extended period of time. An increased retention at 
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treatment sites could also enable regenerative tissue-forming cells to migrate to the area 

of injury and to proliferate and differentiate. In addition, the materials should be 

biodegradable and remodel as the new cartilage forms and replaces the original 

construct. These matrix materials could be combined with other types of carriers, which 

release active factors into the environment as they disperse or are degraded without 

providing any matrix function.  

In this regard, the matrix should be non-toxic, non-adhesive and non-stimulatory for 
inflammatory cells such as lymphocytes, macrophages and neutrophils. Furthermore, any 
matrix material needs to be non-immunogenic since immunological attack to this material 
(then serving as an antigen) would be detrimental to tissue regeneration. The topography 
and material properties of natural scaffolds should also support the differentiation of MSCs. 
Finally, the scaffolds should be easy to handle during surgery thereby allowing the fixation 
of the transplant into the implant site with ease. From our experience rat tail collagen-based 
scaffolds have a number of advantages along these lines. 

8. Preliminary data on “Smart Transplants” 

It has been shown previously that chondrocytes in scaffolds are susceptible to inflammatory 

mediators (Kuroki et al., 2005; Rai et al., 2008). This scenario indirectly raises a question on 

the validity of ACT into cartilage lesions surrounded by progressive inflammation 

(Hennerbichler et al., 2008). In order to address this problem, we validated the inducible 

expression of IL-4 in chondrocytes (Rachakonda et al., 2008a, 2008b) and in a chondrocyte-

based, 3-dimensional inflammation model (Rai et al., 2011). The main objective was to 

examine whether IL-4 produced within scaffolds can down-regulate inflammation and 

recoup extracellular matrix synthesis in the face of inflammation. We believe that this was 

the first study of its type to assess the use of cytokine-therapy devoid of viral vectors in a 3-

dimensional in vitro inflammation model. 

Mature canine chondrocytes were conditioned through transient transfection using 

pcDNA3.1.IL-4 (constitutive) or pCOX-2.IL-4 (cytokine-responsive) plasmids. Conditioned 

cells were seeded in alginate microspheres and rat-tail collagen type I matrix (CaReS) to 

generate two types of tissue-engineered scaffolds, alginate beads and CaReS-matrices 

containing engineered chondrocytes. Inflammation was induced in the packed chondrocytes 

through addition of recombinant IL-1ǃ plus TNFα into the culture medium. Harvested cells 

and culture media were analysed by various assays to monitor the anti-inflammatory and 

regulatory (anabolic) properties of IL-4 (Rai et al., 2011). 

The data obtained proved that IL-4 was expressed at sufficient levels to effectively down-

regulate inflammation in both types of scaffolds. This indicated that both scaffolds 

containing conditioned chondrocytes allowed unrestricted diffusion of cytokines in and out 

of the cells and through the matrix network into the surrounding culture medium. It was 

shown that IL-4 was able to successfully down-regulate several pro-inflammatory cytokines, 

matrix degrading enzymes and various catabolic end products such as nitric oxide and 

prostaglandin. Further, the biochemical assessment of the levels of collagen and sulphated 

GAG also indicated the anabolic net effect of IL-4 on chondrocytes. 

One of the important characteristics of our approach is the ability of the pCOX-2.IL-4 

construct to deliver the therapeutic gene (in this case IL-4) only upon stimulation with 

exogenous IL-1ǃ and TNFǂ. Thereby the expression of IL-4 is controlled through the 
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severity of inflammation as defined by the presence of pro-inflammatory cytokines  

(Figure 3). 

 

 

Fig. 3. Control of IL-4 expression through inflammatory mediators via the COX-2 promoter. 
Experimental setup: Conditioned chondrocytes (transfected with COX-2.IL-4) in scaffolds 

(CaReS) were stimulated by a 96 h exogenous treatment with IL-1β and TNFα. Thereafter 
the cells were re-isolated from the scaffolds and the expression levels of IL-4 assessed by 
qRT-PCR over time. The results show that after inflammatory induction IL-4 reaches peak 
levels at 24 hours followed by downregulation. Interpretation: Since endogenous pro-

inflammatory mediators IL-1β and TNFα are both reduced under the influence of the 
regulatory action of IL-4 (data not shown, compare Manning et al., 2010 & Rai et al., 2011), 
the induction of the inflammation sensitive COX-2 promoter will also be attenuated. Since 
the IL-4 gene is transcribed under the control of this promoter, its own expression will 
eventually fade out. Take home: In smart transplants therapeutic genes under the control of 
the COX-2 promoter will only be expressed when inflammatory mediators are present close 
to the defective joint area. Thus, local therapy occurs only when it is needed – it is simply 
smart.  

Since chondrocytes were conditioned by transfection prior to the generation of scaffolds, we 

coined a new term for this type of approach: ACCT (autologous conditioned cell therapy). 

