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1. Introduction

In process industry, there exist many systems which can be approximated by block-oriented
nonlinear models, including Hammerstein and Wiener models. Hammerstein model consists
of the cascade connection of a static (memoryless) nonlinear block followed by a dynamic
linear block while Wiener model the reverse. Moreover, these systems are usually subjected
to input constraints, which makes the control of block-oriented nonlinearities challenging.
In this chapter, a Multi-Channel Identification Algorithm (MCIA) for Hammerstein systems is
first proposed, in which the coefficient parameters are identified by least squares estimation
(LSE) together with singular value decomposition (SVD) technique. Compared with
traditional single-channel identification algorithms, the present method can enhance the
approximation accuracy remarkably, and provide consistent estimates even in the presence
of colored output noises under relatively weak assumptions on the persistent excitation (PE)
condition of the inputs.
Then, to facilitate the following controller design, the aforementioned MCIA is converted
into a Two Stage Single-Channel Identification Algorithm (TS-SCIA), which preserves most

of the advantages of MCIA. With this TS-SCIA as the inner model, a dual-mode Nonlinear
Model Predictive Control (NMPC) algorithm is developed. In detail, over a finite horizon,
an optimal input profile found by solving a open-loop optimal control problem drives the
nonlinear system state into the terminal invariant set, afterwards a linear output-feedback
controller steer the state to the origin asymptotically. In contrast to the traditional algorithms,
the present method has a maximal stable region, a better steady-state performance and a lower
computational complexity. Finally, a case study on a heat exchanger is presented to show the
efficiency of both the identification and the control algorithms.
On the other hand, for Wiener systems with input constraints, since most of the existing
control algorithms cannot guarantee to have sufficiently large regions of asymptotic stability,
we adopted a subspace method to separate the nonlinear and linear blocks in a constrained
multi-input/multi-output (MIMO) Wiener system and then developed a novel dual-mode
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2 Nonlinear Model Predictive Control

nonlinear model predictive control algorithm to maximize the region of the asymptotic
stability. Simulation results are presented to demonstrate the superiority of this new control
algorithm.
In sum, this chapter developed some new NMPC methods for block-oriented nonlinearities
with input constraints. Meanwhile, these approaches can effectively enlarge the closed-loop
stable area so as to extend the feasible working region and improve the reliability of the control
systems in real process industrial applications.

2. Model Predictive Control for Hammerstein systems with input constraints

2.1 Introduction

In industrial processes (1), most dynamical systems can be better represented by nonlinear
models, which are able to describe the systems over large operation ranges, rather than by
linear ones that are only able to approximate the systems around given operation points (23;
48). One of the most frequently studied classes of nonlinear models is the Hammerstein model
(17; 48), which consists of the cascade connection of a static (memoryless) nonlinear block
followed by a dynamic linear block. Under certain considerations such as fading memory
assumption (10) the Hammerstein approximation could be a good representation. Thus,
this model structure has been successfully applied to chemical processes (heat exchanger
(17), distillation (5; 17; 35)), biological processes (20; 30) signal processing (3; 55), and
communications (3; 25)). In recent years, identification and control of Hammerstein systems
has become one of the most needed and yet very difficult tasks in the field of the process
industry.
In MPC (Model Predictive Control) framework (20; 32), the input is calculated by on-line
minimization of a performance index based on model predictions. It is well known that the
control quality relies on the accuracy of the model. In recent years, extensive efforts were

devoted to modelling of Hammerstein nonlinearities (2; 17; 23; 26; 27; 31). For example,
Bai (2) studied SISO (Single Input/ Single Output) systems subject to external white noise.
Gómez and Baeyens (23) designed a non-iterative identification with guaranteed consistent
estimation even in the present of coloured output noise. Both of their works use only one
channel to identify the system, therefore, owing to the SVD (singular value decomposition)
nature of their methods, the identification errors usually can not be minimized. A basic reason
is that the error is determined by the second largest singular value (for SISO system) or the st
largest singular value (for MIMO system with inputs) of the estimated coefficients matrix.
For a SISO system, if the sampling set is not big enough or the PE (persistent excitation)
conditions are not fulfilled, the second largest singular value can not be neglected, making the
identification accuracy unsatisfactory or even unacceptable. On the other hand, the research
on the control of Hammerstein systems is still on the midway so far. Most of the existent
control algorithms have some of the following disadvantages

• Reliance on prior knowledge;

• Insufficiently large closed-loop stable regions;

• Limited capacity of handling input constraints.

In detail, Haddad and Chellaboina (28) suggested a design that can guarantee global
asymptotic closed-loop stability for nonlinear passive systems by embedding a nonlinear
dynamic compensator with a suitable input nonlinearity, which requires the memoryless
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Model Predictive Control for Block-oriented Nonlinear Systems with Input Constraints 3

nonlinear block to be partially known or measurable without considering input constraints.
Patwardhan et al. (51) used a PLS (Partial Least Square) framework to decompose the
modelling problem into a series of univariate problems in the latent subspace while preserving
optimality of the input constraints. In this way, they can extend the SISO formulation into
a constrained MIMO scenario. In this approach, however, the computational complexity is
prohibitive, and the reliance on prior knowledge can not be eliminated. Knohl et al. (40)
slightly alleviated this reliance by an ANN (Artificial Neural Network) inverse compensation,
which makes the control scheme more flexible, but its stable region is still small. Fruzzetti
et al. (18) and Zhu et al. (71) developed GPC (Generalized Predictive Control) and MPC
algorithms respectively by taking input constraints into account. These schemes still can
not ensure a large stable region in general, and require prior knowledge of the real plant
such as order, structure, partial coefficients, etc. Bolemen et al. (9) extended their own
work (8) which preserves the convex property of the optimization problem, but does not
consider input constraints. In order to enlarge the asymptotically stable region for constrained
nonlinear systems, Chen and Allgöwer (14) developed a quasi-infinite horizon Nonlinear

Model Predictive Control (NMPC) algorithms based on a dual-mode (or two-step) technique,
which has opened a new avenue in this fascinating field. Among the various following
works of Chen and Allgöwer’s work (14), there are three important investigations made by
Kouvartakis et al. (41) Lin et al. (44) and Ding et al. (16). More precisely, Kouvartakis
et al. (41) proposed a new approach that deployed a fixed state-feedback law with the
assistance of extra degrees of freedom through the use of perturbations, which led to a
significant reduction in computational cost. More generally, for linear systems with actuator
rate constraint, Lin et al. (44) designed both state-feedback and output-feedback control laws
that achieve semi-global asymptotic stabilization based on the assumption of detectability
of the system. For input saturated Hammerstein systems, Ding et al. (16) designed a
two-step MPC by solving nonlinear algebraic equation group and deconstraint. The stable
region is enlarged and its domain of attraction is designed applying semi-global stabilization
techniques. Unfortunately, this nice work is still based on the measurability of the state of the
linear block.
Based on the above analysis, two important tasks are formulated as follows:

• Task one: Develop a better identification algorithm to separate the nonlinear/linear blocks
of the Hammerstein system more effectively so that some mature linear control theories
can be used to facilitate the nonlinear control algorithm design.

• Task two: Develop a more efficient control algorithm for constrained Hammerstein systems.

Bearing these tasks in mind, we propose a NMPC algorithm based on a Two Stage
Single-Channel Identification Algorithm (TS-SCIA) (68). More precisely:

• A Multi-Channel Identification Algorithm (MCIA) is developed for Hammerstein systems
which eliminates requirement of prior knowledge about the plant and minimizes the
identification errors. The MCIA is then converted to a TS-SCIA thereby facilitating the
controller design. A sufficient condition for the convergence and approximation capability
is given for the new algorithm.

• A dual-mode NMPC algorithm is developed by taking the above mentioned Two Stage
Single-Channel Identification Model (TS-SCIM) as the internal model. The closed-loop
stable region is maximized by using ellipsoidal invariant set theory together with linear

matrix inequality (LMI) techniques.
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4 Nonlinear Model Predictive Control

2.2 Model identification

The key problem on this issue is how to efficiently separate the coefficients of the linear
and nonlinear blocks, namely nonlinear/linear separation. A number of approaches are
previously proposed: these include the singular value decomposition (SVD) combined with
least square estimation (LSE) (23), iterative finite response (FIR) method (45), separable LSE
(63), Hunter-Korenberg iteration (35) , correlation analysis (4) and so on. Among them,
SVD-LSE approach is one of the most extensively studied and most widely applied methods.
In this approach, the system output y(t) is expanded as

y(t) = G(z−1)N (u(t)) + ξ(t)

= ∑
N
k=1 ckxk(z

−1) ∑
r
i=1 aigi(u(t)) + ξ(t),

(1)

where u(t) ∈ D ⊂ R
n, v(t) = N (u(t)) ∈ R

n, y(t) ∈ R
m and ξ(t) ∈ R

m are the input,
intermediate variable, output and external noise vector at time t, respectively. External noise
ξ(t) can be white or colored noise sequence induced by measurement or external disturbances,
and input signal u(t) can be random or stationary. G(z−1) and N (·) denote the linear and
nonlinear blocks expanded by suitable orthonormal and nonlinear bases xk(z

−1) and gi(·),

respectively. The sequences
{

ck ∈ R
m×n

}N
k=1 and

{
ai ∈ R

n×n
}r

i=1 are the coefficients of the

linear and nonlinear blocks, respectively, and z−1 is the one-step backward shifting operator,
i.e. z−1u(t) = u(t − 1). The state xk(z

