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1. Introduction

This chapter investigates a noise-aware dominance operator for evolutionary multiobjective
optimization algorithms (EMOAs). An EMOA uses a population of individuals, each of which
represents a solution candidate. It evolves individuals through generations and seeks the
optimal solution(s) in a multiobjective optimization problem (MOP), which is formalized as
follows.

min F(�x) = [ f1(�x), f2(�x), · · · , fm(�x)]T ∈ O
subject to �x = [x1, x2, · · · , xn]T ∈ S

}

(1)

S denotes the decision variable space. �x denotes a decision variable vector (or solution
candidate) with respect to S . It is called an individual in EMOAs. A function vector, F : R

n →
R

m, consists of m real-value objective functions, each of which produces an objective value
with respect to the objective space O. An MOP is to find an individual(s) that minimizes
objective values with subject to O.
In an MOP, objective functions (i.e., f1(�x), · · · , fm(�x) in Equation 1) often conflict with each
other; there exist rarely a single individual that is optimum with respect to all objectives.
Therefore, an MOP often aims to find the optimal trade-off solutions, or Pareto-optimal
solutions, by balancing conflicting objectives simultaneously. The notion of dominance plays
an important role to seek Pareto optimality in MOPs (Srinivas & Deb, 1995). An individual
�x ∈ S is said to dominate an individual �y ∈ S (denoted by �x ≻ �y) iif the both of the following
conditions are hold.

• fi(�x) ≤ fi(�y) ∀ i = 1, · · · , m

• fi(�x) < fi(�y) ∃ i = 1, · · · , m

In real-world MOPs, objective functions tend to contain noise (Beyer, 2000; Bianchi et al., 2009).
Thus, objective functions can yield different objective values from the same individual from
time to time. For considering this noise, Equation 1 is revised as follows.
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min F(�x) = [ f1(�x) + ǫ1, f2(�x) + ǫ2, · · · , fm(�x) + ǫm]T ∈ O
subject to �x = [x1, x2, · · · , xn]T ∈ S

}

(2)

ǫm represents noise in the m-th objective function. Noise in objective functions can interfere
with a dominance operator, which determines dominance relationships among individuals.
For example, a dominance operator may mistakenly judge that an inferior individual
dominates an superior one. Defects in a dominance operator significantly degrades the
performance (e.g., convergence velocity) to solve MOPs (Arnold, 2000; Beyer, 2000; Beyer &
Sendhoff, 2007; Bianchi et al., 2009; Carroll et al., 2006; Diwekar & Kalagnanam, 1997).
In order to address this issue, this chapter proposes a notion of noise-aware dominance, called
α-dominance, and studies the α-dominance operator for EMOAs. This operator takes objective
value samples of given two individuals, estimates the impacts of noise on the samples and
determines whether it is confident enough to judge a dominance relationship between the
two individuals. Unlike existing noise-aware dominance operators, the α-dominance operator
assume no noise distributions a priori. (See Section 5. for more details.) Thus, it is well
applicable to a variety of real-world MOPs whose objective functions follow unknown noise
distributions.
This chapter describes the design of the α-dominance operator and evaluates it with
the probabilistic traveling salesman problem with profits (pTSPP), which can derive a
number of real-world noisy MOPs. pTSPP is a combination of existing two variants of
the traveling salesman problem (TSP): the probabilistic TSP (pTSP) (Jaillet, 1985) and the
TSP with profits (TSPP) (Feillet et al., 2005). In experimental evaluation, the α-dominance
operator is integrated with NSGA-II (Deb et al., 2000), a well-known EMOA, and compared
with existing noise-aware dominance operators. Experimental results demonstrate that the
α-dominance operator reliably performs dominance operation in pTSPP and outperforms
existing noise-aware operators in terms of the optimality, convergence velocity and diversity
of individuals.
The remaining part of this chapter is structured as follows. A further related work,
particularly in the areas of probabilistic Traveling Salesman Problems(TSPP) and noise
handling techniques of evolutionary algorithms, is surveyed in Section 5.. Section 2.proposes a
new problem, probabilistic Traveling Salesman Problem with Profit (pTSPP) and describes its
objectives and objective function. Section 3.introduces background of MOEAs and describes a
variant of NSGA-II, a well-known EMOA. To handling the uncertainties whose distribution is
unknown a priori, a noise-aware dominance operator is proposed in Section ??. This section
also presents the integration of proposed noise-aware dominance operator and NSGA-II.
Then, Section ?? reports computational results of proposed noise-aware dominance operator
on some test pTSPP problems with comparison to some other noise-aware dominance
operators. Section 6.concludes this research with a summary.

