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1. Introduction 

Papermaking is a large-scale two-dimensional process. It has to be monitored and controlled 
continuously in order to ensure that the qualities of paper products stay within their 
specifications. There are two types of control problems involved in papermaking processes: 
machine directional (MD) control and cross directional (CD) control. Machine direction 
refers to the direction in which paper sheet travels and cross direction refers to the direction 
perpendicular to machine direction. The objectives of MD control and CD control are to 
minimize the variation of the sheet quality measurements in machine direction and cross 
direction, respectively. This chapter considers the design and applications of model 
predictive control (MPC) for papermaking MD and CD processes.  
MPC, also known as moving horizon control (MHC), originated in the late seventies and has 
developed considerably in the past two decades (Bemporad and Morari 2004; Froisy 1994; 
Garcia et al. 1998; Morari & Lee 1999; Rawlings 1999; Chu 2006). It can explicitly incorporate 
the process’ physical constraints in the controller design and formulate the controller design 
problem into an optimization problem. MPC has become the most widely accepted advanced 
control scheme in industries. There are over 3000 commercial MPC implementations in 
different areas, including petro-chemicals, food processing, automotives, aerospace, and pulp 
and paper (Qin and Badgwell 2000; Qin and Badgwell 2003).  
Honeywell introduced MPC for MD controls in 1994; this is likely the first time MPC 
technology was applied to MD controls (Backström and Baker, 2008). Increasingly, paper 
producers are adopting MPC as a standard approach for advanced MD controls. 
MD control of paper machines requires regulation of a number of quality variables, such as 
paper dry weight, moisture, ash content, caliper, etc. All of these variables may be coupled 
to the process manipulated variables (MV’s), including thick stock flow, steam section 
pressures, filler flow, machine speed, and disturbance variables (DV’s) such as slice lip 
adjustments, thick stock consistency, broke recycle, and others. Paper machine MD control 
is truly a multivariable control problem. 
In addition to regulation of the quality variables during normal operation, a modern 
advanced control system for a paper machine may be expected to provide dynamic 
economic optimization on the machine to reduce energy costs and eliminate waste of raw 
materials. For machines that produce more than one grade of paper, it is desired to have an 
automatic grade change feature that will create and track controlled variable (CV) and MV 
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trajectories to quickly and safely transfer production from one grade to the next. Basic MD-
MPC, economic optimization, and automatic grade change are discussed in this chapter. 
MPC for CD control was introduced by Honeywell in 2001 (Backström et al. 2001). Today, 
MPC has become the trend of advanced CD control applications. Some successful MPC 
applications for CD control have been reported in (Backström et al. 2001, Backström et al. 
2002; Chu 2010a; Gheorghe 2009). 
In papermaking processes, it is desired to control the CD profile of quality variables such as 
dry weight, moisture, thickness, etc. These properties are measured by scanning sensors that 
traverse back and forth across the paper sheet, taking as many as 2000 or more samples per 
sheet property across the machine. There may be several scanners installed at different 
points along the paper machine and so there may be multiple CD profiles for each quality 
variable. 
The CD profiles are controlled using a number of CD actuator arrays. These arrays span the 
paper machine width and may contain up to 300 individual actuators. Common CD 
actuators arrays allow for local adjustment, across the machine, of: slice lip opening, 
headbox dilution, rewet water sprays, and induction heating of the rolls. As with the CD 
measurements, there may be multiple CD actuator arrays of each type available for control. 
By changing the setpoints of the individual CD actuators within an array, one can adjust the 
local profile of the CD measurements.  
The CD process is a multiple-input-multiple-output (MIMO) system. It shows strong input 
and output off-diagonal coupling properties. One CD actuator array can have impact on 
multiple downstream CD measurement profiles. Conversely, one CD measurement profile can 
be affected by multiple upstream CD actuator arrays. Therefore, the CD control problem 
consists of attempting to minimize the variation of multiple CD measurement profiles by 
simultaneously optimizing the setpoints of all individual CD actuators (Duncan 1989). 
MPC is a natural choice for paper machine CD control because it can systematically handle 
the coupling between multiple actuator and multiple measurement arrays, and also 
incorporate actuator physical constraints into the controller design. However, different from 
standard MPC problems, the most challenging part of the cross directional MPC (CD-MPC) 
is the size of the problem. The CD-MPC problem can involve up to 600 MVs, 6000 CVs, and 
3000 hard constraints. Also, the new setpoints of MVs are required as often as every 10 to 20 
seconds. This chapter discusses the details of the design for an efficient large-scale CD-MPC 
controller. 
This chapter has 5 sections. Section 2 provides an overview of the papermaking process 
highlighting both the MD and CD aspects. Section 3 focuses on modelling, control and 
optimization for MD processes. Section 4 focuses on modelling, control and optimization for 
CD processes. Both Sections 3 and 4 give industrial examples of MPC applications. Finally, 
Section 5 draws conclusions and provides some perspective on the future of MD-MPC and 
CD-MPC.  

2. Overview of papermaking processes 

A flat sheet of paper is a network consisting of cellulose fibres bound to one another. A 
paper machine transforms a slurry of water and wood cellulose fibres into this type of 
network. The whole papermaking process can be regarded as a water-removal system: the 
consistency of fibre solutions, called stock by papermakers, increases from around 1% at the 
beginning of a paper machine (the headbox) to around 95% at the end (the reel). 
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2.1 Brief description of papermaking processes 
In general a paper machine can be divided into four sections: forming section, press section, 
drying section, and calendering section. In the forming section, the stock flow enters the 
headbox to be distributed evenly across a continuously running fabric felt called the wire. 
The newly formed sheet is carried by the wire along the Fourdrinier table, which has a set of 
drainage elements that promote water removal by various gravity and suction mechanisms. 
These elements include suction boxes, couch rolls, foils, etc. The solid consistency of the 
paper web can reach 20% by the time the web leaves the forming section and enters the 
press section. Figure 1 illustrates the configuration of a Fourdrinier-type paper machine.   
 

 

Fig. 1. The configuration of a Fourdrinier-type paper machine 

The press section may be considered as an extension of the water-removal process that was 

started on the wire in the forming section. Typically, it consists of 1 – 3 rolling press nips. 

When the paper web passes through these nips, the pressing roll squeezes water out and 

consolidates the web formation at the same time. In the press section, both the surface 

smoothness and the web strength are improved. As higher web strength is achieved in the 

press section, better runability will be observed in the drying section. A paper machine is 

typically operated at a very high speed. The fastest machine speed may be as high as 2,200 

meters per minute.  

The drying section includes multiple drying cylinders which are heated by high temperature 

and high pressure steam. The heat is transferred from steam onto the paper surface through 

these rotating steel cylinders. The heat flow increases the paper surface temperature to the 

point where water starts evaporating and escaping from the paper web. The drying section is 

the most energy consuming part of paper manufacturing. Before the paper enters the drying 

section, the solid consistency is around 50%. After the drying section, the consistency can reach 

95%, which corresponds to a finished product moisture specification.  

The last section of the paper machine is called the calendering section. Calendering is a 

terminology referring to pressing with a roll. The surface and the interior properties of the 

paper web are modified when it passes through one or more calendering nips. Typically the 

calendering nip consists of one or multiple soft/hard or hard/hard roll pairs. The hard roll 

presses the paper web against the other roll, and deforms the paper web plastically. By this 

means, the calender roll surface is replicated onto the paper web. Depending on the type of 

paper being produced, the primary objective of calendering may be to produce a smooth 

paper surface (for printing), or to improve the uniformity of CD properties, such as paper 

caliper (thickness).  
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More details of paper machine design and operation are given in (Smook 2002; Gavelin 
1998). 

2.2 Paper quality measurement 
A paper machine can have one or more measurement scanners. The quality measurement 
sensors are mounted on the scanner head which travels back and forth across the paper web 
to provide online quality measurements. The most common paper machine quality 
measurements include dry weight, moisture, and caliper. Dry weight indicates the solid 
weight per unit area of a sheet of paper. For different types of products, the value of dry 
weight can vary from 10 grams per square meter (gsm), in the case of paper tissue, to 400 
gsm, in the case of heavy paper board. Moisture content is another critical quality property 
of the finished paper product. It indicates the mass percentage of water contained in a sheet 
of paper. Moisture content is a key factor determining the strength of the finished product. 
Typical moisture targets range from 5% to 9%. Caliper is the measure of the thickness of a 
sheet of paper. It is a key factor determining the gloss and printability of the finished 
product. The caliper targets are in the range from 70	Ɋm to 300 Ɋm depending on the 
production grade. In general the online measurements for dry weight, moisture and caliper 
are available and used for both the MD and CD feedback controller designs. 
As the scanners travel across a moving sheet, the real data collected actually comes from a 
zig-zag trajectory (See Figure 2). These data contain both CD and MD variation. A reliable 
MD/CD separation scheme is the prerequisite for MD and CD control designs. Since the 
MD/CD separation is a separate topic, the rest of this chapter assumes that the pure 
MD/CD measurements have been obtained prior to the MD/CD controller development. 
The scanner measurements are denoted by x(i, t),  i = ͳ,ڮ , n indexes the n measurements 
taken across the sheet each scan (CD measurement index), and t is the time stamp of each 
scan (MD measurement index). xതሺtሻ is the MD measurement given by 

 xത(t)=
1

n
∑ x(i, t)n

i=1 . (1) 