−1) could be Jacobi series [13], spline functional series
(? ), orthonormal functional series (OFS, including Laguerre series (19; 60; 66; 67; 69), Kautz
series (19; 33) and so on) or some others.
Actually, in recent years, extensive efforts (23) were devoted to this kind of SVD-LSE
approaches. For example, Bai (2) studied SISO (Single Input/ Single Output) systems subject
to external white noise. Gómez and Baeyens (23) designed a non-iterative identification with
guaranteed consistent estimation even in the present of colored output noise. Both of their

works use merely one channel to identify the system, therefore, owing to the SVD nature of
their methods, the identification errors usually can not be minimized. A basic reason is that,
for the Hammerstein system (1), the error is determined by the (n + 1)th largest singular
value the estimated coefficients matrix. If the sampling set is not big enough or the PE
(persistent excitation) conditions are not fulfilled, the (n + 1)th largest singular value can not
be neglected, making the identification accuracy unsatisfactory or unacceptable, especially
for small numbers of truncation lengths of the nonlinear/linear basis series, i.e. r and N (see
Eq. (1)). In brief, it is an urgent task to develop a better identification algorithm to separate
the nonlinear/linear blocks of the Hammerstein system more effectively.
In this section, we argue that the single-channel separation is a bottleneck to better modeling
accuracy, and adding more identification channels can effectively enhance the performance,
for they have the capability to compensate the residuals of the single-channel nonlinear/linear
separation.
Fig. 1(a) shows the implementary details on a single identification channel of the present
modeling method. First, system input u(t) is fed into parallel weighted nonlinear bases

to produce the intermediate variable v(t). According to Weierstrass Theorem (42) (every
continuous function defined on a finite region can be uniformly approximated as closely as
desired by a polynomial function), the bases are generally chosen as polynomial bases. Then
v(t) is injected into the linear OFS filter, through which the filter output sequence can be
yielded.
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Model Predictive Control for Block-oriented Nonlinear Systems with Input Constraints 5

(a) (b)

Fig. 1. (Color online) (a): Implementary details of each modeling channel; (b): Multi-channel
identification

Since {xk(t)}
∞
k=1 forms a complete orthonormal set in functional space L2(R

+) (33; 66–68),

each stable linear system can be approximately represented as h(t) = ∑
N
k=1 ck ϕk(t) , where

{ck}
N
k=1 are the coefficients of the linear block, the Laguerre function ϕk(t) is given in (33; 66),

and the kth order filter output is calculated by xk(t) =
∫ ∞

0 ϕk(τ)v(t − τ)dτ . To get the OFS
filter output sequence, one should pre-calculate all the OFS according to the state equation
x(t + 1) = Ax(t) + Bv(t), where A and B are pre-optimized matrices (33; 66). As shown in
Fig. 1, the first-order filters is the Laguerre series, in which

G0(z
−1) = z−1

√

1 − p2/(1 − z−1 p),
G1(z

−1) = (z−1 − p)/(1 − z−1 p),
(2)

where p is the filter pole. The second-order OFS is the Kautz Series, in which G0(z
−1) and

G1(z
−1) are the second order OFS transfer functions. Analogically, Heuberger et al. (33)

introduced the higher-order OFS models. As the order increases, OFS model can handle
more complex dynamics. Finally, the model is obtained by synthesizing the OFS filter output
sequence and their corresponding coefficients according to ym(t) = ∑

N
k=1 ckxk(t) which leads

to Eq. (2). Consequently, considering the S-point data set suffered by external noise sequence

{ξ(t)}t=1,··· ,S , Eq. (1) can be rewritten in a linear regressor form as

YS = ΦT
S θ + ΥS, (3)

with

YS � [y(1), · · · , y(S)]T ,

ΥS � [ξ(1), · · · , ξ(S)]T ,

θ � [c1a1, · · · , c1ar, · · · , cN a1, · · · , cN ar ]
T ,

ΦS � [φ(1), · · · , φ(S)]T ,
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6 Nonlinear Model Predictive Control

and
φ(t) �

[
x1(z

−1)gT
1 (u(t)), · · · , x1(z

−1)gT
r (u(t)), · · · ,

xN(z−1)gT
1 (u(t)), · · · , xN(z−1)gT

r (u(t))
]T

,
(4)

where the superscript ’T’ means transpose. Note that in real applications, the orthonormal
basis xk(z

−1)gT
i (u(t)) (k = 1, · · · , N; i = 1, · · · , r) and the system output y(t) in Eq. (1)

are calculated according to the state-space equations in (62; 66; 67). As shown in Fig. 1(a),

kernel matrix ΦS is obtained by carrying out nonlinear bases and OFS operations on the input
sequence, and θ is the coefficient vector of ΦS. Then, provided the indicated inverse exists, it
is well known that the LSE θ̂ of minimizing the prediction errors εs = YS − ΦT

S θ is calculated
by (46)

θ̂ � (ΦSΦT
S )

−1ΦSYS. (5)

Define Θac �
{

aT
i cT

j

}

1≤i≤r; 1≤j≤N
= acT with a � [a1, · · · , ar ]

T and c � [cT
1 , · · · , cT

N ]T, it

can be seen that θ is the block column matrix obtained by stacking the block columns of Θac

on the top one by one. Now, the problem is how to separate the nonlinear/linear coefficient
parameter matrices a and c from the LSE Θ̂ac of Θac . It is clear that feasible estimates â and ĉ
are the solutions of the optimization problem

(â, ĉ) = arg mina,c

∥
∥Θ̂ac − acT

∥
∥

2

2 . (6)

This problem can be solved by the standard SVD (22) with the prerequisite ‖ai‖2 = 1 (i =
1, · · · , r). However, bearing the spectral nature of SVD in mind, one can easily find that the

closest estimates of {a, c} are not a single pair {â, ĉ} but a series of pairs
{

â〈j〉, ĉ〈j〉
}η

j=1
, which

solves the optimization problem

(â〈j〉, ĉ〈j〉)
η
j=1 = arg mina〈j〉,c〈j〉

∥
∥
∥Θ̂ac − ∑

η
j=1 a〈j〉(c〈j〉)T

∥
∥
∥

2

2
. (7)

From now on, the pair
{

â〈j〉, ĉ〈j〉
}

is defined as the jth identification channel, with j and

η denoting the sequence index and number of the identification channels, respectively.
Therefore, in order to separate the nonlinear/linear blocks more effectively, more channels
should be used to compensate the separation residuals of the single-channel method (23). To
explain it more clearly, we will give a lemma and a theorem as follows. Note that, for the
Hammerstein system (1), the multi-channel estimates â〈j〉 ∈ R

rn×n and ĉ〈j〉 ∈ R
Nm×n. In

special, for SISO case, i.e. m = 1 and n = 1, the estimates â〈j〉 and ĉ〈j〉 are all column vectors.

Lemma 1. Let rank(Θac) = γ, here Θ̂ac is the estimate of Θac, then the SVD of Θac is

Θ̂ac = UγΣγVT
γ = ∑

γ
j=1 σjµjυ

T
j (8)

such that the singular value matrix Σγ = diag
{

σj

}

(j = 1, · · · , min(r, N)) satisfies σ1 ≥ · · · ≥

σγ > 0 and σl = 0 (l > γ), where µj and υj (j = 1, · · · , γ) are pairwise orthogonal vectors. If

‖a〈j〉‖2 = 1, then ∀ η (1 ≤ η ≤ γ), each identification channel can be calculated as below according
to the optimization problem (7)
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Model Predictive Control for Block-oriented Nonlinear Systems with Input Constraints 7

(â〈j〉, ĉ〈j〉) = (µj, σjυj) (j = 1, · · · , η) (9)

with approximation error eη given by

eη =
∥
∥
∥Θ̂ac − ∑

η
j=1 a〈j〉(c〈j〉)T

∥
∥
∥

2

2
= ∑

γ
j=η+1 σ2

j . (10)

It can be seen from Lemma 1 that after the SVD operation, Θ̂ac is decomposed into a
series of pairs (or channels) (â〈j〉, ĉ〈j〉). More precisely, as shown in Fig. 1(b), first the 1st
channel model is estimated using the basic identification algorithm (30) from input-output

data {u(t), y(t)}S
t=1. Afterwards, the 1st channel model error e1(t) = y(t) − y

〈1〉
m is used to

identify the 2nd channel model. Analogously, e2(t), · · · , eη−1(t) determine the 3rd, · · · , ηth
channel models, respectively. The approximation accuracy enhancement will be proven by

the following theorem.

Theorem 1. For the Hammerstein system (1), with the identification matrix calculated by Eq. (22),
if rank(Θ̂ac) = γ , then, with the identification pairs (â〈j〉, ĉ〈j〉) obtained by Eqs. (8) and (9) and the

identification error index defined by Eq. (10), one has

e1 > e2 > · · · > eγ = 0.

In other words, the the identification error decreases along with the increasing η.

Proof: This can be easily drawn from Lemma 1. �

In principle, one can select a suitable η according to the approximation error tolerance ē and
Eq. (10). Even for the extreme case that ē = 0, one can still set η = γ to eliminate the
approximation error, thus such suitable η is always feasible. For simplicity, if γ ≥ 3 , the
general parameter setting η = 2 or 3 works well enough.
According to the conclusions of Lemma 1 and Theorem 1, multi-channel model ym(t) =

∑
η
j=1 Ĝ〈j〉(z−1)N̂ 〈j〉(u(t)) outperforms single-channel model ym(t) = Ĝ(z−1)N̂ (u(t)) in

modeling accuracy. We hereby design a Multi-Channel Identification Algorithm (MCIA)
based on Theorem 1 as follows. As shown in Fig. 1(b), the Multi-Channel Identification Model
(MCIM) is composed of η parallel channels, each of which consists of a static nonlinear block

described by a series of nonlinear basis {g1(·), · · · , gr(·)}, followed by a dynamic linear block
represented by the discrete Laguerre model (33; 60; 67; 69) in the state-space form (62; 66; 67).
Without loss of generality, the nonlinears bases are chosen as polynomial function bases. Thus,
each channel of the MCIM, as shown in Fig. 1, is described by

x〈j〉(t + 1) = Ax〈j〉(t) + B ∑
r
i=1 â

〈j〉
i gi(u(t)) (11)

y
〈j〉
m = (ĉ〈j〉)Tx〈j〉(t) (j = 1, · · · , η), (12)

where y
〈j〉
m (t) and x〈j〉(t) denote the output and state vector of the jth channel, respectively.