2. Probabilistic Traveling Salesman Problem with Profits (pTSPP)

This paper uses the following notations to define pTSPP. pTSPP is defined on a
fully-connected graph G = (V, E).

• V = {v0, v1, v2, ..., vn} is a set of vertices in G, where v0 is the depot. V′ = V − {V0} is a
set of n vertices. This paper assumes that vertices are stationary, and |V| does not change
dynamically.

272 Evolutionary Algorithms

www.intechopen.com



• E = {vi, vj|vi, vj ∈ V; i 	= j} is the set of edges. Each edge {vi, vj} ∈ E has an associated
cost cvi ,vj .

• Each vertex vi ∈ V′ maintains a visiting probability pvi , which represents the probability
that vi is visited. pvi ∈ [0.0, 1.0]. The visiting probability of the depot pv0 = 1.0.

• Each vertex vi ∈ V′ has an associated profit ρvi ≥ 0.0. The depot’s profit ρv0 = 0.0.

• R is a sequence of vertices, starting and ending with v0. R may not contain all the vertices
in V′: |R| ≤ |V′| + 2. No redundant vertices exist in R. (A node is never visited more than
once.) R is an a posteriori route; the salesman uses it to decide a posteriori which vertices he
actually visits based on the visiting probabilities associated with vertices in R.

pTSPP is to find the Pareto-optimal routes with respect to the following two objectives.

• Cost: The total traveling cost that the salesman incurs by visiting vertices in a route. This
objective is to be minimized. It is computed as:

fcost = ∑
vn ,vn′∈R

pvn pvn′
cvn ,vn′

(3)

where vn′ is the next vertex of vn in R.

• Profit: The total profit that the salesman gains by visiting vertices in a route. This objective
is to be maximized. It is computed as:

fpro f it = ∑
vn∈R

pvn ρvn (4)

Two objectives in pTSPP conflict with each other. For example, a shorter route (i.e., a route
containing a smaller number of vertices) yields a lower cost and a lower profit. On the
contrary, a longer route (i.e., a route containing a larger number of vertices) yields a higher
cost and a higher profit.
pTSPP inherently considers noise in its objective functions. Following the notations in
Equation 2, pTSPP is formulated as follows.

min F(R) = [ fcost(R) + ǫcost,
1

fpro f it(R)
+ ǫpro f it]

T ∈ O

subject to R = [v0, · · · , vn, vn′ · · · , v0] ∈ S

}

(5)

As mentioned in Section 1., pTSPP is a combination of pTSP (Bertsimas & Howell, 1993; Jaillet,
1985) and TSPP (Feillet et al., 2005). pTSP is to find an optimal a priori route with the minimum
cost in which each vertex requires a visit of the salesman with a given visiting probability.
TSPP is to find the optimal route, with respect to profit as well as cost, with which the salesman
visit a subset of given vertices. pTSPP extends pTSP in a sense that pTSPP computes the total
profit of a route based on the profit and visiting probability associated with each vertex in the
route (Equation 4). Unlike TSPP, pTSPP considers a visiting probability for each vertex.
A number of real-world noisy MOPs can be reduced to pTSPP as various real-world
optimization problems can be reduced to pTSP and TSPP (Bertsimas & Howell, 1993;
Feillet et al., 2005; Jaillet, 1985; Jozefowiez et al., 2008a). For example, pTSPP can represent
noisy MOPs in transportation planning, supply chain networks, data routing/gathering in
computer networks.
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3. The proposed evolutionary multiobjective optimization algorithm for pTSPP