 

 

Fig. 2. The zig-zag scanner trajectories 
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2.3 Brief description of MD control 
The objective of MD control is to minimize the variation of the sheet quality measurements 
in machine direction. 
A number of actuators are available for control of the MD variables. Stock flow to the headbox 
is regulated by the stock flow valve or variable speed pump. As stock flow increases, the 
amount of fibre flowing into the forming section increases and dry weight and caliper increase. 
At the same time, there is also more water coming through the machine and moisture will 
increase. So, changes in the stock flow affect dry weight, moisture and caliper. The steam 
pressure in the cylinders of the drying section may be adjusted. As the steam pressure in the 
cylinders increases, so does the temperature in the cylinders, and more heat is transferred to 
the paper. In this way, steam pressure affects moisture. Typically, the dryer cylinders are 
divided into groups, and the steam pressure for each of these dryer sections may be adjusted 
independently. Machine speed affects dry weight and caliper, as increasing the machine speed 
stretches the paper web thinner, giving it less mass per unit area. Machine speed also affects 
moisture as both the drying properties of the paper and the residence time in the dryer change. 
Clearly, paper machine MD control is a multivariable control problem. 

2.4 Brief description of CD control 
The objective of CD control is to achieve uniform paper qualities in the cross direction, i.e., 
to minimize the variation of CD profiles. The CD variation, can be formulated as two times 
of the standard deviation of the CD profile, 

 2σCD(t)=2* ቀ 1

n-1
∑ (x(i, t)-xത(t))

2n
i=1 ቁ1

2
  (2) 

Often the term ‘CD spread’ is used interchangeably with 2σCD.  
CD actuators are used to regulate CD profiles and improve the uniformity of paper quality 
properties in the cross direction i.e., reduce the value of 2σCD.  
The most common dry weight CD actuators are both located at the headbox. The headbox 
slice opening is a full-width orifice or nozzle that can be adjusted at points across the width 
of the paper machine. This allows for differences in the local stock flow onto the wire across 
the machine. The consistency profiler changes the consistency of local stock flow by injecting 
dilution water and altering the local concentration of pulp fibre across the headbox. 
Headbox slice and consistency profiler are primarily designed for dry weight control, but 
they have the effects on both moisture and caliper profiles. Figure 1 indicates the location of 
headbox dry weight actuators.  
The most common moisture actuators are the steam box and water spray. The steam box 
applies high temperature steam to the surface of the moving paper web. As the latent heat in 
the steam is released and heats up the paper web, it lowers the web viscosity and eases 
dewatering in the press section. The water spray regulates the moisture profiles according to 
a different mechanism. It deploys a fine water spray to the paper surface through a set of 
nozzles across the machine width to re-moisturize the paper web. Similar to the dry weight 
actuators, moisture actuators are designed for moisture profile regulation but they may have 
effects on the caliper profile. The steam box is typically installed in the press section and the 
water spray is located in the drying section. Figure 1 indicates the physical locations of 
moisture actuators.  
The most common caliper actuators are hot air showers and induction heaters. Both types of 
actuators provide surface heating for calendering rolls. The hot shower uses the high 
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temperature steam or air; the induction heater uses the high frequency alternating current. 
By heating up the calender roll, caliper actuators alter the local diameter of the calender roll 
and subsequently increase the local pressure applied to the paper web. The physical location 
of the caliper actuators can be also found in Figure 1.  

3. Modelling, control and optimization of papermaking MD processes 

Control of the MD process is typically a regulation problem where the paper quality 
variables need to be held within specified quality limits. At the same time, the constant 
pressure to increase operational efficiency demands that the paper production uses the least 
amount of raw materials and energy required to meet quality goals.  
When multiple grades of paper are produced on a single paper machine, control must also 
be able to provide quick transitions of the quality variables along smooth trajectories. When 
the differences between the paper grades are large, it may be necessary to enhance the 
control algorithm to account for process nonlinearities that become apparent over a larger 
span of operating points. 

3.1 Modeling of papermaking MD processes 
In this section, modelling of the MD process for MPC controller design is discussed. The 
additional modelling required for paper grade change control is discussed in section 3.4.  
For effective MPC control of paper MD quality variables, it is necessary to build a matrix of 
linear models relating the process MV’s to the quality variables (the CV’s). A basic paper 
machine model matrix most often includes stock flow, steam pressure of multiple dryer 
sections, and machine speed as MVs, and paper weight (basis weight or dry weight), and 
moisture as CV’s. Many other MV’s and CV’s can be included in the model matrix 
depending on the complexity of the paper machine and the paper quality requirements. An 
example model matrix is given in Figure 3. 
 

 

Fig. 3. A basic model matrix for CD-MPC. The models are step responses. 
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The process models used for MPC control are often developed in transfer function form, 
such as: 

 yሺsሻ	=g(s)u(s)+d(s)  (3) 

and 

 y(s)=቎ yଵሺsሻڭy୒౯ሺsሻ቏ ,			gሺsሻ = ቎ gଵଵሺsሻ … gଵ୒౫ሺsሻڭ ⋱ g୒౯ଵሺsሻڭ … g୒౯୒౫ሺsሻ቏,  u(s)=቎ uଵሺsሻڭu୒౫ሺsሻ቏, (4) 

where yሺsሻ ∈ ℂ୒౯ is the Laplace transformation of the N୷	 MD quality measurements (such as 

dry weight, moisture, caliper, etc). uሺsሻ ∈ ℂ୒౫ is the Laplace transformation of the actuator 
setpoints (such as thick stock flow, dryer section steam pressure(s), filler flows, machine 

speed, etc). d(s)	∈ ℂ୒౯ is the Laplace transformation of the augmented process disturbance 
array.  g୧୨ሺsሻ ∈ ℂ (i	 = ͳ…N୷	and	j	 = ͳ…N୳ሻ are the transfer functions from the jth actuator u୨ 
to the ith MD quality measurement 	y୧.  
3.1.1 Model identification 
Typically the MD process models that are used as the basis for the MD-MPC controller are 

identified from data obtained during simple process experiments. A series of step changes 

is made for each MV. There is a delay after each step long enough so that the full 

responses of all of CV’s can be observed. That is, the CV responses reach steady state 

before the next step change in the MV is made. These types of process experiments are 

known as bump tests. 

Once a set of identification data has been obtained, various techniques may be used to 

generate a process model from this data. In the simplest case, plots of the bump tests are 

reviewed to graphically estimate a process gain, ݇௜௝, dead time, ௗܶ೔ೕ , and time constant, ௣ܶ೔ೕ , 
yielding the process model: 

ሻݏ௜ሺݕ  = ௞೔ೕ௘ష೅೏೔ೕೞଵା ೛்೔ೕ௦  ሻ  (5)ݏ௝ሺݑ

More complex methods involve use of regression and search techniques to find both the 
optimum model parameters, and the optimum model structure (transfer function numerator 
and denominator orders). These techniques typically use minimization of squared model 
prediction errors as the objective: 

ܬ  = ∑ ൫ݕపෝሺ݇ሻ − ௜ሺ݇ሻ൯ଶே௞ୀଵݕ  (6) 

Where ݕపෝሺ݇ሻ and ݕ௜ሺ݇ሻ are respectively the predicted and actual values of the ith CV at time 
k. (Ljung 1998) is the classic reference on system identification, and there are commercial 
software packages available that automate much of the system identification work. 

3.2 MD-MPC design 
Once all of the bump test, and system identification activities have been performed, the 
complete process model (3) is used directly in the model predictive controller. MPC solves 
an optimization problem at each control execution. One robust MPC problem formulation is: 
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 min୼୳,୷౨ ଵଶ ‖Wሺy୰ − Sȟuሻ‖ଶଶ, (7) 

Subject to: ݕ௟ ൑ ୰ݕ ൑ ୪ݑ ୦ݕ ൑ u ൑ u௛ ∆ݑ௟ ൑ ∆u ൑ ∆u௛ 

The values of ݕ௥ are the CV targets and SΔU are the predicted future values of the CV’s. S is 

the prediction matrix, containing all the information from the process model (3). W is a 

weighting matrix, and ‖∙‖ଶଶ is the two-norm squared operator. ݕ௟	and ݕ୦ are the low and high 

CV quality limits, ݑ୪ and u௛ are the low and high MV limits, and ∆ݑ௟ and ∆u௛ are the low 

and high limits for MV moves. As discussed in the section below, this problem formulation, 

combined with techniques employed in its solution implicitly provide robustness 

characteristics in the controller design.  

The technical details of the solution of the problem (7) are given in (Ward 1996); however, 

some notable aspects of the solution methodology and beneficial characteristics of the 

solution are given in the section below. 