Finally, the output of the MCIM can be synthesized by

ym(t) = ∑
η
j=1 y

〈j〉
m (t) (13)
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8 Nonlinear Model Predictive Control

Next, we will give a convergence theorem to support the MCIA.

Theorem 2. For a Hammerstein system (1) with ‖ai‖2 = 1 (i = 1, · · · , r), nominal output ȳ(t) =

∑
N
k=1 ckxk(z

−1) ∑
r
i=1 aigi(u(t)) and allowable input signal set D ⊂ R

n . If the regressor φ(t) given
by Eq. (4) is PE in the sense that for an arbitrary positive integer t0 there exist some integer N1 and
positive constants α1 and α2 such that

0 < α1 I ≤ ∑
t0+N1
t=t0

φT(t)φ(t) ≤ α2, (14)

then

∑
η
j=1 â〈j〉(ĉ〈j〉)T a.s.

−−−−→ Θac (15)

ym
a.s.

−−−−→ ȳ(t) (16)

where the symbol ’
a.s.

−−−−→ ’ denotes ’converge with probability one as the number of the data points

S tends to infinity’, and the model output ym(t) is determined by Eqs. (11), (12) and (13).

Proof: Since the linear block is stable, and gi(u(t)) (i = 1, · · · , r) is bounded (because u(t) ∈ D

is bounded and g(·) are nonlinear basis functions), the model output ym(t) is also bounded.
Taking Eqs. (3) and (11) into consideration, one has that ‖φ(t)‖2 is bounded, i.e. ∃δL > 0,
such that ‖φ(t)‖2 ≤ δL . On the other hand, ∀ ε > 0, ∃ε1, ε2 > 0 such that ε = ε1 + ε2. Let
ε3 = ε1/(δL max(r, N)) and ε4 = ε2/δL. Since the regressor φ(t) is PE in the sense of Eq. (14),
one has that the estimate θ is strongly consistent in the sense that θ → θ̂ with probability one as

S → ∞ (denoted θ̂
a.s.

−−−−→ θ) (46), in other words, ∀ε4 > 0, ∃N0 > 1 such that ‖θ̂ − θ‖2
2 ≤ ε4

with probability one for S > N0. Moreover, the consistency of the estimate θ̂ holds even in the
presence of colored noise ξ (23). The convergence of the estimate θ̂ implies that

Θ̂ac
a.s.

−−−−→ Θac (17)

Note that the consistency of the estimation θ̂ holds even in the presence of colored output
noise (23).
Using Lemma 1 and assuming rank(Θ̂ac) = γ, one gets from Theorem 1 that ∀ε3 > 0, ∃η ≤ γ

such that ∑
γ
η+1 σjµj ϕνT

j ≤ ε3, in other words,
∥
∥
∥∑

η
j=1 â〈j〉(ĉ〈j〉)T − Θ̂ac

∥
∥
∥

2

2
≤ ε3 or

∑
η
j=1 â〈j〉(ĉ〈j〉)T → Θ̂ac. (18)

Thereby, substituting Eq. (18) into Eq. (17) yields Eq. (15). Furthermore, define

θ̂〈j〉 � [ĉ
〈j〉
1 â

〈j〉
1 , · · · , ĉ

〈j〉
1 â

〈j〉
r , ĉ

〈j〉
2 â

〈j〉
1 ,

· · · , ĉ
〈j〉
2 â

〈j〉
r , · · · , ĉ

〈j〉
N â

〈j〉
1 , · · · , ĉ

〈j〉
N â

〈j〉
r ]T,

then ∀S > N0, the following inequality holds with probability one
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Model Predictive Control for Block-oriented Nonlinear Systems with Input Constraints 9

[ym(t)− ȳ(t)]2 =
[

φT(t)(∑
η
j=1 θ̂〈j〉 − θ̂ + θ̂ − θ)

]2

≤ δL

∥
∥
∥∑

η
j=1 θ̂〈j〉 − θ̂

∥
∥
∥

2

2
+ δL

∥
∥θ̄ − θ

∥
∥2

2

≤ δL max(r, N)
∥
∥
∥∑

η
j=1 σjµj ϕνT

j − Θ̂ac

∥
∥
∥

2

2
+ δL

∥
∥θ̄ − θ

∥
∥2

2

= δL max(r, N)ε3 + δLε4 = ε,

where the definition of matrix 2-norm is given in (23). Thus, the conclusion (16) holds. This
completes the proof.

�

Thus, it is drawn from Theorems 1 and 2 that the increase of the identification channel number
will help decrease the identification errors, which is the main theoretical contribution of this
section.

2.3 Controller design

A Hammerstein system consists of the cascade connection of a static (memoryless) nonlinear
block N (·) followed by a dynamic linear block with state-space expression (A, B, C) as below

ẋ = Ax + Bv, y = Cx,

v = N (u), (19)

with u(t) ∈ [−ū, ū]. Naturally, a standard output feedback control law can be derived by (13)

v = Kx̂

u = N−1(v), (20)

where x̂ is the estimation of x by some state observer L, N−1(·) is the inverse of N (·), and the
closed-loop state matrix A + BK and observer matrix ALC are designed Hurwitz. Now, the
problem addressed in this section becomes optimize such an output-feedback controller for the
Hammerstein system (19) such that the closed-loop stability region is maximized and hence
the settling time is substantially abbreviated.
The nonlinear block N (·) can be described as (68):

N (z(t)) =
N

∑
r=1

aigi(z(t)), (21)

where gi(·) : R → R are known nonlinear basis functions, and ai are unknown matrix
coefficient parameters. Here, gi(·) can be chosen as polynomials, radial basis functions (RBF),
wavelets, etc. At the modeling stage, the sequence v(tj) (j = 1, · · · , N) is obtainable with
a given input sequence u(tj) (j = 1, · · · , N) and an arbitrary initial state x(0). Thereby,

according to Lease Square Estimation (LSE), the coefficient vector a := [a1, · · · , aN ]T can be
identified by

â = (GTG)−1GTv (22)
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with

G =

⎡

⎢
⎣

g1(t1) · · · gN(t1)
...

g1(ts) · · · gN(ts)

⎤

⎥
⎦ ,

v = [v(t1), · · · , v(tN)]T and s ≥ N. Note that â is the estimation of a, which is an consistent
one even in the presence of colored external noise.
Now the intermediate variable control law v(t) in Eq. (19) can be designed based on the linear
block dynamics. Afterwards, one can calculate the control law u(t) according to the inverse of
v(t). Hence, for the Hammerstein system (19), suppose the following two assumptions hold:

A1 The nonlinear coefficient vector a can be accurate identified by the LSE (22), i.e., â = a;
A2 For |u(t)| ≤ ū, the inverse of N (·) exists such that

N (N−1
z (v(t))) := ṽ(t) = (1 + δ(v(t)))v(t),

where δ(v(t))) < σ (σ ∈ R
+), and N−1

z denotes the inverse of N (·) calculated by some
suitable nonlinear inverse algorithm, such as Zorin method (21).
For conciseness, we denote δ(v(k)) by δ(·), and hence, after discretization, the controlled plant
is described as follows:

x(k + 1) = Ax(k) + Bṽ(k) = Ax(k) + B(1 + δ(·))v(k),

y(k) = Cx(k). (23)

Afterwards, a state observer L ∈ RN is used to estimate x(k) as follows:

x̂(k + 1) = Ax̂(k) + B(1 + δ(·))v(k) + LCe(k), (24)

e(k + 1) = Φe(k), (25)

where x̂ is the estimation of x, e(k) := x(k)− x̂(k) is the state estimation error, and the matrix
Φ = A− LC is designed as Hurwitz. Then, an NMPC law is designed with an additional term
D(k + i|k) as follows:

v(k + i|k) = Kx̂(k + i|k) + ED(k + i|k),

u(k|k) = N−1
z ((v(k|k))), (26)

where E := [1, 0, · · · , 0]1×M, x̂(k|k) := x̂(k), v(k|k) := v(k), and D(k|k) := D(k) =
[d(k), · · · , d(k + M − 1)]T is defined as a perturbation signal vector representing extra degree
of freedom. Hence the role of D(k) is merely to ensure the feasibility of the control law (26),
and D(k + i|k) is designed such that

D(k + 1|k) = TD(k + i − 1|k) (i = 1, · · · , M),

where

T =

[
0 I(M−1)×(M−1)

0 0T

]

M×M

,
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M ≥ 2 is the prediction horizon and 0 is compatible zero column vector. Then, substituting
Eq. (26) into Eq. (24) yields

ẑ(k + i|k)) = Πẑ(x + k − i|k)

+[(δ(·)BK̄)T, 0]T ẑ(k + i − 1/k)

+[(LC)T, 0]Te(k + i − 1|k), (i = 1, · · · , M) (27)

with ẑ(k + i|k) = [x̂T(k + i|k), D(k + i|k)T]T, Π =

[
Ψ BE
0 T

]

, K̄ = [K, E], where Ψ = A +

BK is designed as Hurwitz. In order to stabilize the closed-loop system (27), we define two
ellipsoidal invariant sets (39) of the extended state estimations ẑ(k) and error e(k), respectively,
by

Sx := {ẑ|ẑT(k)Pz ẑ(k) ≤ 1}, (28)

and
Se := {e(k)|eT(k)Pee(k) ≤ ē}, (0 < ē ≤ 1), (29)

where Pz and Pe are both positive-definite symmetric matrices and the perturbation signal
vector D(k) (see Eq. (26)) is calculated by solving the following optimization problem

min
D(k)

J(k) = DT(k)D(k),

s.t. ẑT(k)Pz ẑ(k) ≤ 1. (30)

2.4 Stability analysis

To guarantee the feasibility and stability of the control law (26), it is required to find the
suitable matrices Pz and Pe assuring the invariance of Sz and Se (see Eqs. (28) and (29)) by
the following lemma.