This section describes the proposed noise-aware evolutionary multiobjective optimization
algorithm (EMOA) to solve pTSPP. It is designed to evolve individuals (i.e., solution
candidates) toward the Pareto-optima through generations with various operators such as
parent selection, crossover, mutation, selection, individual ranking and diversity preservation
operators. The α-dominance operator is used in the parent selection and individual ranking
operators. Section 3.1explains the representation of individuals in the proposed algorithm.
Section 3.2overviews the algorithmic structure of the proposed algorithm. Sections 3.3to 3.5
describe key operators in the proposed algorithm.

3.1 Individual representation

In the proposed EMOA, each individual represents a solution candidate for pTSPP: an a
posteriori route R that contains a sequence of vertices. (See Section 2..) Every individual has
the depot (v0) as its first and last element. Figure 1 shows an example individual. Given this
route, the salesman starts with v0, visits v3 and its subsequent 7 nodes, and returns back to v0.

Fig. 1. The Structure of an Example Individual

Different individuals have different lengths, depending on the number of nodes to be visited.

3.2 Algorithmic structure

Listing 1 shows the algorithmic structure of evolutionary optimization in the proposed
EMOA. It follows the evolutionary optimization process in NSGA-II, a well-known existing
EMOA (Deb et al., 2000).
At the 0-th generation, N individuals are randomly generated as the initial population P0

(Line 2). Each of them contains randomly-selected vertices in a random order. At each
generation (g), a pair of individuals, called parents (p1 and p2 ), are chosen from the current
population Pg using a binary tournament (Lines 6 and 7). A binary tournament randomly
takes two individuals from Pg, compares them based on the α-dominance relationship
between them, and chooses a superior one as a parent.
With the crossover rate Pc, two parents reproduce two offspring with a crossover operator
(Lines 8 and 9). Each offspring performs mutation with the mutation rate Pm (Lines 10 to 15).
The binary tournament, crossover and mutation operators are executed repeatedly on Pg to
reproduce N offspring. The offspring (Og) are combined with the parent population Pg to
form Rg (Line 19).
The selection process follows the reproduction process. N individuals are selected from 2N
individuals in Rg as the next generation’s population (Pg+1). First, the individuals in Rg

are ranked based on their α-dominance relationships. Non-dominated individuals are on the
first rank. The i-th rank consists of the individuals dominated only by the individuals on
the (i − 1)-th rank. Ranked individuals are stored in F (Line 20). Fi contains the i-th rank
individuals.
Then, the individuals in F move to Pg+1 on a rank by rank basis, starting with F1 (Lines 23
to 26). If the number of individuals in Pg+1 ∪ Fi is less than N, Fi moves to Pg+1. Otherwise,
a subset of Fi moves to Pg+1. The subset is selected based on the crowding distance metric,
which measures the distribution (or diversity) of individuals in the objective space (Deb et al.,
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2000) (Lines 27 to 29). The metric computes the distance between two closest neighbors of an
individual in each objective and sums up the distances associated with all objectives. A higher
crowding distance means that an individual in question is more distant from its neighboring
individuals in the objective space. In Line 28, the individuals in Fi are sorted based on their
crowding distance measures, from the one with the highest crowding distance to the one with
the lowest crowding distance. The individuals with higher crowding distance measures have
higher chances to be selected to Pg+1 (Line 29).

