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1. Introduction 

Proteins are organic compounds that are made up of combinations of amino acids and are of 

different types and roles in living organisms. Initially a protein is a linear chain of amino 

acids, ranging from a few tens up to thousands of amino acids. Proteins fold, under the 

influence of several chemical and physical factors, into their 3-dimensional structures which 

determine their biological functions and properties. Misfolding occurs when the protein 

folds into a 3D structure that does not represent its correct native structure, which can lead 

to many diseases such as Alzheimer, several types of cancer, etc… (Prusiner, 1998). Hence, 

predicting the native structure of a protein from its primary sequence is an important and 

challenging task especially that this protein structure prediction (PSP) problem is 

computationally intractable.  

The primary structure of a protein is a linear sequence of amino acids connected together via 
peptide bonds. Proteins fold due to hydrophobic effect, Vander Waals interactions, 
electrostatic forces, and Hydrogen bonding (Setubal & Meidanis, 1997). The secondary 
structures are three-dimensional structures characterized by repeating bonding patterns of 
┙-helices and ┚-strands. Proteins further fold into a tertiary structure forming a bundle of 
secondary structures and loops. Furthermore, the aggregation of tertiary structure regions of 
separate protein sequences leads to quaternary structures. These structures are depicted in 
Fig. 1 (Rylance, 2004). 
Computational approaches for PSP can be classified as: homology modeling, threading, and 

ab initio methods (Floudas, 2007). Approaches in the first two groups use known protein 

structures from protein data banks (PDB). Approaches in the third group solely rely on the 

given amino acid sequence. A survey of PSP approaches appeared in Sikder and Zomaya 

(2005). Homology modeling uses sequences of known structures in the PDB to align with 

the target protein’s sequence for which the 3D structure is to be predicted (Kopp & 

Schwede, 2004; Notredame, 2002; Pandit et al., 2006).  

Threading is similar to homology modeling. But, instead of finding similar sequences to 
deduce the native conformation of the target protein, threading assumes that the target 
structure is similar to another existing structure, which should be searched for (Lathrop et al., 
1998; Jones 1998; Skolnick et al., 2004). The threading of a sequence to a fold is evaluated by 
either environment-based or knowledge-based mean-force-potentials derived from the PDB. 
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Fig. 1. Primary, secondary, tertiary and quaternary structures 

Ab initio approaches do not rely on known structures in the PDB. Instead, they predict the 

3D structure of proteins given their primary sequences. The underlying strategy is to find 

the best possible structure based on a chosen energy function. Based on the laws of physics, 

the most stable structure is the one with the lowest possible energy (Anfinsen, 1973). The 

main challenge of these approaches is to search for the most stable structure in a huge search 

space. Models such as the Hydrophobic-Polar (HP) models have been developed in order to 

reduce the size of the search space. Other models use the detailed representation of proteins 

with all the corresponding atoms, based on force fields.  

Force field models use an energy objective function that evaluates the structure of a protein. 
This function attempts to represent the actual physical forces and chemical reactions 
occurring in a protein. Atoms are modeled as points in 3D with zero volume but with finite 
mass and charge, and bonds among atoms are modeled as Newtonian springs. The energy 
function is usually based on molecular mechanics and force fields components such as bond 
lengths, bond angles, dihedral angles, van der Waals interactions, electrostatic forces, etc.... 
Examples of force-field based methods are found in: Schulze-Kremer (2000), Klepeis and 
Floudas (2003), Datta et al. (2008), Li et al. (2006), Srinivasan and Rose (2000) and Mansour et 
al. (2009).  
The HP model simplifies the protein by assigning each amino acid to be a point in a 2D or 

3D lattice (Unger and Moult, 1993b) which is either hydrophobic (H) or polar (P) (Dill, 1985). 

According to this model, the most stable structure is the one with the hydrophobic amino 

acids lying in its core. The underlying concept is that hydrophobic amino acids tend to 

avoid contact with the solvent and hence tend to move inside the structure whereas the 

polar ones remain on the outside. The main energy function used in this model is the total 

number of the hydrophobic interactions between the amino acids and the goal is to have a 

lattice with minimum energy, i.e., with maximum number of H-H contacts. The objective is 

to fold a string of Hs and Ps on a three dimensional coordinates system in a self-avoiding 

walk. Candidate solutions are represented as a string of characters (b, f, u, d, l, r) 

representing the six directions: backward, forward, up, down, left and right. 