Lemma 2. Consider a closed-loop Hammerstein system (23) whose dynamics is determined by the
output feedback control law (26) and (30) and subject to the input constraints |u| ≤ ū, the ellipsoidal
sets Sz and Se are invariant in the sense of (28) and (29), respectively, and the control law (26) and

(30) is feasible provided that Assumptions A1, A2 and the following three Assumptions A3–A5 are all
fulfilled.
A3 The matrices Φ and Ψ are both Hurwitz;
A4 There exist τ1,2 > 1, 0 < ē < 1 such that

ΦTPzΦ ≤ Pe, (31)

η1CTLTET
x PzExLC ≤ Pe, (32)

τ1τ2ΠTPzΠ + τ1η2σ2K̄TBTET
x PzExBK̄,

≤ (1 − ē2)Px, (33)

where η1 = 1 + (τ1 − 1)−1, η2 = 1 + (τ2 − 1)−1 and

ET
x =

⎡

⎢
⎣

1 0 · · · · · · 0
...

. . . 0 · · ·
...

0 0 1 · · · 0

⎤

⎥
⎦

N×(N+M)
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is the projection matrix such that ET
x ẑ(k) = x̂(k);

A5 There exist µ > 0 and λ ∈ (0, ū) such that

|u(k)| ≤ µ|v(k)|+ λ (34)

(local Lipschitz condition) and

[
−(ū − λ)2/µ2 K̄

K̄T −Pz

]

≤ 0. (35)

Proof: We start the proof by a fact that (68), for ∀τ > 1 and η = 1 + (τ − 1)−1,

(A1 + A2)
TP(A1 + A2)

≤ τAT
1 PA1 + (1 + (τ − 1)−1)AT

2 A2. (36)

Thereby, one has ∀τ1,2 > 0 and η1,2 = 1 + (τ1,2 − 1)−1, such that

ẑT(k + i|k)Pzẑ(k + i|k) ≤ τ1(Πx̂(k + i − 1|k)

+[δ(·)(BK̄)T, 0]T ˆx(k + i − 1|k))TPz

·(Πx̂(k + i − 1|k) + [δ(·)(BK̄)T , 0]T ˆx(k + i − 1|k))

+η1([(LC)T, 0]Te(k + i − 1|k))TPz

·([(LC)T, 0]Te(k + i − 1|k))

≤ τ1τ2ẑT(k + i − 1|k)ΠT PzΠx̂(k + i − 1|k))

+τ1η2 x̂T(k + i − 1|k)σ2K̄TBTET
x PzExK̄x̂(k + i − 1|k)

+η1eT(k + i − 1|k)CT LTET
x PzLCe(k + i − 1|k).

Thereby, if Eqs. (32) and (33) hold and ẑT(k + i − 1|k)Pz ẑ(k + i − 1|k) ≤ 1, then ẑT(k +
i|k)Pz ẑ(k + i|k) ≤ 1, i.e., Sz is an invariant set (39).
Analogously, if Eq. (31) hold and eT(k + i − 1|k)Pee(k + i − 1|k) ≤ ē, then eT(k + i|k)Pee(k +
i|k) ≤ ē, i.e., Se is an invariant set.

On the other hand, |v(k)| = |K̄ẑ(k)| = |K̄P−1/2
z P1/2

z z̄(k)| ≤ ‖K̄P−1/2
z ‖ · ‖P1/2

z z̄(k)‖ ≤

‖K̄P−1/2
z ‖. Taking Eq. (35) into consideration, one has

|v(k)| ≤ (ū − λ1)/µ1, (37)

and substituting Eq. (37) into Eq. (34) yields |u(k)| ≤ ū, or u(k) is feasible. This completes the
proof. �

Let us explain the dual-mode NMPC algorithm determined by Lemma 2 as below. First, let us

give the standard output feedback control law as

v(k) = Kx̂(k)

u(k) = N−1
z (v(k)), (38)

and then the invariant set shrinks to

Sx := Sz(M = 0) = {x̂(k)|x̂T(k)Px x̂(k) ≤ 1}. (39)
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If the current x̂(k) moves outside of Sx, then the controller enters the first mode, in which the
dimension of x̂(k) is extended from N to N + M by D(k) (see Eq. (27)). Then, x̂(k) will be
driven into Sx in no more than M steps, i.e., x̂(k + M) ∈ Sx, which will also be proven later.
Once x̂(k) enters Sx, the controller is automatically switched to the second mode, in which the
initial control law (38) is feasible and can stabilize the system.
It has been verified by extensive experiments that assumptions A4 and A5 are not difficult
to fulfil, and most of the time-consuming calculations are done off-line. First, the stable
state-feedback gain K (see Eq. (26)) and observer gain L (see Eq. (24)) are pre-calculated by
MATLAB. Then, compute Pe based on Eq. (29). Afterwards, pick µ ∈ (0, 1) and λ ∈ (0, ū)
satisfying the local Lipschitz condition (34). Finally, pick τ1,2 (generally in the range (1, 1.5)),
and calculate Px off-line by MATLAB according to assumptions A4 and A5.
The aforementioned controller design is for regulator problem, or making the system state to
settle down to zero. But it can be naturally extended to address the tracking problem with
reference signal r(t) = a �= 0. More precisely, the controller (26) is converted to v(k) =
K̄ẑ(k) + aρ with 1/ρ = limz→1(C̃(zI − Π)−1B̃), C̃ := [C, 0]1×(N+M) and B̃ := [BT, 0]T

(N+M)×1
.

Moreover, if I − Pi is nonsingular, a coordinate transformation ẑ(k) − zc → ẑ(k) with zc =
(I − Π)−1B̃aρ can be made to address the problem. Even if I − Π is singular, one can still
make some suitable coordinate transformation to obtain Eq. (27).
Next we will show that the dual-mode method can enlarge the closed-loop stable region. First,
rewrite Pz by

Pz =

[
(Px)N×N PxD

PxDT (PD)M×M

]

,

and hence the maximum ellipsoid invariant set of x(k) is given as

SxM := {x̂|x̂T(Px − PxDP−1
D PT

xD)x̂(k) ≤ 1}. (40)

Bearing in mind that Px − PxDP−1
D PT

xD = (ET
x P−1

z Ex)−1, it can be obtained that

vol(SxM) ∝ det(ET
x P−1

z Ex), (41)

where vol(·) and det(·) denote the volume and matrix determinant. It will be verified later
that the present dual-mode controller (26) can substantially enlarge the det(ET

x P−1
z Ex) with

the assistance of the perturbation signal D(k) and hence the closed-loop stable region SxM is
enlarged. Based on the above mentioned analysis of the size of the invariant set SxM, we give
the closed-loop stability theorem as follows.

Theorem 3. Consider a closed-loop Hammerstein system (23) whose dynamics is determined by the
output-feedback control law (26) and (30) and subject to the input constraints |u| ≤ ū, the system is
closed-loop asymptotically stable provided that assumptions A1–A5 are fulfilled.

Proof: Based on assumptions A1–A5, one has that there exists D(k+ 1) such that z(k+ 1) ∈ Sz

for arbitrary x(k) ∈ Sx; then by invariant property, at next sampling time D(k + 1|k) = TD(k)
provides a feasible choice for D(k + 1) (only if D(k) = 0, J(k + 1) = J(k), otherwise J(k +
1) < J(k)). Thus, the present NMPC law (26) and (30) generates a sequence of D(k + i|k) =
TD(k + i − 1|k) (i = 1, · · · , M) which converges to zero in M steps and ensures the input
magnitudes constraints satisfaction. Certainly, it is obvious that TD(k) need not have the
optimal value of D(k + 1) at the current time, hence the cost J(k + 1) can be reduced further
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14 Nonlinear Model Predictive Control

still. Actually, the optimal D∗(k + 1) is obtained by solving Eq. (30), thus J∗(k + 1)| ≤ J(k +
1|k) < J(k) (D(k) �= 0). Therefore, as the sampling time k increases, the optimization index
function J(k) will decrease monotonously and D(k) will converge to zero in no more than M
steps. Given constraints satisfaction, the system state x̂(k) will enter the invariant set Sx in
no more than M steps. Afterwards, the initial control law will make the closed-loop system
asymptotically stable. This completes the proof. �

2.5 Case study

2.5.1 Modeling

Consider a widely-used heat exchange process in chemical engineering as shown in Fig. 2
(17), the stream condenses in the two-pass shell and tube heat exchanger, thereby raising the
temperature of process water. The relationship between the flow rate and the exit-temperature
of the process water displays a Hammerstein nonlinear behavior under a fixed rate of steam
flow. The condensed stream is drained through a stream trap which lets out only liquid. When
the flow rate of the process water is high, the exit-temperature of stream drops below the
condensation temperature at atmospheric pressure. Therefore, the steam becomes subcooled
liquid, which floods the exchanger, causing the heat transfer area to decrease. Therefore, the

heat transfer per unit mass of process water decreases. This is the main cause of the nonlinear
dynamics.

Fig. 2. Heat exchange process

The mathematical Hammerstein model describing the evolution of the exit-temperature of the
process water VS the process water flow consists of the following equations (17):

v(t) = −31.549u(t) + 41.732u2(t)
−24.201u3(t) + 68.634u4(t),

(42)

y(t) =
0.207z−1 − 0.1764q−2

1 − 1.608z−1 + 0.6385q−2
v(t) + ξ(t), (43)

where ξ(t) is a white external noise sequence with standard deviation 0.5. To simulate
the fluctuations of the water flow containing variance frequencies, the input is set as
periodical signal u(t) = 0.07 cos(0.015t) + 0.455 sin(0.005t) + 0.14 sin(0.01t) . In the numerical
calculation, without loss of generality, the OFS is chosen as Laguerre series with truncation
length N = 8, while the nonlinear bases of the nonlinear block N(·) are selected as
polynomials with r = 9. The sampling number S = 2000, and sampling period is 12s.
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Note that we use odd-numbered data of the S-point to identify the coefficients
{

a
〈j〉
i

}r

i=1
and

{

c
〈j〉
k

}N

k=1
(j = 1, · · · , η), and use the even-numbered data to examine the modeling accuracy.