1 g = 0
2 Pg = Randomly generated N individuals

3 while g < MAX-GENERATION do
4 Og = ∅

5 while |Og| < N do

6 p1 = tournament(Pg)

7 p2 = tournament(Pg)

8 if random() ≤ Pc then

9 {o1, o2} = crossover(p1, p2)
10 if random() ≤ Pm then
11 o1 = mutation(o1)
12 end if
13 if random() ≤ Pm then
14 o2 = mutation(o2)
15 end if

16 Og = {o1, o2} ∪ Og

17 end if
18 end for
19 Rg = Pg ∪Og

20 F = sortByDominationRanking(Rg)

21 Pg+1 = {∅}
22 i = 1
23 while |Pg+1| + |Fi | ≤ N do

24 Pg+1 = Pg+1 ∪ Fi

25 i = i + 1
26 end while
27 assignCrowdingDistance(Fi)
28 sortByCrowdingDistance(Fi)

29 Pg+1 = Pg+1 ∪ Fi [1 : (N − |Pg+1|)]
30 g = g + 1
31 end while

Listing 1. Optimization Process in the Proposed EMOA

3.3 Crossover

The proposed EMOA adopts partially-mapped crossover (PMX) as its crossover operator.
PMX was originally proposed to solve TSP (Goldbert & Lingle, 1985). It is known that PMX
effectively works for TSP and its variants (Goldbert & Lingle, 1985; Kellegőz et al., 2008).
PMX first selects two crossover points on parent individuals at random. A sub-route
surrounded by the two crossover points is called a mapping section. In an example in Figure 2,
parent 1’s mapping section is [3, 9, 4, 13], and parent 2’s mapping section is [2, 8, 7, 3]. Given
two mapping sections, mapping relationships are formed by paring elements in the mapping
sections on a position by position basis. In Figure 2, the first elements in two mapping sections,
2 and 3, are paired; 2–3 is the first mapping relationship. Similarly, three extra mapping
relationships, 8–9, 7–4 and 3–13, are formed. In order to reproduce two offspring from two
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parents, mapping sections are exchanged between parents. In Figure 2, parent 1’s mapping
section is replaced with parent 2’s; therefore, one of proto-offspring is [0, 2, 7, 6, 2, 8, 7, 3,
10, 5, 1, 0]. (Note that Figure 2 does not show the other proto-offspring.) If proto-offspring
has redundant vertices across its mapping section and the other section, PMX replaces each
redundant vertex with its counterpart shown in mapping relationships. In Figure 2, 7 and
2 are redundant vertices. Given a mapping relationship of 7–4, 7 is replaced with 4 in the
non-mapping section. (Replacements always occur in the non-mapping section.) 2 is replaced
with 13 by referencing two mapping relationships (2–3 and 3–13) recursively.

ヲ Α ヶ ン Γ ヴ ヱン ヱヰ ヵ ヰヰ ヱ

ヴ ヵ ヶ ヲ Β Α ン ヱ ヱヲ ヰヰ Γ

Ocrrkpi<Ocrrkpi<Ocrrkpi<Ocrrkpi<
4"/"5."":"/";."9"/"6."5"/"354"/"5."":"/";."9"/"6."5"/"354"/"5."":"/";."9"/"6."5"/"354"/"5."":"/";."9"/"6."5"/"35

Rctgpv"3

Rctgpv"4

Qhhurtkpi"3

Gzejcpig"Ocrrkpi"
Ugevkqpu

Tgrckt"wukpi"Ocrrkpi"
tgncvkqpujkr

ヲ Α ヶ ヲ Β Α ン ヱヰ ヵ ヰヰ ヱ

ヱン ヴ ヶ ヲ Β Α ン ヱヰ ヵ ヰヰ ヱ

Fig. 2. An Example Crossover (PMX) Process

3.4 Mutation

The proposed EMOA provides a multi-mode mutation operator to alter reproduced offspring.
The operator has the following four modes and selects one of them at a time randomly.

1. Add: randomly chooses a vertex from unvisited vertices and inserts it to a
randomly-selected position in a route (Figure 3(a)). This mode gives the salesman a higher
chance to visit more vertices.

2. Delete: removes a randomly-selected vertex from a route(Figure 3(b)). This mode reduces
the number of vertices that the salesman visits.