3.2.1 Model scaling and controller robustness 
Robust numerical solution of the optimization problem (7) depends on condition number of 

the system gain matrix, G. Prior to performing the controller design, the gain matrix 

condition number is minimized by solving the problem: 

 minୈ౨,ୈౙ{ɈሺD୰gDୡሻ}, (8) 

Where Ɉ is condition number, and Dr and Dc are diagonal transformation matrices. The 

scaled system gain matrix gs is then: 

 gୱ = D୰gDୡ, (9) gୱ is then used for all MPC computations. 

It should be noted that the objective (7) does not explicitly penalize the MV moves Δu as a 

method to promote controller robustness. Instead, controller robustness is provided by the 

CV range formulation and singular value thresholding.  

First, the CV range formulation refers to the inequalities given in the problem formulation 

(7). Under this formulation, if a CV is predicted to be within it range in the future, no MV 

action is taken. Since MV moves are not made unless absolutely necessary, this is a very 

robust policy. 

Second, the solution of the problem involves an active set method that allows the 

constrained optimization problem to be converted into an unconstrained problem. A URV 

orthogonal decomposition (see Ward 1996) of the matrix characterizing the unconstrained 

problem is then employed to solve the unconstrained problem. Prior to the decomposition, 

singular values of the problem matrix that are less than a certain threshold are dropped, 

reducing the dimension of the problem, and ensuring that the controller does not attempt to 

control weakly controllable directions of the process. 
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3.3 Economic optimization 
Energy consumption is a big concern for papermakers. Increasing profits by minimizing 
operating costs without sacrificing paper quality and runability is always a goal for them. In 
theory, if the number of MVs of a process is greater than the number of CVs plus the 
number of active constraints, the process has degrees of freedom allowing for steady-state 
optimization. Product value optimization can be systematically integrated with the MD-
MPC control. One can then take the feed, product, and utility costs into account with the 
MD controller design.  
For the economic optimization of a process, the following objective is to be minimized: 

ܬ  = ∑ ൫ܽ௬೔ሺݕ௜ − ௜଴ሻଶݕ + ܾ௬೔ݕ௜൯௜ + ∑ ቀܽ௨ೕ൫ݑ௝ − ௝଴൯ଶݑ + ܾ௨ೕݑ௝ቁ௝  (10) 

Here ݕ௜଴ and ݑ௝଴ are the desired steady state values of the process CV’s and MV’s, ܽ௬೔  and ܽ௨ೕ are the costs of quadratic deviation from the desired values, and ܾ௬೔  and ܾ௨ೕ are the 

linear costs of the CV’s and MV’s. This objective is useful for paper machines, for example, 
by placing costs on the different energy sources used in drying. 
The economic objective is combined with the MPC control problem objective to give an 
augmented problem formulation. The augmented problem is then solved using the same 
solution method as described above. 
Economic optimization is a lower priority for paper machines than quality control. If the 
paper does not meet quality specifications, it cannot be sold, and any savings made from 
economic optimization are more than lost. Therefore, economic optimization only occurs 
when there are extra degrees of freedom for the controller. Economic optimization is not 
attempted unless all of the CV’s are predicted to remain within their quality specifications 
over the whole of the controller’s prediction horizon.  

3.3.1 Mill implementation results  
MPC including an economic optimization layer was implemented for a tissue machine. A 
diagram of the tissue machine is given in Figure 4. As can be seen in the diagram, tissue dry 
weight and moisture are measured at the reel; moisture is measured between the second 
through-air dryer (TAD2) and the Yankee dryer, and TAD1 exhaust pressure must also be 
monitored and controlled. These four variables are the CV’s in this example. A large number 
of MV’s are available to control this machine. Stock flow, TAD1 supply temperature, TAD1 
dry end differential pressure, TAD1 gap pressure, TAD2 exhaust temperature, TAD2 dry 
end differential pressure, TAD2 gap pressure, Yankee hood temperature, and Yankee 
supply fan speed are all used as MV’s in the MPC. Machine speed and tickler refiner were 
added as DV’s. The MPC model matrix is shown in Figure 5. 
 

 

Table 1. Tissue machine MV’s with linear objective coefficients  

MV Energy Fuel Units

Linear Obj Coef

Cost /  eng unit

TAD1 Supply Temp Gas deg F 0.680

TAD1 DE DP Electricity inch H2O 47.267

TAD1 Gap Pres Electricity inch H2O -0.030

TAD2 Exh Temp Gas deg F 5.858

TAD2 DE DP Electricity inch H2O 40.249

TAD2 Gap Pres Electricity inch H2O -16.415
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A large number of the MV’s in this control problem have an impact on the paper moisture, 
both after TAD2, and at the reel; however each MV uses a different energy source and has 
different drying efficiency. Overall, since there are more MV’s than CV’s, and significant 
cost differences between the MV’s, there is an opportunity for economic optimization in this 
system. Table 1 shows the energy sources and different energy cost efficiencies (Linear Obj 
Coeff Cost/eng unit) associated with each MV. Economic optimization can be accomplished 
by including these variables in the linear part of the economic objective function given by 
(10). 
 

 

Fig. 4. Diagram of a tissue machine with CV’s, MV’s, and DV’s for MPC. 

Once the economic cost function was added to the MPC, a plant trial was made. Figures 6-10 
show the results of this trial. In Figure 7 it can be seen that prior to turning on the economic 
optimizer (the period from 8:30 to 9:30) there was a relative cost of energy of 100. The 
optimizer was turned on at 9:30. Initially there were some wind-up problems in the plant 
DCS which were preventing the MPC from optimizing. Once these were cleared, at 10:44, 
the controller drove the process to the low cost operating point (from 10:44 to 12:30). The 
relative cost of energy at this operating point was 98.8. In order to better interpret these 
results, it is necessary to rank the costs of each MV on the common basis of Cost/% Moi. 
This is accomplished by dividing the linear objective coefficients given in Table 1 by their 
respective process gains. These are shown in Table 2, along with the MV high and low 
limits, and the optimization behaviour. Looking again at the Figures 8 and 9, it can be seen 
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that the highest costing MV’s are driven to their minimum operating points, and the lowest 
costing MV’s are driven to their maximum operating points. The TAD1 dry end differential 
pressure is left as the MV that is within limits and actively controlling the paper moistures. 
Figure 10 shows that throughout this trial, the MV’s are optimized without causing any 
disturbance to the CV’s. 
 
 

 

 

Fig. 5. The MPC model matrix for the tissue machine control and optimization example  

 
 

 

 

Fig. 6. Natural gas costs and electricity costs during the trial  
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Fig. 7. Total costs during the trial  

 
 
 
 
 
 

 
 
 
Table 2. The MV cost rankings.  

MV eng unit Low Limit High Limit

Linear Obj 

Coef 

(Cost/eng unit)

Process

Gain 

(%Moi/eng unit)

Cost

(Cost / % 

Moi) Rank

Optimization

Behavior

TAD1 Supply Temp deg F 300.0 450.0 0.68 -0.12 5.48 4 450 (max)

TAD1 DE DP inch H2O 1.0 3.9 47.30 -5.12 9.24 3 controlling Moi

TAD1 Gap Prs inch H2O 0.4 1.5 -0.03 1.95 0.02 6 0.4 (max)

TAD2 Exh Temp deg F 175.0 250.0 5.86 -0.45 13.02 1 175 (min)

TAD2 DE DP inch H2O 1.0 3.5 40.26 -3.14 12.82 2 1 (min)

TAD2 Gap Prs inch H2O 0.2 1.5 -16.40 4.25 3.86 5 0.2 (max)
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Fig. 8. Manipulated variables during the trial  
 

 
Fig. 9. Manipulated variables during the trial  
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Fig. 10. Controlled variables during the trial  

3.4 Grade change strategies 
Grade change is a terminology in MD control. It refers to the process of transitioning a paper 

machine from producing one grade of paper product to another. One can achieve a grade 

change by gradually ramping up a set of MVs to drive the setpoints of CVs from one 

operating point to another. During a grade change, the paper product is often off-

specification and not sellable. It is important to develop an automatic control scheme to 

coordinate the MV trajectories and minimize the grade change transition times and the off-

spec product. An offline model predictive controller can be designed to produce CV and 

MV trajectories to meet these grade change criteria. MPC is well-suited to this problem 

because it explicitly considers MV and CV trajectories over a finite horizon. By coordinating 

the offline grade change controller (linear or nonlinear) and an online MD-MPC, one can 

derive a fast grade change that minimizes off-spec production. This section discusses the 

design of MPC controllers for linear and nonlinear grade changes. 