(a) (b)

Fig. 3. (Color online) (a): Modeling error of the traditional single-channel method; (b):
Modeling error of the present multi-channel method (triple channels)
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Fig. 4. Modeling error for p = 0.1

Denoted by e(t) is the modeling error. Since the filter pole p (see Eq. (2)) plays an important
role in the modeling accuracy, in Fig. 3(a) and (b), we exhibit the average modeling errors of
the traditional single-channel and the present multi-channel methods along with the increase
of Laguerre filter pole p. For each p, the error is obtained by averaging over 1000 independent
runs. Clearly, the method proposed here has remarkably smaller modeling error than that
of the traditional one. To provide more vivid contrast of these two methods, as shown in
Fig. 4, we fix the Laguerre filter pole p = 0.1 and then calculate the average modeling errors
of the single-channel (η = 1), double-channel (η = 2), and triple-channel models (η = 3)
averaged over 1000 independent runs for each case. This is a standard error index to evaluate
the modeling performances. The modeling error of the present method (η = 3) is reduced
by more than 10 times compaired with those of the traditional one (η = 1), which vividly
demonstrates the advantage of the present method.
Note that, in comparison with the traditional method, the modeling accuracy of the present
approach increased by 10− 17 times with less than 20% increase of the computational time. So

a trade off between the modeling accuracy and the computational complexity must be made.
That is why here we set the optimal channel number as η = 3. The underlying reason for
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16 Nonlinear Model Predictive Control

the obvious slow-down of the modeling accuracy enhancement rate after η = 4 is that the 4th
largest singular value σ4 is too small compared with the largest one σ1 (see Eq. (8)). This fact
also supports the validity of the present method.

2.5.2 Control

The present dual-mode NMPC is performed in the Heat Exchanger System model (55?57)
with the results shown in Figures 7,8 (Regulator Problem, N = 2), Figures 9?11 (Regulator
Problem, N = 3) and Figure 12 (Tracking Problem,N = 3), respectively. The correspondence
parameter settings are presented in Table 1.

Fig. 5. (Color online) Left panel: Control performance of regulator problem ; Right panel:
state trajectory L and its invariant set. Here, N = 2.

Fig. 6. (Color online) Left panel: Control performance of regulator problem ; Right panel:
state trajectory L and its invariant set. Here, N = 3.

In these numerical examples, the initial state-feedback gain K and state observer gain Γ are
optimized offline via DLQR and KALMAN functions of MATLAB6.5, respectively. The curves
of y(k), u(k), v̄(k) and the first element of D(k), i.e. , d(1), are shown in Figure 7 (N=2) and
Figure 8 (N=3), respectively. To illustrate the superiority of the proposed dual-mode NMPC,

we present the curve of L̂(k), the invariant sets of and in Figure 8 (N = 2, M={2, 8, 10}) and
Figure 10 and 11 (N = 3, M = {0, 5, 10}). One can find that L̂(0), is outside the feasible initial
invariant set SL(referred to (48), see the red ellipse in Figure 10 and the left subfigure of Figure
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Fig. 7. (Color online) Invariant sets SL (left) and SLM, M = 5 (middle), M = 3 (right). Here,
N = 3.

Fig. 8. (Color online) Control performances of Tracking problem.

11). Then the state extension with M = 10 is used to enlarge SL to SLM (referred to (52),

see the black ellipse in Figure 8 and the right subfigure of Figure 11) containing L̂(0). After
eight (Figure 8) or six steps (Figure 10), L̂(k) enters SL. Afterwards, the initial control law
(47) can stabilize the system and leads the state approach the origin asymptotically. Lemma
2 and Theorem 3 are thus verified. Moreover, the numerical results of Figures 8 and 11 also
have verified the conclusion of the ellipsoid volume relation (54), i.e. the size of SLM increases
along with the enhancement of the prediction horizon M.
As to the tracking problem (see Figure 12), one should focus on the system state response
to the change of the set-point. In this case, L̂(k) moves outside SL, thus D(k) is activated to
enlarge SL to SLM and then to drive L̂(k) from SL to SLM in no more than steps. After 60
sampling periods, the overshooting, modulating time and steady-state error are 2.2%, 15 and
0.3% respectively. Moreover, robustness to the time-delay variations is examined at the 270-th
sampling period, while the linear block of this plant is changed from (58) to

y(k + 1) =
0.207z−1 − 0.1764z−2

1 − 1.608z−1 + 0.6385z−2
v(k) (44)
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dual-mode NMPC can still yield satisfactory performances, thanks to the capability of the
Laguerre series in the inner model. The feasibility and superiority of the proposed control
algorithm are thus demonstrated by simulations on both regulator and tracking problems.
Still worth mentioning is that some other simulations also show that the size of increases as
decreases. In other words, more accurate identification and inverse solving algorithms would
help further enlarge the closed-loop stable region. Fortunately, the proposed TS-SCIA can do
this job quite well.
To further investigate the proposed dual-mode NMPC, a number of experiments were carried
out to yield statistical results. More precisely, {λ, µ, τ} are fixed to {0.70, 0.35, 1.12}, and N,
M and σ are selected from the sets {2, 3, 4} , and {8, 9, · · · , 18}, {0.001, 0.002, · · · , 0.005},
respectively. The set-point is the same as Figure 12. In this set-up, 165 experiments were
performed. The statistical results, such as expectations and optimal values for the settling
time, overshooting, steady-state error and computational time of 400 steps are shown in
Table 2. In addition, the corresponding optimal parameters are given. The statistical results
further illustrate the advantages of the proposed algorithm regarding transient performance,

steady-state performance and robustness to system uncertainties.

Remark 1. The increase of the Laguerre truncation length can help enhancing the modelling and
control accuracy at the cost of an increasing computational complexity. Therefore, a tradeoff must

be made between accuracy and computational complexity. Note that the general parameter setting
procedure is given in Remark 3.

Parameter Regular problem(N = 2) Regular problem (N = 3) Tracking problem(N = 3)

L̂(0) [4.2, 4.2]T [0.02,−2,−2]T [0.02,−2,−2]T

K [0.327,−0.570] [−0.328,−0.200, 0.200] [−0.328, 0.200,−0.120]
Γ [0.187, 0.416]T [0.217, 0.132, 0.276]T [0.217, 0.132, 0.276]T

ū 0.19 0.19 1.0
σ 0.001 0.001 10.001
µ 0.05 0.02 0.35
τ1 1.05 1.12 1.12
τ2 1.30 1.25 1.37
ē 0.5 0.5 0.5

Table 1. Parameter settings

Control STVSP STVTD overshooting steady-state computational
indexes (steps) (steps) (%) error (%) time of 400 step(s)

Optimal {N, M, σ} {4, 7, 0.003} {3, 12, 0.002} {4, 8, 0.002} {4, 10, 0.001} {2, 8, 0.005}
Expectation value 16.7 12.4 ±2.78 ±0.41 21.062

Table 2. Statistical control performance of tracking problems, (Computation platform:
2.8G-CPU and 256M-RAML; STVSP, STVTD denote the settling times for the variations of
set-point and time delay, respectively.)

2.6 Section conclusion

In this section, a novel multi-channel identification algorithm has been proposed to solve the
modelling problem for constrained Hammerstein systems. Under some weak assumptions
on the persistent excitation of the input, the algorithm provides consistent estimates even
in the presence of colored output noise, and can eliminate any needs for prior knowledge
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about the system. Moreover, it can effectively reduce the identification errors as compared
to the traditional algorithms. To facilitate the controller design, the MCIA is converted to a
two-stage identification algorithm called TS-SCIA, which preserve almost all the advantages
of the former. In addition, to support these two algorithms, systematical analyses about their
convergence and approximation capability has been provided. Based on the TS-SCIA, a novel
dual-mode NMPC is developed for process control. This approach is capable of enlarging the
closed-loop stable region by providing extra degrees of design freedom. Finally, modelling
and control simulations have been performed on a benchmark Hammerstein system, i.e., a
heat exchanger model. The statistical results have demonstrated the feasibility and superiority
of the proposed identification and control algorithms for a large class of nonlinear dynamic
systems often encountered in industrial processes.