3. Exchange: randomly chooses a vertex in a route and replaces it with one of unvisited
vertices (Figure 3(c)). The unvisited vertex is also selected at random. This mode is
intended to change a set of vertices that the salesman visits.

4. Swap: exchanges the positions of two randomly-selected nodes in a route (Figure 3(a)). This
mode is intended to change a visiting sequence of vertices.

3.5 α-Dominance

This section describes the notion of α-dominance and the design of the α-dominance operator.
α-dominance is a new dominance relationship that extends a classical dominance relationship
described in Section 1.. It takes objective value samples of given two individuals, estimates
the impacts of noise on the samples, and determines whether it is confident enough to judge
which one is superior/inferior between the two individuals.
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Fig. 3. Example Mutation Processes

3.5.1 The α-dominance operator

The α-dominance operator determines the α-dominance relationship between given two
individuals by statistically processing their objective value samples. With this operator,
individual A is said to α-dominate individual B (denoted by A ≻α B), iif:

• A’s and B’s objective value samples are classifiable with a statistical confidence level of α,
and

• C(A, B) = 1 ∧ C(B, A) < 1.

In order to examine the first condition, the α-dominance operator classifies A’s and B’s
objective value samples with Support Vector Machine (SVM), and measures a classification
error. (See Step 1 in an example shown in Figure 4.) The error (e) is computed as the ratio
of the number of miss-classified samples to the total number of samples. For evaluating
the confidence level (α) in a classification error, the α-dominance operator computes the
classification error’s confidence interval (eint):

eint = e ± tα,n−1σ (6)

tα,n−1 denotes a single-tail t-distribution with α confidence level and n− 1 degrees of freedom.
n denotes the total number of samples. σ is the standard deviation of e. It is approximated as
follows.

σ ∼=

√

e

n
(7)

If eint is significant (i.e., if eint does not span zero), the α-dominance operator cannot classify
A’s and B’s samples with the confidence level of α. Thus, the operator determines that A and
B do not α-dominate each other. (See Step 2 in Figure 4.)
If eint is not significant (i.e., if eint spans zero), the α-dominance operator can classify A’s and
B’s samples with the confidence level of α. Thus, the operator examine the aforementioned
second condition. (See Step 2 in an example shown in Figure 4.) It measures C-metric (Zitzler
& Thiele, 1999) with a classical notion of dominance (≻) described in Section 1.. C(A, B) denotes
the fraction of individual B’s samples that at least one sample of individual A dominates:
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C(A, B) =
|{b ∈ B | ∃a ∈ A : a ≻ b}|

|B|
(8)

If C(A, B) = 1, all of B’s samples are dominated by at least one sample of A. If C(B, A) < 1,
not all of A’s samples are dominated by at least one sample of B. The α-dominance operator
determines A ≻α B if C(A, B) = 1 and C(B, A) < 1. If C(A, B) < 1 and C(B, A) < 1, the
operator determines neither A ≻α B nor B ≻α A. See Figure 4 as well.
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Fig. 4. An Example Process to determine the α-Dominance Relationship between two
individuals (A and B)

Figure 4 shows an example to determine the α-dominance relationship between two
individuals, A and B, with two objectives, f1 and f2, to be minimized. Individual A and B have
seven samples each. First, the α-dominance operator classifies these 14 samples in the objective
space with SVM and computes eint. Suppose SVM produces a classification vector as shown

in Figure 4. Two samples of B are miss-classified; e = 2
14 (0.143). Thus, σ ∼=

√

0.143
14 = 0.1.

Assuming the confidence level α of 95%, eint = 0.143 ± 1.771 ∗ 0.1 = 0.143 ± 0.1771. Since eint

spans zero, A’s and B’s samples are classifiable with the confidence level of 95%. This means
that the aforementioned first condition is hold. In order to examine the second condition,
the α-dominance operator measures C(A, B) and C(B, A). In Figure 4, C(A, B) = 1 and
C(B, A) = 2/14 < 1. This means that the second condition is hold. As a re result, the
α-dominance operator concludes A ≻α B.
Listing 2 shows pseudo code of the α-dominance operator. A and B denote individual A’s and
B’s samples, respectively. A′ and B′ denote two clusters of samples classified by SVM.