Despite the reduction in search space, the problem of predicting protein structures in the HP 

model is still intractable (Unger and Moult, 1993a). Hence, heuristic and meta-heuristics 

algorithms have been reported for finding good sub-optimal solutions. In the early nineties, 

Unger and Moult (1993b) developed a genetic algorithm (GA) combined with the Monte 

Carlo method to fold proteins on a two dimensional lattice and they extended their work 
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later to a 3D lattice. Later, a standard GA was developed (Patton et al., 1995) and it 

outperformed that of Unger and Moult (1993b) by reaching higher number of hydrophobic 

contacts with less number of energy evaluations. More recently, Johnson et al. (2006) 

proposed a genetic algorithm with a backtracking method to resolve the collision problem.  

Heuristic methods based on assumptions about the folding mechanism were proposed, such 
as the hydrophobic zipper (Dill et al., 1993), the constrained hydrophobic core construction 
algorithm (Yue & Dill, 1995), and the contact interactions method (Toma & Toma, 1996). A 
branch and bound algorithm was developed by Chen and Huang (2005). The algorithm 
evaluates the importance of every possible position of the hydrophobic amino acids and 
only those promising locations are preserved for more branching at every level.  
Methods based on the Monte Carlo (MC) algorithm have also been proposed: the MC based 

growth algorithm (Hsu et al., 2003), and the evolutionary MC algorithm (Liang & Wong, 

2001). Further, a modified particle swarm optimization algorithm for the protein structure 

prediction problem in the 2D toy model was proposed by Zhang and Li (2007). An Ant 

Colony Optimization algorithm was proposed by Shmygelska and Hoos (2005) for both 2D 

and 3D lattice models. 

In this paper, we present a genetic algorithm for the protein structure prediction problem 

based on the cubic 3D hydrophobic polar (HP) model. This algorithm is enhanced with 

heuristics that repair infeasible outcomes of the crossover operation and ensure that the 

mutation operation leads to fitter and feasible candidate solutions. The PSP solutions 

produced by this GA are experimentally evaluated by comparing them with previously 

published results. 

The rest of the paper is organized as follows. Section 2 describes the GA algorithm for the 

PSP problem. Section 3 presents our experimental results. Section 4 concludes the paper. 

2. Enhanced genetic algorithm 

Genetic Algorithms simulate the concept of natural evolution (Holland, 1975). They are 

based on the operations of population reproduction and selection for the purpose of 

achieving optimal results. Through artificial evolution, successive generations search for 

fitter adaptations in order to solve a problem. Each generation consists of a population of 

chromosomes, and each chromosome represents a possible solution. The Darwinian 

principle of reproduction and survival of the fittest and the genetic operations of 

recombination and mutation are used to create a new offspring population from the current 

population. The process is repeated for many generations with the aim of maximizing the 

fitness of the chromosomes. In the following subsections, we describe an enhanced genetic 

algorithm (EGA) that is adapted for solving the protein structure prediction problem.  A 

flowchart of this EGA is given in Fig. 2.  

2.1 Chromosomal representation 

A Chromosome in the population is encoded as an array of length N-1, where N is the 

number of amino acids in the respective protein. Each element in the array represents the 

position Xd of the corresponding amino acid d with respect to the preceding one and its 

value can be one of six characters {b, f, u, d, l, r}. These characters represent the following six 

directions, respectively {backward, forward, up, down, left, right}. In Fig. 3, a sample 3D  
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Fig. 2. Flowchart for the EGA. 

structure is illustrated. This structure is represented as bbburdfulurrur, which is an array of 
directions (of length 14) is representing a protein sequence containing 15 amino acids where 
the first amino acid is omitted since it is the reference point. The gray balls represent the 
polar amino acids whereas the black balls represent the hydrophobic ones. 
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Fig. 3. A candidate PSP solution 

GA’s population is an array of POP Chromosomes. The initial population of PSP solutions is 
randomly generated. That is, each position Xd of amino acid d (d = 1, 2,…, N-1) is assigned a 
random value for the chromosome i (i = 0, 1, …., POP-1). In our implementation, we use 
POP = 200. 