Figure 11 gives a block diagram of the grade change controller incorporated into an MD 

control system. The grade change controller calculates the MV and CV trajectories to meet 

the grade change criteria. This occurs as a separate MPC calculation performed offline so 

that grade change specific process models can be used, and so that the MPC weightings can 

be adjusted until the MV and CV trajectories meet the design criteria. The MV trajectories 

are sent to the regulatory loop as a series of MV setpoint changes. The CV trajectories are 

sent as setpoint changes to the MD controller. If the grade change is performed with the MD 

controller in closed-loop, additional corrections to the MV setpoints are made to eliminate 

any deviation of the CV from its target trajectory. 
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Fig. 11. Block diagram of MD-MPC control enhanced with grade change capability  

The MV and CV trajectories are generated in a two step procedure. First there is a target 
calculation step that generates the MV setpoints required to bring the CV’s to their target 
values for the new grade. Once the MV setpoints are generated, then there is a trajectory 
generation step where the MV and CV trajectories are designed to meet the specifications of 
the grade change. 
The MV targets are generated from solving a set of nonlinear equations: 

 

( )

( )

( )

( )

1 1
dw dw 1 2 3 1 2 3

2 2
dw dw 1 2 3 1 2 3

1 1
moi moi 1 2 3 1 2 3

2 2
moi moi 1 2 3 1 2 3

y f u ,u ,u , ,C ,C ,C , 0,

y f u ,u ,u , ,C ,C ,C , 0,

y f u ,u ,u , ,C ,C ,C , 0,

y f u ,u ,u , ,C ,C ,C , 0,

− … … =

− … … =

− … … =

− … … =





  (11) 

Here ydw/ymoi represents the CV target for the new grade. The functions fሺ∙ሻ are the 
models of dry weight and moisture. The process MV’s are denoted ui and model constants 
are denoted Ci. The superscripts indicate the same paper properties measured by different 
scanners. Since the number of MV’s and the number of CV’s is not necessarily equal, these 
equations may have one, multiple or no solutions. To allow for all of these cases, the 
problem is recast as: 

 min୳౟Fሺuଵ, uଶ, … ሻ, (12) 

Subject to: Gሺuଵ, uଶ, … ሻ ൑ Ͳ, Hሺuଵ, uଶ, … ሻ = Ͳ, 
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Where Fሺ∙ሻ is a quadratic objective function formulated to find the minimum travel solution. Hሺ∙ሻ represents the equality constraints given above, and Gሺ∙ሻ represents the physical 
limitations of the CVs and MVs (high, low, and rate of change limits).   
Once the MV targets have been generated, the MV and CV trajectories are then designed. 

Figure 12 gives a schematic representation of the trajectory generation algorithm. The 

process models are linearized (if necessary) and then scaled and normalized for 

application in an MPC controller. Process constraints such as the MV and CV targets, and 

the MV high and low limits are also given to the MPC controller. Internal controller 

tuning parameters are then used to adjust the MV and CV trajectories to meet the grade 

change requirements.  

 

 

Fig. 12. Diagram of MPC-based grade change trajectory generation.  

3.4.1 Linear grade change 
In a linear grade change, the MD process models that are used in the MD-MPC controller 

are also used as the models for determining the MD targets, and for designing the MD grade 

change trajectories.  

3.4.2 Nonlinear grade change 
In a nonlinear grade change, a first principles model may be used for the target and 
trajectory generation. For example, a simple dry weight model is: 

 mୢ୰୷ = K ୯౩౪౥ౙౡ୴ , (13) 
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Where mୢ୰୷ is the paper dry weight, qୱ୲୭ୡ୩ is the thick stock flow, and v is machine speed. K 

is the expression of a number of process constants and values including fibre retention, 

consistency, and fibre density. (Chu et al. 2008) gives a more detailed treatment of this dry 

weight model.  

(Persson 1998, Slätteke 2006, and Wilhelmsson 1995) are examples of first principles 

moisture models that may be used. 

3.4.3 Mill implementation results 
In this section, some results of MPC-based grade changes for a fine paper machine are given. 

The grade change is from a paper with a dry weight of 53 lb/3000ft2 (86 g/m2) to a paper 

with a dry weight of 44 lb/3000ft2 (72 g/m2). Both paper grades have the same reel moisture 

setpoint of 4.8%. For the grade change, stock flow, 6th section steam pressure, and machine 

speed are manipulated. 

Figures 13 and 14 show a grade change performed on the paper machine using linear 

process models, and keeping the regular MPC in closed-loop during the grade change. The 

grade change was completed in 10 minutes, which is a significant improvement over the 22 

minutes required by the grade change package of the plant’s previous control system. In 

Figure 13, the CV trajectories are shown. Here it can be seen that although there is initially a 

small gap between the actual dry weight and the planned trajectory, the regular MPC takes 

action with the thick stock valve (as shown in Figure 14) to quickly bring dry weight back on 

target. The deviation in the reel moisture is more obvious. This might be expected as the 

moisture dynamics of the paper machine display more nonlinear behaviour for this range of 

operations. The steam trajectory in Figure 14 is ramping up at its maximum rate and yet the 

paper still becomes too wet during the initial part of the grade change. This indicates that 

the grade change package is aggressively pushing the system to achieve short grade change 

times. 

 

 

Fig. 13. CV trajectories under closed-loop GC with linear models 
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Fig. 14. MV trajectories under closed-loop GC with linear models 

Figures 15 and 16 show a grade change performed on a high fidelity simulation of the fine 
paper machine. This grade change uses a nonlinear process model, and the regular MPC is 
kept in closed-loop during the grade change. Here it can be seen that the duration of the 
grade change is reduced to 8 minutes. Part of the improvement comes from using stock flow 
setpoint instead of stock valve position, allowing improved dry weight control. Another 
improvement is that the planned trajectories allow for some deviation in the reel moisture 
that cannot be eliminated. Both dry weight and reel moisture follow their trajectories more 
closely. At the end of the grade change, the nonlinear grade change package is able to 
anticipate the need to reduce steam preventing the sheet from becoming dry.  
 

 

Fig. 15. CV trajectories under closed-loop GC with nonlinear models 
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Fig. 16. MV trajectories under closed-loop GC with nonlinear models 

4. Modelling, control and optimization of papermaking CD processes 

To produce quality paper it is not enough that the average value of paper weight, moisture, 

caliper, etc across the width of the sheet remains on target. Paper properties must be 

uniform across the sheet. This is the purpose of CD control.  

4.1 Modelling of papermaking CD processes 
The papermaking CD process is a large scaled two-dimensional process. It involves multiple 

actuator arrays and multiple quality measurement arrays. The process shows very strong 

input-output off-diagonal coupling properties. An accurate CD model is the prerequisite for 

an effective CD-MPC controller. We begin by discussing a model structure for the CD 

process and the details of the model identification.  

4.1.1 A two-dimensional linear system 
The CD process can be modelled as a linear multiple actuator arrays and multiple 

measurement arrays system,  

  Yሺsሻ	=G(s)U(s)+D(s),  (14) 

and 

 Y(s)=቎ yଵሺsሻڭy୒౯ሺsሻ቏ ,			Gሺsሻ = ቎ Gଵଵሺsሻ … Gଵ୒౫ሺsሻڭ ⋱ G୒౯ଵሺsሻڭ … G୒౯୒౫ሺsሻ቏,  U(s)=቎ uଵሺsሻڭu୒౫ሺsሻ቏, (15) 
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where Yሺsሻ ∈ ℂሺ୒౯⋅୫ሻ is the Laplace transformation of the augmented CD measurement 
array. The element y୧ሺsሻ ∈ ℂ୫	ሺi	 = ͳ, … , N୷ሻ is the Laplace transformation of the ith 

individual CD measurement profile, such as dry weight, moisture, or caliper. N୷	is the total 

number of the quality measurements, and m is the number of elements of individual 

measurement arrays. Uሺsሻ ∈ ℂሺ∑ ୬ౠొ౫ౠసభ ሻ is the Laplace transformation of the augmented 
actuator setpoint array. The element u୨ሺsሻ ∈ ℂ୬ౠ 	ሺj	 = ͳ…N୳ሻ is the Laplace transformation of 

the jth individual CD actuator setpoint profile, such as the headbox slice, water spray, steam 
box, or induction heater. N୳	is the total number of actuator beams available as MV’s, and n୨ 
is the number of individual zones of the jth actuator beam. In general a CD system has the 
same number of elements for all CD measurement profiles, but different numbers of 

actuator beam setpoints. D(s)	∈ ℂሺ୒౯⋅୫ሻ is the Laplace transformation of the augmented 
process disturbance array. It represents process output disturbances.   G୧୨ሺsሻ ∈ ℂ୫×୬ౠ (i	 = ͳ…N୷	and	j	 = ͳ…N୳ሻ in (15) is the transfer matrix of the sub-system 

from the jth actuator beam u୨ to the ith CD quality measurement 	y୧. The model of this sub-

system can be represented by a spatial static matrix P୧୨ ∈ ℝ୫×୬ౠ with a temporal dynamic 

transfer function	h୧୨ሺsሻ. In practice, 	h୧୨ሺsሻ is simplified as a first-order plus dead time 

system. Therefore, G୧୨ሺsሻ is given by 

 G୧୨ሺsሻ = P୧୨h୧୨ሺsሻ = P୧୨ ଵଵା୘౦ୱ eି୘ౚୱ  (16) 

where T୮ is the time constant and Tୢ  is the time delay. The static spatial matrix P୧୨ is a matrix 

with n୨ columns, i.e., P୧୨ = [pଵ pଶ ڮ p୬ౠ] and its kth column p୩ represents the spatial 

response of the kth individual actuator zone of the jth actuator beam. As proposed in 

(Gorinevsky & Gheorghe 2003), p୩	can be formulated by, 

 

2 2
k k

2 2

ǂ((x x ) ǃω) ǂ((x x ) ǃω)

k ω ω
k k

g π π
p {e cos( ((x x ) ǃω))  e cos( ((x x ) ǃω))}

2 ω ω

− − − +
− −

= − − + − +   (17) 

where x is the coordinate of CD measurements (CD bins), g is the process gain, ɘ is the 

response width, Ƚ is the attenuation and Ⱦ is divergence. x୩ is the CD alignment that 

indicates the spatial relationship between the centre of the kth individual CD actuator and 

the center of the corresponding measurement responses. A fuzzy function may be used to 

model the CD alignment. Refer to (Gorinevsky & Gheorghe 2003) for the technical details.  