1 function alphaDominance(A, B, α)

2 {A′, B′} = SVMClassifier(A, B)
3 e = 0 // classification error

4 for each x ∈ A′ do

5 if x /∈ A then
6 e = e + 1
7 end if
8 end for
9

10 for each x ∈ B′ do
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11 if x /∈ B then
12 e = e + 1
13 end if
14 end for
15
16 if e = 0 then

17 if C(A,B) = 1 then
18 return 1 // A α-dominates B.

19 else if C(B,A) = 1 then
20 return -1 // B α-dominates A.
21 else
22 return 0 // A & B are non-α-dominated.
23 end if
24 else

25 t = t-test(α, sqrt(e,|A| + |B|))
26 if e − t < 0 then // eint spans zero.
27 return 0 // A & B are non-α-dominated.
28 else

29 if C(A,B) = 1 then
30 return 1 // A α-dominates B.

31 else if C(B,A) = 1 then
32 return -1 // B α-dominates A.
33 else
34 return 0 // A & B are non-α-dominated.
35 end if
36 end if
37 end if
38 end function

Listing 2. Pseudocode of the α-Dominance Operator

3.5.2 Dynamic adjustment of confidence level

The α-dominance operator dynamically adjusts its confidence level (α) by estimating how
close individuals have converged to the Pareto-optimal front. The convergence of individuals
is estimated based on their disorderliness in the objective space. When individuals are
disordered in the objective space, it indicates that they have not converged enough to the
Pareto-optimal front. Therefore, the α-dominance operator maintains a low confidence level
to determine the α-dominance relationships among individuals in a less strict manner and
have diverse individuals explore the decision space and seek the Pareto front. Conversely,
when individuals are ordered in the objective space, which indicates that individuals have
converged close to the Pareto front, the α-dominance operator increases its confidence level to
perform dominance operation in a more strict manner.
The α-dominance operator measures the disorderliness of individuals as their entropy in the
objective space. To this end, a hypercube is created in the objective space. Its size is bounded by
the maximum and minimum objective values yielded by individuals. (Note that all samples
of all individuals, including dominated or non-dominated ones, are plotted in the objective
space.) The hypercube is divided to sub-cubes. For example, Figure 5 shows six individuals
plotted in a three dimensional hypercube contains eight sub-cubes.
The entropy of individuals (H) is computed as:

H = −∑i∈C P(i) log2(P(i))
P(i) = ni

∑i∈C ni

}

(9)
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Fig. 5. An Example Hypercube in the Objective Space

C denotes a set of sub-cubes in a hypercube, and P(i) denotes the probability that individuals
exist in the i-th sub-cube. ni denotes the number of individuals in the i-th sub-cube. Entropy
(H) is normalized as follows:

Ho =
H

Hmax
=

H

log2 n
(10)

Hmax is the maximum entropy: the entropy in the case that all sub-cubes have the same
number of individuals. n denotes the total number of sub-cubes. Given normalized entropy
(Ho), the confidence level α is adjusted as follows:

α = ((αmax − αmin)
√

1 − (1 − Ho)2) + αmin (11)

αmax and αmin denote the predefined maximum and minimum confidence levels, respectively.
α is adjusted in a non-linear fashion; a unit circle function is used to map Ho to α.

3.5.3 Integration of the α-dominance operator with parent selection and individual ranking

operators

This section describes how α-dominance operator is integrated with the parent selection
operator (tournament(); Lines 6 and 7 in Listing 1) and the individual ranking operator
(
sortByDominatinoRanking(); Line 20 in Listing 1).
Listing 3 shows pseudo code of a noise-aware parent selection (binary tournament) operator
that leverages the α-dominance operator. P is the current population of individuals.