Thus, therapeutic expression only occurs in a clearly defined condition, i.e. when the 

“conditioned” cells present in the scaffold “sense” inflammation in their surroundings.  
We have also worked on the dual expression of IL-4 and IGF-1 in chondrocytes (Manning 
et al., 2010) because this approach potentially offers a more complete therapy to combat 
the different aspects of OA. The use of multiple genes could better alleviate the signs and 
symptoms characteristic for the disease process. Extension of this strategy to other 
suitable genes or combination of genes could in the future provide a better outlook to 
effectively heal OA. Ideally, if the cytokine-responsive matrices described above do work 
in the patient as they do in vitro, a promising strategy for the treatment of OA may emerge 
in the future.  
Without any doubt, future therapy trials will have to occur to validate this novel approach. 
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9. Summary and future perspectives 

OA affects a huge population of elderly. Recent progress in the understanding of OA 
pathophysiology has facilitated the development of therapeutic strategies aimed specifically 
at effectively retarding the disease process. Unfortunately most therapeutic efforts appear to 
have been directed either to temporal pain relief, or to the repair of OA-related cartilage 
lesions. As a final resort total joint replacement through surgery will be necessary. Gene 
therapy still has many pitfalls. The use of viral vectors and the unrestricted expression of 
transgenes are still subject to unanswered safety questions posed by the regulatory 
authorities. Nevertheless, it is tempting to speculate that an effective stimulation of cartilage 
regeneration paralleled by an inhibition of inflammation must be the key objectives of new 
therapeutic approaches. The negative impact of gene therapy can be overcome if it is 
suitably improved in each of its components. The first and foremost component of gene 
therapy is the vector. Viral vectors can be replaced by non-viral vectors regardless of which 
therapeutic genes they orchestrate and what expression levels may be achieved. Further, the 
promoter placed upstream of the therapeutic gene should be disease-dependent. In OA it 
should be inflammation dependent – like a COX-2 promoter that is always up-regulated 
when IL-1ǃ and TNFǂ are up in the joint. Because IL-1ǃ and TNFǂ drive OA progression 
and cartilage degradation, they become an important target in OA. Thus, genes like IL-4 and 
IGF-1 not only can coup with these pro-inflammatory cytokines, they also help to rebuild 
the normal cartilage tissue architecture. 
For the delivery of suitable therapeutic genes in a non-viral approach, the selection of target 
cells is very important. Nature has provided the cartilage with only one cell type i.e. 
chondrocytes. In our opinion they are the best choice for transplantation in cartilage-related 
problems. But owing to their rapid differentiation into fibroblasts and lower cell number 
from a limited area of cartilage, stem cells may offer an important alternative in the future. 
Cell transplantation will require assembly for their implantation in the joint for which a 
wide-array of scaffolds is available. Whenever conditioned cells are involved that produce 
therapeutic proteins the best scaffolds are those that provide free diffusion of biological 
agents in and out. 
To this end, we have established the applicability and usefulness of cell-seeded scaffolds in 
vitro. We cloned IL-4 downstream of a COX-2 promoter and transfected chondrocytes with 
the COX-2.IL-4 construct. The chondrocytes were then seeded into collagen type I scaffolds. 
To test the regulated expression of IL-4, a model of inflammatory arthritis was simulated by 
adding IL-1ǃ and TNFǂ to the culture medium overlaying chondrocytes that were 
previously transfected (conditioned). Through the nuclear factor kappa B (NFκB) pathway 
IL-1ǃ and TNFǂ up-regulated COX-2 which drove the expression of downstream IL-4. IL-4 
in turn down-regulated multiple pro-inflammatory cytokines (e.g. IL-1ǃ and TNFǂ), enzyme 
mediators and their catabolites and up-regulated the matrix molecules. Once the expression 
of IL-1ǃ and TNFǂ dropped, COX-2 stopped the expression of IL-4 through a negative 
feedback loop mechanism (compare Figure 3). In this way the cells which were conditioned 
and incorporated within the scaffold, delivered the therapeutic effects of proteins in a 
coordinated and controlled manner. Our preliminary data form in vitro experiments are 
promising in many respects. It is realized that future therapy trials will have to reveal, 
whether ACCT with scaffolds containing conditioned cells will satisfy expectations as an 
effective approach. 
The future of gene therapy as a viable medical application can be summarized in the words 
phrased by French Anderson in 1998: “Despite our present lack of knowledge, gene therapy 
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will almost certainly revolutionize the practice of medicine over the next 25 years. In every 
field of medicine, the ability to give the patient therapeutic genes offers extraordinary 
opportunities to treat, cure and ultimately prevent a vast range of diseases that now plague 
mankind”(Anderson, 1998). Impressive progress has been made thus far, but nevertheless it 
seems we need the remaining 12 years to see where we stand. 
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