Figure 17 illustrates the structure of the spatial response matrix P୧୨. The colour map on the 

left shows the band-diagonal property of	P୧୨; and the plot in the right shows the spatial 

response of the individual spatial actuator p୩. It can be seen that each individual actuator 

affects not only its own spatial zone area, but also adjacent zone areas. 

4.1.2 Model identification 
Model identification of the papermaking CD process is the procedure to determine the 
values of the parameters in (16, 17), i.e., the dynamic model parameters	θ୘ = {T୮, Tୢ }, the 

spatial model parametersθେୈ =	 {g, ɘ, Ƚ, Ⱦ}, and the alignment x୩. An iterative identification 
algorithm has been proposed in (Gorinevsky & Gheorghe 2003). As with MD model 
identification, this algorithm is an open-loop model identification approach. Identification 
experiment data are first collected by performing open-loop bump tests.  
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Fig. 17. The illustration to spatial response matrix P୧୨. 
Figure 18 illustrates the logic flow of this algorithm. This nontrivial system identification 
approach first estimates the overall dynamic response and spatial response, and 
subsequently identifies the dynamic model parameter θ୘ and the spatial model 

parameter	θେୈ. h෠ in Figure 18 is the estimated finite impulse response (FIR) of the dynamic 
model hሺsሻ in (16). pො in Figure 18 is the estimated steady state measurement profile, i.e., 
overall spatial response. For easier notation, we omit the indexes i and j here. The key 
concept of the algorithm is to optimize the model parameters iteratively. Refer to 
(Gorinevsky & Gheorghe 2003) for technical details of this algorithm, and (Gorinevsky & 
Heaven, 2001) for the theoretical proof of the algorithm convergence.  
 

 

Fig. 18. The schematic of the iterative CD system identification algorithm 

The algorithm described above has been implemented in a software package, named 
IntelliMapTM, which has been widely used in pulp and paper industries. The tool executes 
the open-loop bump tests automatically and, at the end of the experiments, provides a 
continuous-time transfer matrix model (defined in (14)). For convenience, the MPC 
controller design discussed in the next section will use the state space model representation. 
Conversion of the continuous-time transfer matrix model into the discrete-time state space 
model is trivial (Chen 1999) and is omitted here.  
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4.2 CD-MPC design 
In this section, a state space realization of (14) is used for the MPC controller development, 

 
Xሺk + ͳሻ	 = 	AXሺkሻ + BȟUሺkሻYሺkሻ = 	CXሺkሻ + Dሺkሻ . (18) Xሺkሻ ∈ ℝሺଶ⋅୒౯⋅୫ሻ, Yሺkሻ ∈ ℝሺ୒౯⋅୫ሻ, ȟUሺkሻ ∈ ℝሺ∑ ୬ౠొ౫ౠసభ ሻ,		andDሺkሻ ∈ ℝሺ୒౯⋅୫ሻ	are the augmented 

state, output, actuator move, and output disturbance arrays of the papermaking CD process 
with multiple CD actuator beams and multiple quality measurement arrays. {A, B, C} are the 
model matrices with compatible dimensions. Assume (A, B) is controllable and (A, C) is 
observable. In this section, the objective function of CD-MPC is developed first. Then the CD 
actuator constraints are incorporated in the objective function. Finally a fast QP solver is 
presented for solving the large scale constrained CD-MPC optimization problem. How to 
tune a CD-MPC controller is also covered in this section 

4.2.1 Objective function of CD-MPC  
The first step of MPC development is performing the system output prediction over a 
certain length of prediction horizon. From the state space model defined in (18), we can 
predict the future states, 

 ࣲሺkሻ = 	 ୅࣪Xሺkሻ + ୆࣪ȟ࣯ሺkሻ, (19) 

where ࣲሺkሻ ∈ ℝሺଶ⋅୒౯⋅୫⋅ୌ౦ሻ is the state prediction, ȟ࣯ሺkሻ ∈ ℝሺୌ౫⋅∑ ୬ౠొ౫ౠసభ ሻ is the augmented 
actuator moves. ୅࣪ and ୆࣪ are the state and input prediction matrices with the compatible 
dimensions. H୮	and H୳ are the output and input prediction horizons, respectively.  

The explicit expressions of the parameters in (19) are 

 
p p up

2

A B

H 1 H HH
p

u

A B 0X(k 1|k)

AB 0X(k 2|k) A
(k) ,    ,    ,

X(k H |k) A B A BA

ΔU(k|k)

ΔU(k 1|k)
and Δ (k)

ΔU(k H 1|k)

− −

   + 
    

+     = = =    
    

+         
 
 

+ =
 
 

+ − 




   





  



  (20) 

The initial state X෡଴ሺk|k − ͳሻ at instant k can be estimated from the previous state estimation X෡ሺk − ͳሻ and the previous actuator move		ȟUሺk − ͳሻ, i.e.,  

 X෡଴ሺk|k − ͳሻ	 = AX෡ሺk − ͳሻ + BȟUሺk − ͳሻ. (21) 

The measurement information at instant k can be used to improve the estimation, 

 X෡ሺkሻ	 = X෡଴ሺk|k − ͳሻ + LሺYሺkሻ 	− 	CX෡଴ሺk|k − ͳሻሻ, (22) 

where L∈ ℝሺଶ⋅୒౯⋅୫ሻ×ሺ୒౯⋅୫ሻ is the state observer matrix.  

Replace the state Xሺkሻ by its estimation X෡ሺkሻ, and perform the output prediction ࣳሺkሻ, 
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 ࣳሺkሻ = 	 ୡ࣪ ୅࣪X෡ሺkሻ + ୡ࣪ ୆࣪ȟ࣯ሺkሻ, (23) 

where ୡ࣪ ∈ ℝሺ୒౯⋅୫⋅ୌ౦ሻ×ሺଶ⋅୒౯⋅୫⋅ୌ౦ሻ is the output prediction matrix, given by  

 ୡ࣪ = diagሺC,ڮCሻ = ൦C Ͳ ڮ ͲͲ C ڭ Ͳڭ ڭ ⋱ Ͳڭ Ͳ ڮ C൪ .		Also, ࣳሺkሻ = ൦ Yሺk + ͳ|kሻYሺk + ʹ|kሻڭYሺk + H୮|kሻ൪. (24) 

From the expression in (24), one can define the objective function of a CD-MPC problem, 

 min୼࣯ሺ୩ሻ||ࣳሺkሻ − ୲ࣳ୥୲||࣫భଶ + ||ȟ࣯ሺkሻ||࣫మଶ + ||࣯ሺkሻ − ࣯୲୥୲||࣫యଶ + ||ℱୠ࣯ሺkሻ||࣫రଶ . (25) 

୲ࣳ୥୲ 	= 	 [Y୲୥୲୘ , Y୲୥୲୘ , ڮ , Y୲୥୲୘ ]୘ defines the measurement targets over the prediction horizon H୮. 