3. Model Predictive Control for Wiener systems with input constraints

3.1 Introduction

The Wiener model consists of a dynamic linear filter followed by a static nonlinear subsystem.
This model can approximate, with arbitrary accuracy, any nonlinear time-invariant systems
(10; 23) with fading memory, thus it appears in a wide range of applications. For example, in
wireless communications, the Wiener model has been shown to be appropriate for describing
nonlinear power amplifiers with memory effects (15; 47). In chemistry, regulation of the pH
value and identification of the distillation process have been dealt with by using the Wiener
model (7; 38; 58). In biology, the Wiener model has been extensively used to describe a number
of systems involving neural coding like the neural chain (47), semicircular canal primary
neurons (53) and neural spike train impulses (37). Moreover, applications of the Wiener model
in other complex systems such as chaotic systems have been explored (12). In fact, the control
of Wiener systems has become one of the most urgently needed and yet quite difficult tasks in

many relevant areas recently.
To address various control problems of Wiener systems, extensive efforts have been devoted
to developing suitable MPC (model predictive control) methods. Under the MPC framework,
the input is calculated by on-line minimization of the performance index based on model
predictions. MPC has been practiced in industry for more than three decades and has become
an industrial standard mainly due to its strong capability to deal with various constraints
(23). However, to design an effective MPC, an accurate data-driven model of Wiener systems
is required. A large volume of literature has been devoted to studying this issue; see (6; 24; 29;
64) for comprehensive reviews. More recently, some research interests have been focused on
extending the linear subspace identification method for this typical class of nonlinear systems
(23) (52) (59). Among them, Gómez’s approach (23) is one of the most efficient methods since
it has good prediction capabilities, and guarantees stability over a sufficiently wide range of
models with different orders. In addition, this subspace method delivers a Wiener model in
a format that can be directly used in a standard MPC strategy, which makes it very suitable
to act as the internal model of our proposed NMPC (Nonlinear MPC) method to be further

discussed below.
Nevertheless, due to its specific structure, the achievements on the control of the Wiener model
are still fairly limited so far. Most of the existent control algorithms have some, if not all, of
the following disadvantages:
• small asymptotically stable regions;
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• limited capacity in handling input constraints;
• reliance on the detectability of the intermediate output.
For instance, Nesic (49) designs an output feedback stabilization control law for Wiener
systems, but this work does not address input constraints; moreover, some rigorous
conditions such as 0-state detectable are required to guarantee the global stability. Norquay
et al. (50) and Bolemen et al. (7) develop NMPC strategies with ARX/polynomial and
polytopic internal models, respectively, but neither considers stable region enlargement.
Gómez et al. (23) use a subspace internal model to develop an NMPC strategy mainly
accounting for unmeasurable disturbances; however, it merely inherits the stability properties
of a standard linear MPC with linear constraints and quadratic cost function. Motivated by
all the above-mentioned backgrounds and existing problems, the main task of this section
is to develop a new efficient control algorithm for constrained Wiener systems, which can
maximize the region of asymptotic stability and eliminate the reliance on the measurability of
the intermediate output.
To accomplish this task, Gómez’s modelling approach (23) is first used to separate the

nonlinear and linear blocks of the underlying system, and then a dual-mode mechanism (14) is
combined with our proposed NMPC approach to enlarge the stable region. More specifically,
over a finite horizon, an optimal input profile found by solving an open-loop optimal control
problem drives the nonlinear system state into the terminal invariant set (39); to that end,
a linear output-feedback controller steers the state to the origin asymptotically. The main
contribution of this section is the development of an algorithm that can effectively maximize
the asymptotic stability region of a constrained Wiener system, by using the dual-mode NMPC
technique, which can also eliminate the reliance on the detectability of the intermediate output
(70). As a byproduct, since the nonlinear/linear blocks are separated at first and the online
calculation is mainly done on the linear block, the computational complexity is remarkably
reduced compared with some traditional nonlinear empirical model-based NMPCs (7; 50).
Moreover, since the subspace identification method can directly yield the estimate of the
nonlinear block inverse, the complex inverse-solving method is avoided in the new NMPC
algorithm. Furthermore, some rigorous sufficient conditions are proposed here to guarantee
the feasibility and stability of the control system.

3.2 Problem description

Consider a discrete MIMO Wiener system with a linear time-invariant (LTI) block described
by

x(k + 1) = Ax(k) + Bu(k), (45)

η(k) = Cx(k), (46)

and a nonlinear block by
y(k) = f (η(k)), (47)

where f (·) is an invertible memoryless nonlinear function, u(k) ∈ R
p, y(k) ∈ R

m are the input
and output, respectively, x(k) ∈ R

n is the state vector, and η(k) ∈ R
m is the unmeasurable

intermediate output. This Wiener system is subject to an input constraint:

|ui| ≤ ūi, i = 1, · · · , p. (48)

Typically, there are two kinds of problems to consider:
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• Regulator problem: Design an output-feedback control law such that the response of the
initial conditions will die out at a desired rate;

• Tracking problem: Design an output-feedback control law to drive y(t) to a set-point r(k) = a
asymptotically.

In general, for unconstrained systems with measurable η(k), to address these two problems,
one can respectively design a stable state observer,

x̂(k + 1) = Ax̂(k) + Bu(k) + L(η(k)− Cx̂(k)),

in combination with a stable state-feedback control law u(k) = Kx̂(k) or with a stable
state-feedback control law having offset (13) u(k) = Kx̂(k) + aθ, where 1/θ = limz→1(C(zI −
Ψ)−1B) and Ψ = A + BK. However, for constrained Wiener systems with unmeasurable
intermediate output η(t), these basic control methods will be infeasible and the problems will
become much more complex. This section develops a novel algorithm that can handle such
challenging situations.

3.3 Control algorithm design

For the constrained Wiener system (45)–(48), in order to focus on the main idea of this section,
i.e. dual-mode predictive mechanism, it is assumed that the system state matrices (A, B)
can be estimated accurately while the identification error only appears in the output matrix
estimate Ĉ:

Assumption A1) the LTI matrices (A, B) can be precisely identified.
This identification can be implemented with the efficient subspace methods (23; 52; 59). In
general, subspace methods give estimates of the system matrices (A, B, C). The robustness
issue with estimate errors of (A, B) is beyond the scope of the current chapter, hence will not
be discussed.
First, use a stable observer L to estimate x(k) as follows:

x̂(k + 1) = Ax̂(k) + Bu(k) + L(η̃(k)− Ĉx̂(k)), (49)

where x̂(k) is the state estimate, and η̃(k) � f̂−1(y(k)) with f̂−1(·) denoting the inverse of f
calculated by Gómez’s subspace method (23). The state estimate error is defined as

e(k) � x(k)− x̂(k). (50)

Since the identified inverse η̃(k) rather than η(k) is used to estimate the state x(k), the state
estimate error e(k) is caused by both the identification error of f −1(·) and the initial condition
mismatch. Therefore, the intermediate output estimate error Ĉe(k) can be separated into two
parts as follows:

Ĉe(k) = Ĉx(k)− Ĉx̂(k)
= (Ĉx(k)− η̃(k))

︸ ︷︷ ︸

part1

+ (η̃(k)− Ĉx̂(k))
︸ ︷︷ ︸

part2

. (51)

Clearly, part 1 equals ∆Cx(k) + η(k) − η̃(k) with ∆C = Ĉ − C. For a fixed nonlinear block
f , part 1 is yielded by the subspace method (23) based on state calculation, and hence the
proportion of part 1 to the whole estimate error Ĉe(k) is solely determined by the current state
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x(k). It can be assumed that part 1 of Eq. (51) satisfies the following equality:

Ĉx(k)− η̃(k) = δ(x(k))Ĉe(k). (52)

with δ(x(k)) = diag{δ1(x(k)), · · · , δm(x(k))}m×m. For conciseness, from now on δ(x(k)) and
δi(x(k)) are denoted by δ(·) and δi(·), respectively.
Next, recall the input constraint (48), and extend x̂(k) to ẑ(k) � [x̂T(k), DT(k)]T with D(k) �
[d1(k), · · · , dHp

(k)]T . Here, Hp is defined as the prediction horizon, and D(k) represents the
auxiliary state to be computed. Then, an extended state-feedback control law is set as

u(k) = Kx̂(k) + ED(k), (53)

or
ui(k) = Ki x̂(k) + FD(k), i = 1, · · · , p, (54)

with K = [KT
1 , · · · , KT

p ]
T, E = [FT, · · · , FT]T and F = [1, 0, · · · , 0]1×Hp

.
Note that the novelty here lies in D(k), and the reason will be demonstrated later. When the
current state x(k) is not in the asymptotic stability region of the constrained Wiener system
(45)–(48) governed by (49) and (53), the auxiliary state D(k) will be activated to drive x(k)
back into the asymptotic stability region in less than Hp steps, and D(k) will vanish thereafter.
Now, substituting (52) and (53) into (49) yields

ẑ(k + 1) = Ωẑ(k) +

[
L(Im − δ(·))Ĉ

0

]

e(k), (55)

where

Ω =

[
Ψ BE
0 M

]

, Ψ = A + BK, M =

[
0 IHp−1

0 0T

]

Hp×Hp

,

In is the n-dimensional identity matrix, 0 and 0 denote compatible zero matrix and zero
column vector, respectively.
In order to stabilize the closed-loop system (55), define two ellipsoidal initial state invariant
sets of ẑ(k) and e(k) as follows:

S � {ẑ|ẑTPẑ ≤ 1}, (56)

Se � {e|eTPee ≤ ē2, 0 ≤ ē ≤ 1}, (57)

where P and Pe are both positive definite and symmetric matrices to be computed, and ē is a
pre-defined constant. The auxiliary state D(k) (see Eq. (53)) can be calculated by solving the
following optimization problem:

minD(k) J(k) � DT(k)D(k) (58)

subject to Eq. (56). The following lemma and theorem guarantee the existence of S and Se, and
the feasibility of the control law (53).

Lemma 3. For any constant matrices A1, A2 with compatible dimensions, and for any µ > 1, one has

(A1 + A2)
TP(A1 + A2) ≤ µAT

1 PA1 + τAT
2 PA2,

where τ = 1 + (µ − 1)−1 and P is a positive definite matrix.
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Proof : For any µ > 1, one has

(A1 + A2)
TP(A1 + A2) = µAT

1 PA1

+(1 + (µ − 1)−1)AT
2 PA2 − (µ − 1)(A1 − (µ − 1)−1 A2)

T

·P(A1 − (µ − 1)−1 A2)

≤ µAT
1 PA1 + (1 + (µ − 1)−1)AT

2 PA2. �

Theorem 4. For the constrained Wiener system (45)–(48) governed by the control law (49), (53) and
(58), if Assumption A1 and the following assumption A2 hold, then S and Se defined respectively by
(56) and (57) are invariant sets and the control law (53) satisfies (48).
Assumption A2) there exist σ > 0, µ1 > 1, µ2 > 1 and positive definite and symmetric matrices
P, Pe, such that

δ(·)LTPeLδ(·) ≤ σ2LTPeL (59)

(Im − δ(·))LTET
x PExL(Im − δ(·)) ≤ (1 + σ)2LTET

x PExL, (60)

µ2ΩTPΩ ≤ (1 − ē2)P, (61)

[

−ū2
i Ki

KT
i −P

]

≤ 0, i = 1, · · · , p, (62)

τ2(1 + σ)2ĈTLTET
x PExLĈ ≤ Pe, (63)

µ1ΦTPeΦ + τ1σ2ĈTLTPeLĈ ≤ Pe, (64)

where τ1 = 1 + (µ1 − 1)−1, τ2 = 1+ (µ2 − 1)−1, Φ = A − LĈ, K̄i � [Ki, F], (Here, Ex is a matrix
satisfying x̂ = ET

x ẑ and Ki and F are defined in Eq. (54)).