2.2 Fitness function  

The fitness function is given by the sum of the hydrophobic contacts (H-H) between non 
adjacent amino acids. Since we are using the cubic lattice, the maximum number of possible 
contacts per amino acid is four, except for the first and last amino acids, which might have 
up to five contacts. The goal is to maximize the fitness value of the chromosomes to obtain 
protein structures with the most compact hydrophobic core and, thus, with the lowest 
energy. For example, in Fig. 3, the fitness value of the displayed structure is 5. The 
hydrophobic contacts are displayed in dotted lines and there are five of them between the 
following pairs of hydrophobic amino acids: (3, 8), (3, 10), (4, 7), (5, 10) and (6, 9).  
Evaluating the fitness value of a chromosome is simple. Every hydrophobic amino acid in 
the sequence is checked for any non-adjacent (not connected by a bond) hydrophobic amino 
acids in the six positions around it on the lattice, at a distance 1, and the number of these 
amino acids is counted. 

2.3 Reproduction scheme and convergence 

The whole population is considered a single reproduction unit within which tournament 
selection is performed. In this selection method, chromosomes are compared in 
a ''tournament,'' with the higher-fitness chromosome being more likely to win. The 
tournament process is continued by sampling, with replacement, from the original 
population until a full complement of parents has been chosen. We use the binary 
tournament method, where we randomly select two pairs of chromosomes (i.e. 2 
tournaments with 2 members each) and choose as the two parents the winner chromosomes 

www.intechopen.com



Search Algorithms and Applications 

 

74 

that have the higher fitness value from each pair. The tournament selection method is 
chosen since it is not very sensitive to the scaling of the fitness function. 
To ensure that good candidate solutions are preserved, the best-so-far protein structure is 
saved. Convergence is detected when the best-so-far structure does not change its fitness 
value for 10 generations. After convergence, the best-so-far protein structure becomes the 
final PSP solution found.  

2.4 Genetic operators and acceptance heuristics  

The genetic operators employed in GA are 1-point crossover and mutation at the rates 0.5 

and 0.1, respectively.  Crossover is applied to pairs of chromosomes provided by 

tournament selection, where position k along the chromosome is selected at random 

between 1 and N, and all genes between k and N are swapped to create two new 

chromosomes. That is, the amino acids that lie between k and N will have their location in 

space (represented by the direction with respect to the preceding amino acid) exchanged. 

This may lead to collisions which occur if two or more amino acids lie at the same point on 

the cubic 3D lattice. If collisions occur, the protein structure becomes invalid. Invalid 

structures are repaired using a heuristic repair function, if possible; otherwise, the initial 

structure is restored. The repair function detects a collision and tries to repair it locally by 

finding an alternative empty location for the amino acid which caused the collision. If no 

such location is available, then it searches for previous amino acids whose locations can be 

modified. If modifications are performed for more than three amino acids or if none can be 

modified, then it is assumed that the structure cannot be repaired and the pre-crossover 

protein structure is returned. 

Mutation is applied to randomly selected genes; that is the position of amino acid, d, in the 
3D cubic lattice is changed to another position randomly selected from {b, f, u, d, l, r}. 
Eventually, the new offspring population replaces the parent population. But, if this 
mutation leads to an invalid protein structure, it is rejected and mutation will be repeated 
until a valid structure is found. Furthermore, the fitness value of this valid structure is 
computed. If the fitness of the mutated structure is higher than that of the initial pre-
mutation structure, the mutated structure is accepted; otherwise, the initial structure is 
restored. 

3. Experimental results 

In this section, we report the empirical results of the proposed GA and compare them to 
those of published techniques: one by Patton et al. (1995), which proposed a standard 
genetic algorithm for this problem and reported better results than those achieved by Unger 
and Moult (1993b); the second is by Johnson et al. (2006), which reports better results than 
those achieved by Patton et al. (1995) for the smaller sequences.  
We use two sets of benchmark sequences employed first by Unger and Moult (1993b). These 
are amino acid sequences of Hs and Ps generated randomly: 10 sequences are of length 27 and 
10 sequences of length 64 (Tables 1 and 2). We evaluate the results using the following metrics:  

• Fitness value: It is the total number of non consecutive H-H contacts. 

• Number of fitness evaluations: This is the number of times the fitness function is 
computed to reach the final fitness score for a specific sequence. This metric is used as 
an indicator of the efficiency of our algorithm. 
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We executed our EGA program on a PC running MS-Windows XP operating system with a 
2.33 GHz CPU and 2 GByte RAM memory.  
 