Similarly, ࣯୲୥୲ = [U୲୥୲୘ , U୲୥୲୘ , ڮ , U୲୥୲୘ ]୘ defines the input actuator setpoint targets over the 

control horizon H୳. ሺ࣫ଵ, 	࣫ଶ, 	࣫ଷ, 	࣫ସሻ	are the diagonal weighting matrices. ࣫ଵ defines the 
relative importance of the individual quality measurements. 	࣫ଶ	defines the relative 
aggressiveness of the individual CD actuators. 	࣫ଷ	defines the relative deviation from the 
targets of the individual CD actuators. 	࣫ସ	defines the relative picketing penalty of the 
individual CD actuators. The matrix ℱୠ 	= 	diagሺFୠ, ڮ , Fୠ) is the augmented actuator 

bending matrix. The detailed definition of Fୠ will be covered in Section 4.2.2. || ∙ ||ℛ೔ଶ  is the 

square of weighted 2-norm, i.e., || ∙ ||ℛ೔ଶ = ሺ∙ሻ்ℛ௜ሺ∙ሻ. In general, ሺ࣫ଵ, 	࣫ଶ, 	࣫ଷ, 	࣫ସሻ	are used as the 

tuning parameters for CD-MPC. ࣯ሺkሻ is the future input prediction. It can be expressed by  

 
࣯ሺkሻ = ൦ Uሺk|kሻUሺk + ͳ|kሻڭUሺk + H୳ିଵሻ|kሻ൪=൦

IIڭI൪ด୍࣭Uሺk − ͳሻ+൦I Ͳ ڮ ͲI I ڭ Ͳڭ ڮ ⋱ Iڭ I I I ൪ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ࣭୮
ȟ࣯ሺkሻ, (26) 

where I ∈ ℝሺ∑ ୬ౠొ౫ౠసభ ሻ×ሺ∑ ୬ౠሻొ౫ౠసభ  is the identity matrix. Inserting (26) into (25) and replacing ࣯ሺkሻ 
by ȟ࣯ሺkሻ, the QP problem can be recast into 

 min୼࣯ሺ୩ሻ ଵଶȟ࣯୘ሺkሻΦȟ࣯ሺkሻ + φ୘ȟ࣯ሺkሻ, (27) 

where Φ is the Hessian matrix and φ is the gradient matrix. Both can be derived from the 
prediction matrices ( ୅࣪, ୆࣪, େ࣪ሻ and weighting matrices (࣫ଵ, ࣫ଶ, ࣫ଷ, ࣫ସሻ.	 Refer to (Fan 2003) 
for the detailed expressions of Φ and φ. 
By solving the QP problem in (27), one can derive the predicted optimal array ȟ࣯ሺkሻ. Only 
the first component of ȟ࣯ሺkሻ, i.e., ȟUሺkሻ, is sent to the real process and the rest are rejected. 
By repetition of this procedure, the optimal MV moves at any instant are derived for 
unconstrained CD-MPC problems.  

4.2.2 Constraints 
In Section 4.2.1 the CD-MPC controller is formulated as an unconstrained QP problem. In 
practice the new actuator setpoints given by the CD-MPC controller in (27) should always 
respect the actuator’s physical limits. In other words, the hard constraints on ȟ࣯ሺkሻ should 
be added into the problem in (27).  
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The CD actuator constraints include: 
• First and second order bend limits; 
• Average actuator setpoint maintenance; 
• Maximum actuator setpoints; 
• Minimum actuator setpoints; and  
• Maximum change of actuator setpoints between consecutive CD-MPC iterations.  

Of these five types of actuator constraints, most of them are very common for the typical MPC 
controllers, except for the bend limits which are special for papermaking CD processes. The 
first and second bend limits define the allowable first and second order difference between the 
adjacent actuator setpoints of the actuator beam. It typically applies to slice lips and induction 
heaters to prevent the actuator beams from being overly bent or locally over-heated. The 
bending matrix of the jth actuator beam, ܨ௕,௝ (j	 = ͳ,ڮ , N୳ሻ	can be defined by  

 
ێێێۏ−
ۑۑےɁଶ,୨Ɂଵ,୨ڭɁଵ,୨Ɂଶ,୨ۍێ

ېۑۑ
ถɀୠ,୨

൑ێێۏ
ͳ−ۍێێ ͳ Ͳ Ͳڮ ڮ ͲͲ.5 −ͳ Ͳ.5 Ͳ ڮ ͲͲ Ͳ.5 −ͳ Ͳ.5 ڮ Ͳڭ ڮ ڮ ڮ ⋱ Ͳڭ Ͳ ڮ Ͳ.5 −ͳ ͲͲ Ͳ ڮ Ͳ ͳ −ͳۑۑے

ېۑۑ
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥFୠ,୨ ێێۏ

ۍێ uଵ,୨uଶ,୨ڭu୬ౠିଵ,୨u୬ౠ,୨ ۑۑے
ېۑ

ᇣᇧᇤᇧᇥu୨
൑ێێێۏ
ۑۑےɁଶ,୨Ɂଵ,୨ڭɁଵ,୨Ɂଶ,୨ۍێ

ېۑۑ
ถɀୠ,୨

, (28) 

where Ɂଵ,୨ and Ɂଶ,୨ are the first order and the second order bend limit of the jth actuator beam u୨. ɀୠ and	ܨ௕,௝ define the bend limit vector and the bend limit matrix of the jth actuator u୨, 
respectively. The bend limit matrix ܨ௕,௝ is not only part of the constraints, but also the 
objective function in (27). In (27),	ℱୠ 	= 	diagሺFୠ, ڮ , Fୠሻand Fୠ 	= 	diagሺFୠ,ଵ, ڮ , Fୠ,୒౫).  

The individual bend limit constraint on the jth actuator beam u୨ in (28) can be extended to 

the overall bend limit matrix Fୠ for the augmented actuator setpoint array U, i.e.,  

 ൤ Fୠ−Fୠ൨ U ൑ ቂɀୠɀୠቃ (29) 

where ɀୠ is the overall bend limit vector, and ɀୠ = [ɀୠ,ଵ୘ , ڮ ɀୠ,୒౫୘ ]୘.   

Similar to the bend limits, other types of actuator physical constraints can be formulated as 
the matrix inequalities,   

 

ێێۏ
ۍێێ
F୫ୟ୶−F୫୧୬Fୟ୴୥−Fୟ୴୥F∆୙−F∆୙ ۑۑے

ېۑۑ U ൑ ێێۏ
ۍێێ
ɀ୫ୟ୶ɀ୫୧୬ɀୟ୴୥ɀୟ୴୥ɀ∆୙ɀ∆୙ ۑۑے

 (30) ,ېۑۑ

where the subscripts “max”, “min”, “avg”, and “∆U" stand for the maximum, minimum, 
average limit, and maximum setpoint changes between two consecutive CD-MPC iterations 
of the augmented actuator setpoint array, U. It is straightforward to derive the expressions 
of F୫ୟ୶, F୫୧୬, Fୟ୴୥, F∆௎. Therefore the detailed discussion is omitted.  

From (29) and (30), one can see that the constraints on the augmented actuator setpoint 
array U can be represented by a linear matrix inequality, i.e., 

 FU ൑ ɀ, (31) 
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where F and ɀ are constant coefficients used to combine the inequalities in  (29) and (30) 
together. 
(26) is inserted into (31). The constraint in (31) is then added to the objective function in (27). 
Finally the CD-MPC controller is formulated as a constrained QP problem, 

 subject	to, min୼࣯ሺ୩ሻ ଵଶȟ࣯୘ሺkሻΦȟ࣯ሺkሻ + ϕ୘ȟ࣯ሺkሻ
ℱሺ ୍࣭Uሺk − ͳሻ + ࣭୮ȟ࣯ሺkሻሻ ൑ Ȟ , (32) 

where ℱ = diagሺF, F,ڮ , Fሻ and Ȟ = diagሺɀ, ɀ,ڮ , ɀሻ. By solving the QP problem in (32), the 
optimal actuator move at instant k can be achieved. 

4.2.3 CD-MPC tuning 
Figure 19 illustrates the implementation of the CD-MPC controller. First, the process model 
is identified offline from input/output process data. Then the CD-MPC tuning algorithm is 
executed to generate optimal tuning parameters. Subsequently these tuning parameters are 
deployed to the CD-MPC controller. The controller generates the optimal actuator setpoints 
continuously based on the feedback measurements.  
 

 

Fig. 19. The implementation of the CD-MPC controller  

The objective for CD-MPC tuning algorithm in Figure 19 is to determine the values 
of	࣫ଵ, 	࣫ଶ, 	࣫ଷ, and	࣫ସ in (25). It has been proven that	࣫ଵ	defines the relative importance of 
quality measurements,		࣫ଶ defines the dynamic characteristics of the closed-loop CD-MPC 
system, and	࣫ଷ	and	࣫ସ	define the spatial frequency characteristics of the closed-loop CD-
MPC system.	࣫ଷ	is for the high spatial frequency behaviours and 	࣫ସ	is for the low spatial 
frequencies (Fan 2004).  
Strictly speaking, the CD-MPC tuning problem requires analyzing the robust stability of a 
closed-loop control system with nonlinear optimization. An analytic solution to the QP 
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problem in (32) is the prerequisite for the CD-MPC tuning algorithm. However, in practice it 
is very challenging; almost impossible to derive the explicit solution to (32) due to the large 
size of CD-MPC problems. A novel two-dimensional loop shaping approach is proposed in 
(Fan 2004) to overcome limitations for large scaled MPC systems. The algorithm consists of 
four steps: 
Step 1. Ignore the inequality constraint in (32) such that the closed-loop system given by 

(27) is linear. 
Step 2. Compute the closed-loop transfer function of the unconstrained CD-MPC system 

given by (27). 
Step 3. By performing two-dimensional loop shaping, optimize the weighting matrices to 

get the best trade off between the performance and robustness of the unconstrained 
CD-MPC system. 

Step 4. Finally, re-introduce the constraint in (32) for implementation.  
Figure 20 shows the closed-loop diagram of the unconstrained CD-MPC system with 
unstructured model uncertainties. The derivation of the pre-filtering matrix K୰ and feedback 
controller K is standard and can be found in (Fan 2003).  
 