Proof : For any ẑ(k) ∈ S, it can be verified from (56) and (61) that

µ2ẑ(k)ΩTPΩẑ(k) ≤ (1 − ē2)ẑT(k)Pẑ(k) ≤ 1 − ē2. (65)

Moreover, for any e(k) ∈ Se, from (57), (60) and (63), one has

τ2eT(k)ĈT(Im − δ(·))LTET
x PExL(Im − δ(·))Ĉe(k)

≤ τ2(1 + σ)2eT(k)ĈT LTET
x PExLĈe(k)

≤ eT(k)Pee(k) ≤ ē2.

(66)

It follows from Lemma 1 and (55) that

ẑT(k + 1)Pẑ(k + 1) ≤ µ2ẑT(k)ΩTPΩẑ(k)

+τ2e(k)T ĈT(1 − δ(·))LTET
x PExL(1 − δ(·))Ĉe(k).

(67)

Substituting (65) and (66) into (67) yields ẑT(k + 1)PẑT(k + 1) ≤ 1, which implies that S is an
invariant set.
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On the other hand, for any e(k) ∈ Se, (49) and (50) yield that e(k + 1) = (Φ + Lffi(·)Ĉ)e(k),
thus by Lemma 1, for any µ1 > 1, the following inequality holds:

eT(k + 1)Pee(k + 1) = ((Φ + Lffi(·)Ĉ)e(k))TPe

·((Φ + Lffi(·)Ĉ)e(k)) ≤ µ1eT(k)ΦTPe

·Φe(k) + τ1eT(k)ĈTffi(·)T LTPeLδ(·)ĈeT(k)

≤ eT(k)(µ1ΦTPeΦ + τ1ĈTffi(·)T LTPeLffi(·)Ĉ)e(k).

By taking (59) and (64) into account, one has eT(k + 1)Pee(k + 1) ≤ ē2, i.e. Se is an invariant
set.
To satisfy the input constraint (48), rewrite the control law and get

|ui(k)| = |K̄iẑ(k)| = |K̄iP
−1/2 · P1/2ẑ(k)|

≤ ‖K̄iP
−1/2‖ · ‖P1/2ẑ(k)‖.

Since ‖P1/2ẑ(k)‖ ≤ 1 from (56) and ‖K̄iP
−1/2‖ ≤ ūi from (62), it immediately follows that

|ui(k)| ≤ ūi, i = 1, · · · , p. �

Fig. 9. Dual-mode predictive controller structure.

Remark 2. Both the internal matrices LTPeL and LTET
x PExL in (59) and (60) of Assumption A2

are positive definite and symmetric matrices. Hence these two inequalities provide a measure for the
upper bound of the identification error of the nonlinear block inverse f−1(·). Specifically, take the
single-input/single-output (SISO) case as an instance for discussion. Inequalities (59) and (60) of

Assumption A2 can be simplified to
|δ(·)| ≤ σ, (68)

which is independent of P, Pe and L. Since (A, B) is estimated precisely (see Assumption A1), the
subspace method yields sufficiently accurate local approximations of f −1(·) and C. Consequently, as
shown in (51), compared with the second part, the first part is much smaller, and it is thus a logical
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assumption that δ(·) is locally bounded as given in (68) for SISO systems, or (59) and (60) for MIMO
systems. As a consequence, the estimate error Ĉe(k) is mainly caused by part2, i.e. the initial condition
mismatch, and (59) and (60) can be easily satisfied in general. They will be further illustrated by a case
study later. Moreover, σ is a parameter determining the stability performance of the new our approach.
Note that even if the subspace can not yield sufficiently accurate f −1(·) and C, i.e. σ is not sufficiently
small, the present algorithm still works, but with shrinking invariant sets Sxm and Se.

Remark 3. It is shown by a number of simulations that Assumption A2 is not difficult to fulfill.
A detailed procedure to obtain P and Pe is given here: First, the stable observer gain L (see (49)) and
state-feedback gain K (see (53)) are pre-calculated by MATLAB, which is quite fast. Then, select µ2 > 1
(generally, it can be selected in the range (1, 1.5)), and compute P by the LMI toolbox of MATLAB
according to (61), (62) and the pre-determined constant ē. Note that even for some unfavorable µ2,
one can still adjust the state-feedback gain K to guarantee the feasibility of P. Finally, select a suitable
µ1 > 1 and calculate Pe by the LMI toolbox according to (63), (64), the pre-determined constant σ,
and the pre-calculated matrix P. Furthermore, the obtained parameters L, P and Pe are substituted
into (59) and (60) to verify their feasibility according to δ(·), which is now available. If they can not be
fulfilled, one should increase σ until it can be satisfied. Of course, for SISO systems, since (59) and (60)
has been simplified to (68), this condition can be directly verified, which is independent of L, P and Pe.
As a consequence, the computation time is mainly taken by the above-mentioned two LMIs composed

of (61), (62) and (63), (64), respectively, whose computational complexities are both O(N2). Moreover,
since L and K can be designed separately for the linear block, even for some unfavorable values of µ2,
one can still assure the feasibility of Pe by adjusting the feasible state-feedback gain L or moderately
increasing σ. Certainly, suitable selections of µ1 and µ2 (µ1 ∈ [1, 1.5] and µ1 ∈ [1, 2] for example
according to our numerical simulations) will accelerate the searching of P and Pe.

Based on Theorem 4 and Eq. (58), a block diagram depicting the control structure is illustrated
in Fig. 9.
Now, the main advantages of the present algorithm can be demonstrated. If Hp = 0, i.e.
the system state dimension is not extended, then the control law (53) reduces to the standard
output-feedback control law

u(k) = Kx̂(k), (69)

and the invariant set S reduces to

Sx �
{

x̂|x̂TPx x̂ ≤ 1
}

. (70)

Here, (69) is called the initial control law, which drives x̂(k) to the origin asymptotically
provided that the initial state estimate x̂(0) is inside Sx. However, Sx is the minimal case
of S with Hp = 0, so it is very likely that x̂(0) /∈ Sx . Fortunately, it will shown later that the
extension of the system state by (53) can enlarge Sx effectively so as to include x̂(0) in general.
More precisely, if the current x̂(k) moves to outside Sx, then the controller enters the First
Mode, in which the optimal input profile (49), (53), found by solving the open-loop optimal
control problem (58), drives the nonlinear system state x̂ into the terminal invariant set Sx over
a finite horizon Hp, i.e. x̂(k + Hp) ∈ Sx. To that end, the controller is automatically switched
to the Second Mode, in which the local linear output-feedback control law (69) steers the state

x̂(k) to the origin asymptotically. This approach is called the dual-mode NMPC method (14),
and Hp is hereby called the prediction horizon.
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Remark 4. The present method focuses on the regulator problem. To address the tracking problem, as
shown in the top-left part of Fig. 9, Equation (53) should be converted into a state-feedback control law
with an offset, in the form of

u(k) = K̄ẑ(k) + aθ,

where 1/θ = limz→1(C̄(zI − Ω)−1B̄), C̄ = [Ĉ, 0]m×(n+Hp), B̄ = [BT, 0]T
(n+Hp)×p

, and the

set-point r(k) = a. Furthermore, if (I − Ω) is nonsingular, then one can make a coordinate
transformation ẑ(k) − α −→ ˜̂z(k), with α = (I − Ω)−1Baθ, so as to convert the tracking problem
to the regulator problem. Even if (I − Ω) is singular, one can still use some suitable coordinate
transformation to convert it to the regulator problem. In turn, the terminal invariant set Sx has hereby
moves to a new place in the old state space spanned by x̂, and the center of Sx is thus shifted from the
origin to α. In this sense, these two control problems are equivalent, and hence the terminal set Sx

should be recalculated once a new set-point variation occurs.

Remark 5. In many industrial applications, the constraints on the changing rate of the input, i.e.
|∆ui(k)| ≤ ῡi with ∆ui(k) � ui(k + 1) − ui(k), i = 1, · · · , p. are very common. This kind of
constraints can also be handled by the present method. More precisely, taking into consideration of

(55), and letting Υ �

[
L(1 − δ(·))Ĉ

0

]

, one has

|∆ui(k)| = K̄i(z(k + 1)− z(k)) = |K̄i(Ω − I)ẑ(k)|
+|K̄iΥe(k)| = |K̄i(Ω − I)P−1/2P1/2ẑ(k)|

+|K̄iΥP−1/2
e P1/2

e e(k)|.

Since ‖P1/2ẑ(k)‖ ≤ 1 from (56) and ‖P1/2
e e(k)‖ ≤ ē from (57), one has

|∆ui(k)| ≤ ‖K̄i(Ω − I)P−1/2‖+ ē‖K̄iΥP−1/2
e ‖. (71)

Thus, one can first compute K, L and P according to Remark 3, and then substitute them into (71) to
obtain a new matrix inequality of Pe as follows:

K̄iΥP−1
e ΥTK̄T

i ≤ 1/ē2 · (ῡi − ‖K̄i(Ω − I)P−1/2‖)2, (72)

or [
−1/ē2 · (ῡi − ‖K̄(Ω − I)P−1/2‖)2 K̄Υ

ΥTK̄T −Pe

]

≤ 0. (73)

In this way, the constraints on the changing rate of the input, i.e. |∆ui(k)| ≤ ῡi, can be handled
by introducing (73) into Assumption A2.