Seq # Sequence 

273d.1 Phphphhhpphphppppppppppphhp 

273d.2 Phhpppppppppphhpphhpphpphph 

273d.3 Hhhhppppphppppphhhpppppppph 

273d.4 Hhhpphhhhppphphpphhpphppphh 

273d.5 Hhhhpppphphhppphhpppppppppp 

273d.6 Hpppppphphhhpphhppphpppphph 

273d.7 Hpphphhppphppppphphhphphphh 

273d.8 Hppppppppppphphpppppppphphh 

273d.9 Ppppppphhhppphphhppphpphppp 

273d.10 Ppppphhphphphphpphhphhphppp 

Table 1. Benchmark sequences of length 27 

 

Seq # Sequence 

643d.1 pphhhhhppphhppppphhppphpppppphphppphpphpphppppphpppphhphhpphpphp 

643d.2 pphphpphpphhhphhhhpphhhpppphphppphphppphphppppphphpphphppphpphpp 

643d.3 hphhpphhphppppphhhphhhhpphpphphhppphphpphhhphhphppppphhhhhhhhppp 

643d.4 hpphhpphpphphpphpppphpppppphphphhhpphphppphphpphhpphpphpphphhhph 

643d.5 hppphhpphphppphppphphhppphhphphhphpphppphpphphhhpphpphpphhhphhhh 

643d.6 hpphhphhhhpppppphhpphpppphhppphpphphhphpppphhpppphppppphpppphphh 

643d.7 pppphppphppphhhhphhppppphpphphhphphppppphpppppppppphhhhpppphhpph 

643d.8 ppphhhpphphpphpphhppphpphpphhphppphppppppphphhhphhhhhpphhppphpph 

643d.9 hpphpphhhpppphphppphphhphhhhhpppphphphpppphphppphhphpppphpphhphp 

643d.10 pphpphpphhhppphphpphpphpppppphpphhhpphpphpphphpppppphhhppppphphp 

Table 2. Benchmark sequences of length 64 

Tables 3 and 4 show the results of our EGA in comparison with the previously published 

results of Johnson et al. (2006) for proteins with lengths 27 and  the results of  Patton et al. 

(1995) for 64 amino acids, respectively . 

Table 3 results show that the proposed EGA produces fitness values that as the same as 
those of the technique of Johnson et al. (2006) in 9 out of 10 cases with a better value in the 
remaining case. However, the numbers of evaluations of fitness values is significantly less in 
the afore-mentioned 9 cases; it is greater in the 10th case where EGA clearly managed to 
search larger areas of the search space that enabled it to find a fitter protein structure.  
Table 4 results show that the proposed EGA produces fitter protein structures than Patton et 
al. (1995) in 70% of the 10 cases, whereas the remaining 30% of the cases are identical. 
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4. Conclusion and future work 

We have proposed a genetic algorithm that is enhanced with heuristic methods. These 
heuristics are incorporated into the crossover and mutation operations for the purposes of 
dealing with infeasible intermediate candidate solutions and of guiding the search into fitter 
regions of the search space. The empirical work shows that this enhanced genetic algorithm 
gives better results in terms of the protein structures, the algorithm efficiency, or both. 
Future work would consider larger proteins and visualization of the results. Furthermore, 
predicting the structures of large proteins is likely to require parallel processing in order to 
reduce execution time. 
 

Proposed EGA 
Johnson et al. 

(2006) 
Seq # 

Fitness 
#Fitness 

Eval. 
Fitness 

#Fitness 
Eval. 

273d.1 9 1,450 9 15,854 

273d.2 10 5,473 10 19,965 

273d.3 8 1,328 8 7,991 

273d.4 15 5,196 15 23,525 

273d.5 8 1,184 8 3,561 

273d.6 12 18,012 11 14,733 

273d.7 13 4,920 13 23,112 

273d.8 4 654 4 889 

273d.9 7 1,769 7 5,418 

273d.10 11 3,882 11 5,592  

Table 3. Results for sequences of length 27 

 

Proposed 
EGA 

Patton et al. 
(1995) 

Seq # 

Fitness Fitness 

 72 82 1.d346

 03 23 2.d346

 83 04 3.d346

 43 53 4.d346

 63 63 5.d346

 13 13 6.d346

 52 52 7.d346

 43 53 8.d346

 33 43 9.d346

 62 72 01.d346  

Table 4. Results for sequences of length 64 
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