 

Fig. 20. Closed-loop diagram of unconstrained CD-MPC system with unstructured model 
uncertainties 

From the small gain theory (Khalil 2001), the linear closed-loop system in Figure 20 is 
robustly stable if the closed-loop in (32) is nominally stable and,  

 ||G୳ୢሺzሻ ᇞୋ ሺzሻ||ஶ ൏ ͳ ⇐ σഥሺG୳ୢሺe୨னሻሻ ൏ ଵ஢ഥሺᇞృሺୣౠಡሻሻ , ∀ɘ. (33) 

Here G୳ୢሺzሻ is the control sensitivity function which defines the linear transfer function from 
the output disturbance D(k) to the actuator setpoint U(k),  

 G୳ୢሺzሻ = Kሺzሻ[I − GሺzሻKሺzሻ]ିଵ. (34) 

The sensitivity function of the system in Figure 20 defines the linear transfer function from 
the output disturbance D(k) to the output Y(k), G୷ୢሺzሻ = [I − GሺzሻKሺzሻ]ିଵ. 

By properly choosing the weighting matrices ࣫ଵ to	࣫ସ, both the control sensitivity function G୳ୢሺzሻ and the sensitivity function G୷ୢሺzሻ can be guaranteed stable, and also the small gain 

condition in (33) can be satisfied. The two-dimensional loop shaping approach uses G୳ୢሺzሻ 
and G୷ୢሺzሻ to analyze the behaviour of the closed-loop system in Figure 20.  

It has been shown that both G୳ୢሺzሻ and G୷ୢሺzሻ can be approximated as rectangular circulant 

matrices. One important property of circulant matrixes is that the circulant matrix can be 
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block-diagonalized by left- and right-multiplying Fourier matrices. Fourier matrices 

multiplication is equivalent to performing the standard discrete Fourier transformation. 

Therefore, the two-dimensional frequency representation of G୳ୢሺzሻ and G୷ୢሺzሻ can be 

obtained by, 

 gො୳ୢሺɋ, e୨னሻ = F୬G୳ୢሺe୨னሻF୫ୌ , and		gො୷ୢሺɋ, e୨னሻ = F୫G୷ୢሺe୨னሻF୫ୌ , (35) 

where ɋ represents the spatial frequency. F୫ and F୬ are m-points and n-points Fourier 
matrices, respectively. The detailed definitions of Fourier matrices can be found in (Fan 

2004). The two-dimensional frequent representation gො୳ୢሺɋ, e୨னሻ and gො୷ୢሺɋ, e୨னሻ are block 

diagonal matrices. The singular values of gො୳ୢሺɋ, e୨னሻ and gො୷ୢሺɋ, e୨னሻ are directly linked to 

the spatial frequencies.  

Instead of tune gො୳ୢሺɋ, e୨னሻ and gො୷ୢሺɋ, e୨னሻ in full ɋ	and	ɘ frequency ranges, two dimensional 

loop shaping approach decouples the spatial tuning and dynamic tuning by firstly tuning 
the controller at zero spatial frequency, i.e., setting ɋ = Ͳ, and then tuning the controller at 
zero dynamic frequency, i.e., setting ɘ = Ͳ. The theoretical proof of this strategy can be 
founded in (Fan 2004).  
From spatial tuning, the value of the weighting matrices		࣫ଷ	and	࣫ସ can be determined, and 
from the dynamic tuning, the value of 	࣫ଶ are determined. 	࣫ଵ, as mentioned above, defines 
the relative importance of quality measurements and its value is defined by a CD-MPC user.  
In practice, the process gain matrix P୧୨ in (16) is ill-conditioned. Similar to MD-MPC tuning, 

the scaling matrices have to be applied before tuning the controller. A scaling approach 
discussed in (Lu 1996) is used by CD-MPC to reduce the condition number of the gain 
matrices.   

4.2.4 Fast QP solver 
The technical challenge of the CD-MPC optimization is how to solve the problem in (32) 
efficiently and accurately. The typical scanning rate of the paper machine is 10 - 30 seconds.  
Also considering the time cost of software implementation and data acquisition, the 
computation time of the problem in (32) is typically limited to 5 to 10 seconds.  
Different optimization techniques have been developed to solve QP problems efficiently, 
such as the active set method, interior point method, QR factorization, etc. This section 
presents a fast QP solver, called QPSchur, which is specifically designed to solve a large 
scaled CD-MPC problem. QPSchur is a dual space algorithm, where an unconstrained 
optimal solution is found first and violated constraints are added until the solution is 
feasible (Bartlett 2002).  
Let’s consider the Lagrangian of the constrained QP in (32) 

 Λሺȟ࣯, ɉሻ = ଵଶȟ࣯୘ሺkሻΦȟ࣯ሺkሻ + ϕ୘ȟ࣯ሺkሻ + ɉ୘ሺɌ୘ȟ࣯ሺkሻ − ɗሻ, (36) 

where Ɍ= ࣭୮୘	ℱ୘ and ɗ = Ȟ − ℱ ୍࣭Uሺk − ͳሻ. In (36), ȟ࣯ሺkሻ is called the primary variable and ɉ ൑ Ͳ is called as the dual variable (also known as the Lagrangian variable).  
At the starting point, QPSchur ignores all the constraints in (32) and solves unconstrained 
QP problem. This is equivalent to set the dual variable ɉ = Ͳ. By this means, the initial 
optimal solution ȟ࣯∗ሺkሻ is determined,  

 ȟ࣯∗ሺkሻ 	= −Φିଵϕ. (37) 
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If ȟ࣯∗ሺkሻ satisfies all the inequality constraints, i.e., Ɍ୘ȟ࣯∗ሺkሻ ൑ ɗ, then ȟ࣯∗ሺkሻ is the 

optimal solution, i.e. ȟ࣯୭ሺkሻ = 	ȟ࣯∗ሺkሻ. The first elements of ȟU୭ሺkሻ are sent to the real 

process, and the CD-MPC optimization stops the search iteration.  

If ȟ࣯∗ሺkሻ violates one or more of the inequality constraints in (32), all the violation 

inequalities are noted, such that  

 Ɍୱ୳ୠ୘ ȟ࣯∗ሺkሻ ൒ ɗୱ୳ୠ, (38) 

where ሺɌୱ୳ୠ୘ , ɗୱ୳ୠሻ is the violating subset of the inequality constraints in (32), and called the 

active set matrix and the active set vector, respectively. The Lagrangian in (36) is redefined 

by using ሺɌୱ୳ୠ୘ , ɗୱ୳ୠሻ. The Karush-Kuhn-Tucker (KKT) condition of the updated Lagrangian 

is,  

 ቈ Φ Ɍୱ୳ୠɌୱ୳ୠ୘ Ξ ቉ ൤ȟ࣯ሺkሻɉୱ୳ୠ ൨ = ൤ −ϕɗୱ୳ୠ൨, (39) 

Here Ξ = Ͳ for the first searching iteration. Since Φ is non-singular (refer to Fan 2003), the 

problem in (39) can be solved by using Gaussian elimination. The Schur complement of the 

block Ξ is given by 

 	ॺ = Ξ −	Ɍୱ୳ୠ୘ ΦିଵɌୱ୳ୠ. (40) 

The Schur complement theorem guarantees that ॺ is non-singular if the Hessian matrix Φ is 
non-singular. From ॺ, (39) can be solved by 

 

ɉୱ୳ୠ = ॺିଵሺɗୱ୳ୠ + Ɍୱ୳ୠ୘ Φିଵϕሻ= ॺିଵሺɗୱ୳ୠ + Ɍୱ୳ୠ୘ ȟ࣯∗ሺkሻሻȟ࣯ሺkሻ = 	Φିଵሺ−ϕ − Ɍୱ୳ୠɉୱ୳ୠሻ  . (41) 

The inequality constraints in (32) are re-evaluated, and the new active constraints (violated 

constraints) and the positive dual variables inequalities are added into the subset pair ሺɌୱ୳ୠ୘ , ɗୱ୳ୠሻ. The KKT condition of (39) is updated to derive  

 ቈ Φ Ɍመୱ୳ୠɌመୱ୳ୠ୘ Ξ෠ ቉ ൤ȟ࣯ሺkሻɉ෠ୱ୳ୠ ൨ = ൤ −ϕɗ෡ୱ୳ୠ൨, (42) 

where  

 Ɍመୱ୳ୠ = [Ɍୱ୳ୠ, Ɍ୬ୣ୵], 	Ξ෡ = ൤ Ξ ρρ୘ ɖ൨ , ɉ෠ୱ୳ୠ = ൤ɉୱ୳ୠɉ୬ୣ୵൨ , and	ɗ෡ୱ୳ୠ = ൤ɗୱ୳ୠɗ୬ୣ୵൨. (43) 

In the same fashion, the Schur complement of the block Ξ෠ can be represented by, 

 