3.4 Stability analysis

Theorem 4 , provides the initial state invariant set guaranteeing the existence of D(k) (see
(53)), and this section focuses on maximizing the invariant set, i.e. the asymptotic stability
region. Rewrite the matrix P as

[
(Px)n×n PxD

PT
xD (PD)Hp×Hp

]
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and define an extended invariant set of x̂ as

Sxm �
{

x̂|x̂T(Px − PxDP−1
D PT

xD)x̂ ≤ 1
}

. (74)

Moreover, denote the volume of the ellipsoidal invariant set Sxm by vol(Sxm) and let det(·)
be the determinant and “∝” denotes “proportional to”. Accordingly, a new theorem is
established to show the quantitative correlation between the size of the invariant set of x̂ and
the matrix P.

Theorem 5. The following two conclusions hold:
1) If ẑ(k) ∈ S (see (56)), then x̂(k) ∈ Sxm.
2) vol(Sxm) ∝ det(ET

x P−1Ex), here vol(·) denotes the size of a set.

Proof : Since ẑ ∈ S, it follows from (56) that

x̂T(k)Px x̂(k)
≤ 1 − 2x̂T(k)PxDD(k)− DT(k)PDD(k).

(75)

In addition, it can be easily verified that

−P−1
D PT

xD x̂(k) = arg maxD(k){1 − 2x̂T(k)

×PxDD(k)− DT(k)PDD(k)}.
(76)

Thus, substituting (76) into (75) yields x̂T(k)(Px − PxDP−1
D PT

xD)x̂(k) ≤ 1, which proves

Conclusion 1). Furthermore, using Px − PxDP−1
D PT

xD = (ET
x P−1Ex)−1 and (74), one can easily

verify Conclusion 2). �

It can be seen from Theorem 2 that the initial invariant set of x̂ is effectively enlarged from Sx

to Sxm. Moreover, in order to maximize Sxm, one may maximize det(ET
x P−1Ex) by the method

detailed in (10), with calculation carried out using the MATLAB LMI toolbox. This maximized
Sxm guarantees the existence of D(k), or the feasibility of the present control law (53), with
the largest possible probability. Consequently, based on Theorems 4 and 5, the closed-loop
stability is guaranteed by the following theorem.

Theorem 6. For the constrained Wiener system (45)–(48), if the control law (49), (53) and (58) is
implemented along with stable state-feedback gain K and a stable state-observer L, and Assumptions
A1–A2 hold, then the closed-loop system is asymptotically stable.

Proof : If the current state estimate ẑ(k) ∈ S, then it follows from Theorem 4 that there exists
D(k + 1) such that ẑ(k + 1) ∈ S. Additionally, from (55) it is obvious that D̄(k + 1) � MD(k)
is always a candidate for D(k + 1), since it satisfies J̄(k + 1) = D̄T(k + 1)D̄(k + 1) ≤ J(k),
and one has J̄(k + 1) = J(k) only if D(k) = 0. Indeed, it can be easily seen that the feasible
sequence D̄(k + i) (i = 1, · · · , Hp) decreases to zero in Hp steps. Moreover, it can be seen that
D̄(k + 1) is not always the optimal value D(k + 1) (or D∗(k + 1)) calculated by (58). Thus, one
has J∗(k + 1) ≤ J̄(k + 1) < J(k) for D(k) �= 0, and the control law with the optimal auxiliary
state D∗(k + 1) will converge to the initial control law in no more than Hp steps. Thereafter,
controller (69) will make the system asymptotically stable. �
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3.5 Case study

Consider a Wiener system described by (45)–(48) with

A =

[
2.3 −1.2

1.0 0

]

, B =

[
1

0

]

, C = [1, 0],

f (η) = η4sin(η)− η5, ū = 1.5.

It can be easily verified that f (·) is a monotonically increasing function and is thus invertible.
First, Gómez’s subspace method (23) is used to identify the parameters of the linear block
(A, B, C) and the inverse of the nonlinear block f −1(η). In order to demonstrate the merits
of our proposed dual-mode NMPC algorithm, as shown in Fig. 10, we show a comparison to
a traditional NMPC based on the NAARX (Nonlinear Additive AutoRegressive models with
eXogeneous inputs) model (34), which is a special class of the well-known NARMAX models.
This model is defined as

y(t) =
s

∑
i=1

hi(y(t − i)) +
q

∑
j=0

gj(u(t − j)) + ξ(t) (77)

where {hi(·)} and {gi(·)} are scalar nonlinear functions, generally polynomials, and ξ(t) is
external white noise.
In this numerical example, p = m = 1, and the parameters of the present dual-mode NMPC are
selected as follows: the initial state-feedback gain K = [−2.3536, 1.1523] and the state observer
gain L = [1.0765, 0.3678]T are optimized via DLQR and KALMAN functions of MATLAB 6.5,
respectively. Prediction horizon Hp = 6, ē = 0.4, x̄(0) = [2.2, 2.2]T, x(0) = [4.3, 4.8]T, µ1 = 1.1,

µ2 = 1.4 and σ = 0.1. The estimate Ĉ = [1.01, 0]. The parameters of the above traditional
NMPC are: prediction horizon Hp = 7, control horizon Hu = 7, s = 5 and q = 3 (see Eq. (77)).
In Fig. 10, the most interesting part is the system state response to the change of the set-point.
The trajectories of {y, η}, u, and d1 (see (53)) are shown in the upper, middle and lower parts of
Fig. 10, respectively. In this case, after 200 sampling periods, the overshoot, settling time and
steady-state error of the present Dual-mode NMPC are 12.2%, 15 steps, and 0.3%, respectively.
The first two transient performance indexes are much smaller than the counterparts of the
traditional NMPC as shown by the read curves in Fig. 10. These merits root in the dual-mode
mechanism of our proposed NMPC, which can effectively enlarge the closed-loop stability
region thereby improving the transient performances.
To illustrate the superiority of the proposed method more vividly, we present the curves of
x(k) (star-line), x̂(k) (circle-line) and the invariant sets Sx (see Eq. (70)), Sxm (see Eq. (74)) in
Fig. 11. It should be noted that x and x̂ in these two figures were implemented with coordinate
transforms according to Remark 3. One can see that x̂(0) is outside the feasible initial invariant
set Sx (see the solid ellipse in Fig. 11), thus D(k) is activated to enlarge Sx to Sxm (see the
dashed ellipse in Fig. 11 containing x̂(0)), and then to drive x̂(k) back to Sx in no more than

Hp steps. Thereafter, the initial control law (69) stabilizes the system and leads the state to
approach the origin asymptotically. Remarkably, for favorable parameters like Hp = 6, ē = 0.4
and σ = 0.1, as shown in Fig. 11, the attraction region Sxm is much larger than the counterpart
of the standard NMPC. Moreover, in Fig. 12 one can observe the dynamics of the state estimate
error e(k) (see (50) and the star-curve). One can observe that, when the trajectory of e(k) starts
from outside of Se (see (57) and the ellipse), it will move back into Se after no more than Hp

steps and then converge to the origin asymptotically. Theorem 4 is thus verified.
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Fig. 10. Control performance comparison of the tracking problem. Solid curve: dual-mode
NMPC; dotted curve: traditional NMPC; dashed curve: intermediate output (upper
sub-figure) and input constraints (middle sub-figure); set-point: {−40, 40}.

Fig. 11. Trajectory and invariant set of system states.
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(a) (b)

Fig. 12. (Color online) (a): Trajectory and invariant set of state estimate error; (b):
Comparison of the invariant sets with σ = 0.2 or ē = 0.7.

In addition, the size comparison of Sxm with different Hp ∈ {0, 3, 6} is presented in Fig. 11.
The numerical results have verified Theorem 5, i.e. the size of Sxm increases along with
the enhancement of det(ET

x P−1Ex), and the increase of Hp helps enlarge the stable region.
However, this enhancement will also increase the computational complexity. Therefore, a
tradeoff must be made between stability enhancement and computational load. Moreover,
in order to compare the stability of the present algorithm and the traditional NMPC, their

attraction regions are shown together in Fig. 11. It can be observed that the attraction region
Sxm of the present algorithm is much larger than that of the traditional NMPC with favorable
parameters.
Still worth mentioning is that some other simulations also show that the size of Sxm increases
as σ decreases. In other words, more accurate identification algorithms would help further
enlarge the asymptotic stability region. Fortunately, Gómez’s method (23) is helpful in this
regard. Furthermore, to verify the feasibility of (68) in Assumption A2, the values of Ĉe(k)
and Ĉx(k)− η̃(k) are compared throughout the whole simulation process, and it is found that
| Ĉx(k) − η̃(k)| ≤ σ|Ĉe(k)| always holds with σ = 0.1. The feasibility of Theorem 4 is thus
verified.
Finally, it is remarked that the performance of the present algorithm highly depends on
the effectiveness of the subspace method and the state observer L, and hence the present
algorithm is not always better than NMPC. In other words, if σ or ē can not be guaranteed
small enough, the performance of the proposed dual-mode algorithm becomes worse than
the traditional NMPC although the former is simpler and has a lower computational burden

thanks to its block-oriented internal model. For instance, if ē = 0.7 or σ = 0.2, as shown
in Fig. 12(b) (all the other parameters are the same as those in Fig. 11), the invariant set Sxm

shrinks and becomes even smaller than that of the traditional NMPC.

3.6 Section conclusion

This section has developed an effective control method for MIMO Wiener systems with input
constraints. First, the nonlinear and linear blocks of the system are separated by a subspace
method. Then, a novel dual-mode NMPC algorithm is developed and used for the remaining
process control. This approach is capable of maximizing the asymptotic stability region by
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a dual-mode control mechanism, and eliminating the reliance on the measurability about
the intermediate output. Finally, control simulations have demonstrated the feasibility and
superiority of the proposed control algorithm for a large class of nonlinear dynamic systems.
It is believed that this novel approach has promising potential in handling many complex
systems often encountered in industrial control processes.
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