1 function tournament(P)
2 a = randomSelection(P)
3 b = randomSelection(P)
4 A = samplesOf(a)
5 B = samplesOf(b)
6 r = alphaDominance(A, B, α)
7 if r = 1 then
8 return a
9 else if r = -1 then

10 return b
11 else if r = 0 then
12 if random() > 0.5 then
13 return a
14 else

15 return b
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16 end if
17 end if
18 end function

Listing 3. Pseudocode of a Noise-aware Binary Tournament Operator using the α-Dominance
Operator

First, two individuals (a and b) are randomly drawn from the current population P (Lines 2
and 3). Then, in Lines 4 and 5, their samples are obtained to execute the α-dominance operator
in Line 6. Depending on the operator’s return value (r), one of two individuals (a or b) is
returned as a parent individual (Line 7 to 15). If the α-dominance operator cannot determine
the α-dominance relationship between a and b (i.e., if r = 0), one of them is randomly selected
and returned.
Listing 4 shows pseudo code of a noise-aware individual ranking operator that leverages
the α-dominance operator. sortByDominatinoRanking() calls findNonDominatedFront(),
which identifies non-α-dominated individuals in a given population using theα-dominance
operator (Lines 11 to 27).

1 function sortByDominationRanking(P)
2 i = 1
3 while P 	= ∅ do
4 Fi = findNonDominatedIndividuals(P)
5 P = P \ Fi
6 i = i + 1
7 end while
8 return F
9 end function

10
11 function findNonDominatedIndividuals(P)
12 P ′ = ∅

13 for each p ∈ P and p /∈ P ′ do

14 P ′ = P ′ ∪ {p}
15 for each q ∈ P ′ and q 	= p do

16 P ′ = P ′ ∪ {p}
17 for each q ∈ P ′ and q 	= p do
18 A = samplesOf(p)
19 B = samplesOf(q)
20 r = alphaDominance(A, B, α)
21 if r = 1 then

22 P ′ = P ′ \ {q}
23 else if r = −1 then

24 P ′ = P ′ \ {p}
25 end if
26 end for
27 end for

28 return P ′

29 end function

Listing 4. Pseudocode of a Noise-aware Individual Ranking Operator using the α-Dominance
Operator

4. Experimental evaluation

This section evaluates the proposed EMOA, particularly its α-dominance operator, through a
series of computational experiments.
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4.1 Test problems

This evaluation study uses three test problems that are built based on three TSP instances:
ch130, pr226 and lin318. The TSP instances are obtained from TSPLIB*(Reinelt, 1991). ch130,
pr226 and lin318 contain 130, 226 and 318 vertices, respectively. They are customized in this
evaluation study so that each vertex maintains a profit and a visiting probability. The value
ranges of a profit and a visiting probability are [1.0, 100.0] and [0.0,1.0], respectively. Both
values are assigned to each vertex at a uniformly random.
A certain noise is generated and injected to each of two objective functions every time it
is evaluated, as shown in Equation 5. Two types of noise are generated: random noise,
which follows continuous uniform distributions, and Gaussian noise, which follow normal
distributions. Each noise type has three levels of noise: low, medium and high. Table 1
illustrates noise configurations. For random noise, each cell of the table shows a pair of the
lower and upper bounds of noise values. For Gaussian noise, each cell of the table shows a
pair of the mean and variance of noise values.

Random noise Gaussian noise
(Uniform distribution) (Normal distribution)

ch130 pr226 lin318 ch130 pr226 lin318

Cost
Low [-20,20] [-320,320] [-96,96] (0,40) (0,740) (0,192)

Medium [-80,80] [-1280,1280] [-384,384] (0,100) (0,1600) (0,480)
High [-140,140] [-2240,2240] [-672,672] (0,160) (0,2560) (0,768)

Profit
Low [-2,2] [-2,2] [-2,2] (0,4) (0,4) (0,4)