	ॺ෡ = Ξ෠ −	Ɍመୱ୳ୠ୘ ΦିଵɌመୱ୳ୠ= ൤ Ξ ρρ୘ ɖ൨ − ቈɌୱ୳ୠ୘Ɍ୬ୣ୵୘ ቉Φିଵ[Ɍୱ୳ୠ, Ɍ୬ୣ୵]= ቈ ॺ ρ − Ɍୱ୳ୠ୘ ΦିଵɌ୬ୣ୵ρ୘ − Ɍ୬ୣ୵ΦିଵɌୱ୳ୠ୘ ɖ − Ɍ୬ୣ୵୘ ΦିଵɌ୬ୣ୵቉
 . (44) 
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From (44), the new Schur complement ॺ෡ can be easily derived from ॺ. The Schur 
complement update requires only multiplication with Φିଵ that is calculated in the initial 
search step and stored for reuse. This feature makes the SchurQP much faster than a 
standard QP solver. Removing the non-active constraints (zero dual variables) of each 

search step is achieved easily: the columns of the Schur complement ॺ෡ corresponding to the 
non-active constraints is removed before pursuing the next search iteration.    
At the current search iteration, if all the inequality constraints in (32) and the sign of dual 
variables are satisfied, the solution to (42) will be the final optimal solution of the CD-MPC 
controller, i.e., 

 
	ɉ෡ୱ୳ୠ = ॺ෡ିଵሺɗ෡ୱ୳ୠ + Ɍመୱ୳ୠ୘ ȟ࣯∗ሺkሻሻȟ࣯୭ሺkሻ = 	Φିଵሺ−ϕ − Ɍመୱ୳ୠɉ෠ୱ୳ୠሻ   (45) ȟU୭ሺkሻ (the first component of the optimal solution ȟ࣯୭ሺkሻ) is sent to the real process, and a 

new constrained QP problem is formed at the end of the next scan.   

4.3 Mill implementation results 
CD-MPC has been implemented in Honeywell’s quality control system (QCS) and widely 
deployed on different types of paper mills including fine paper, newsprint, liner board, and 
tissue, etc. In this chapter, a CD-MPC application for a fine paper machine will be used as an 
example to demonstrate the effectiveness of the CD-MPC controller.  

4.3.1 Paper machine configuration 
The paper machine discussed here is a fine paper machine, equipped with three CD actuator 
beams and two measurement scanner frames. The CD actuators include headbox slice lip (63 
zones), infrared dryer (40 zones), and induction heater (79 zones). The two scanner frames 
hold the paper quality gauges for dry weight, moisture, and caliper. Each measurement 
profile includes 250 measurement points with the measurement interval equal to 25.4 mm 
(CD bin width). The production range of this machine is from 26 gsm (gram per square 
meter) to 85 gsm. The machine speed varies from 2650 feet per minute (13.5 meter/second) 
to 3100 feet per minute (15.7 meter/second). The scanning rates of the two scanners are 32 
and 34 seconds, respectively. In order to capture the nonlinearity of the process, three model 
groups are setup to represent the products of light weight paper, medium weight paper, 
and heavy weight paper, respectively. All three CD actuator beams and three quality 
measurement profiles are included into the CD-MPC controller. In this section, the medium 
weight scenario is used to illustrate the control performance of the CD-MPC controller.  

4.3.2 Multiple actuator beams and multiple quality measurements model 
Figure 21 shows the two-dimensional process models from the slice lip actuators (Autoslice) 
to the measurements of dry weight, moisture and caliper profiles. The system identification 
algorithm discussed in Section 4.1.2 is used to derive these models. The plots on the left are 
the spatial responses, and the plots on the right are the dynamic responses. The purple 
profiles are the average of the real process data, and the white profiles are the estimated 
profiles based on identified process model. It can be seen from comparison to the model for 
Autoslice to caliper that the models for Autoslice to dry weight and to moisture have high 
model fit. In general, the bump test with a larger bump magnitude and longer bump 
duration will lead to a more accurate process model (better model fit). However, the open-
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loop bump tests degrade the quality of the finished product and excessive bump tests are 
always prevented. The criterion of the CD model identification is to provide a process model 
accurate enough for a CD-MPC controller.  
From the model identification results in Figure 21, we can see the strong input-output 
coupling properties of papermaking CD processes. The response width from slice lip to dry 
weight equals to 226.8mm. This is equivalent to 2.3 times the zone width of the slice lip CD 
actuator. Therefore, each individual zone of the slice lip affects not only its own spatial zone 
but also adjacent zones. As we discussed above, a CD-MPC process has two-fold process 
couplings: one is the coupling between different actuator beams; and the other is the 
coupling between the different zones of the same actuator beams. Considering these strong 
coupling characteristics, MPC strategy is a good candidate for CD control design.   
  

 

Fig. 21. The multiple CD actuator beams and quality measurement model display  

4.3.3 Control performance of the CD-MPC controller 
Table 3 summarizes the performance comparison between the CD-MPC controller and the 

traditional single-input-single-output (SISO) CD controller (a Dahlin controller). Although 

traditional CD control is still quite common in paper mills, CD-MPC is becoming more and 

more popular. The significant performance improvement can be observed after switching 

CD control into multivariable CD-MPC.  
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Paper Properties 
Traditional CD

Control ʹσ Multivariable CD-MPC 
Control ʹσ Improvement (%) 

Dry Weight (gsm) 0.40 0.24 40% 
Moisture (%) 0.31 0.19 39% 
Caliper (mil) 0.032 0.025 22% 

Table 3. Traditional CD versus CD-MPC 

Figures 22–24 provide a visual performance comparison for the different quality 
measurements in both spatial domain and spatial frequency domain. It can be seen that the 
peak-to-peak values (the proxy of	ʹσେୈ indexes) are smaller when using the CD-MPC 
controller. Also the controllable disturbances (the disturbances with the spatial frequency 
less than Xc) are effectively rejected by the CD-MPC controller. Here X͵db represents the 
spatial frequency where the spatial process power drops to 50% of the maximum spatial 
power over the full spatial frequency band, Xc represents the frequency where the spatial 
power drops to 4% of the maximum power, and ͳ/ʹXa represents the Nyquist frequency. 
 

 

Fig. 22. Performance comparison of dry weight profiles  

 

 

Fig. 23. Performance comparison of moisture profiles  

TC MPC 
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Fig. 24. Performance comparison of caliper profiles  

5. Conclusion and perspective 

We have seen that MPC has a number of applications in paper machine control. MPC 

performs basic MD control, and allows for enhanced MD-MPC control that incorporates 

economic optimization, and orchestrates transitions between paper grades. MPC can also be 

used for CD controls, using a carefully chosen solution technique to handle the large scale 

nature of the problem within the required time scale.  

While MD-MPC provides robust and responsive control, and also easily scales to demanding 

paper machine applications with larger numbers of CV’s and MV’s. The MD-MPC formulation 

may also be augmented with an economic objective function so that paper machine 

operational efficiency can be optimized (maximum production, minimum energy costs, 

maximizing filler to fibre ratio etc.) while all quality variables continue to be regulated.  

In the future as new online sensors, such as the extensional stiffness sensor, gain acceptance 

additional quality variables can be adding to MD-MPC. In the case of extensional stiffness, 

this online strength measurement could allow economic optimization to minimize fibre use 

while maintaining paper strength.  

The papermaking CD process is a large scaled two-dimensional system. It shows strong 

input-output coupling properties. MPC is a standard technique in controlling multivariable 

systems, and has become a standard advanced control strategy in papermaking systems. 

However, there are several barriers for the acceptance of CD-MPC by mill personnel: one is 

the novel multivariable control concept and the other is the non-trivial tuning technique. 

Commercial offline tools, such as IntelliMap, facilitate the acceptance of CD-MPC by 

providing automatic model identification and easy-to-use offline CD-MPC tuning. Such 

packages enable the CD-MPC users to review the predicted CD steady states before they 

update their CD control to CD-MPC (Fan et al. 2005). CD-MPC has been successfully 

deployed in over 70 paper mills and applied to practically all types of existing CD processes 

from fine paper, to board, to newsprints, to tissues, etc. Without doubt, CD-MPC will have a 

significant impact in papermaking CD control applications over the next decade. 

CD-MPC offers the significant capability to include multiple CD actuator arrays and 
multiple CD measurement arrays into one single CD controller. The next generation CD-

TC MPC 
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MPC applications are most likely to include non-standard CD measurement, such as fibre 
orientation, gloss, web formation, and web porosity into the existing CD-MPC framework. 
A successful CD-MPC application for fibre orientation control has been reported in (Chu et 
al. 2010a). However there still exist technical challenges of controlling non-standard paper 
properties by using CD-MPC; for example, the derivation of accurate parametric models 
and the effectiveness of CD-MPC tuners for non-standard CD measurements.  
In the current CD-MPC framework, system identification and controller design are clearly 
separated. The efforts towards integrating system identification and controller design may 
bring significant benefits to CD control. Online CD model identification has drawn 
extensive attention in both academia and industries. A closed-loop CD alignment 
identification algorithm is presented in (Chu et al. 2010b). Closed loop identification of the 
entire CD model remains an open problem.   
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