Medium [-8,8] [-8,8] [-8,8] (0,10) (0,10) (0,10)
High [-14,14] [-14,14] [-14,14] (0,16) (0,16) (0,16)

Table 1. Noise Configurations for Costs and Profits

4.2 Algorithmic and experimental configurations

The proposed EMOA is configured with a set of parameters shown in Table 2. It is called
NSGA-II-A, or simply A, in this evaluation study because it follows NSGA-II’s algorithmic
structure and customizes the structure with the α-dominance operator, the PMX crossover
operator and a mutation operator described in Section 3.4. In order to evaluate the α-dominance
operator, NSGA-II-A is compared with the following three variants of NSGA-II:

• NSGA-II (or simply R): the original NSGA-II (Deb et al., 2000) with its crossover and
mutation operators replaced by PMX and a mutation operator described in Section 3.4
. Its classical dominance operator does not consider noise in objective functions.

• NSGA-II-U (or simply U): NSGA-II with its classical dominance operator by a noise-aware
dominance operator that assumes uniform distribution noise (Teich, 2001).

• NSGA-II-N (or simply N): NSGA-II with its classical dominance operator by a noise-aware
dominance operator that assumes normal distribution noise (Eskandari et al., 2007).

All experiments have been implemented and carried out with jMetal (Durillo et al., 2006).
Every experimental result is obtained and shown based on 20 independent experiments.

*http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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Parameter Value Parameter Value

Population size 100 # of samples per individual 30
Max # of generations 500 SVM type C-support vector

Crossover rate 0.9 classification
Mutation rate 0.2 SVM kernel Linear

αmin in Equation 11 0.90 C parameter for SVM 1
αmax in Equation 11 0.99 SVM termination criteria 1e−3

Table 2. Parameter Configurations

4.3 Metrics for performance evaluation

This evaluation study uses the following five performance metrics to compare individual
algorithms.

• The number of non-dominated individuals: counts the number of non-dominated individuals
in the population at the last (i.e., the 500th) generation. The higher this number is, the
more successfully an algorithm in question has evolved and converged individuals by
eliminating dominated ones. This metric evaluates the degree of convergence/evolution
pressure on individuals.

• Hypervolume (Zitzler & Thiele, 1999): measures the volume that non-dominated individuals
cover in the objective space. The higher a hypervolume measure is, the closer
non-dominated individuals are to the Pareto-optima. This metric evaluates the optimality
of individuals.

• D1R (Knowles & Corne, 2002): is computed as follows.

D1R(A) =
1

|R| ∑
r∈R

minz∈Ad(r, z) (12)

A denotes a set of non-dominated individuals. R denotes a set of reference individuals.
d(r, z) = maxk

(rk−zk)
Rk

where k = 1, ..., K indexes objectives and Rk is the range of objective
values that individuals in R yield with respect to the k-th objective. rk and zk denote the
objective values that individuals r and z yield with respect to the k-th objective. In this
evaluation study, R contains a set of non-dominated individuals that NSGA-II produces
when no noise is given to objective functions. Therefore, the lower a D1R measure is, the
more effectively an algorithm in question cancels the existence of noise to yield a more
similar performance as NSGA-II’s. This metric evaluates the optimality of individuals as
well as their degree of noise canceling.

• U-metric (Leung & Wang, 2003): is computed as follows.

U =
1

D

D

∑
i=1

∣

∣

∣

∣

di

d̄
− 1

∣

∣

∣

∣

(13)

di denotes the euclidean distance between the i-th individual and its nearest neighbor in
the objective space. D denotes the total number of pairs of the nearest neighbors among
non-dominated individuals. d̄ = 1

D ∑
D
i=1 di is the average of di. The lower a U-metric

measure is, the more uniformly individuals are distributed in the objective space. This
metric evaluates the distribution (or diversity) of individuals.
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• C-Metric (Zitzler & Thiele, 1999): uses Equation 8 to compare two different algorithms by
examining the two sets of non-dominated individuals they produce.

In addition to the above metrics, this evaluation study examines the objective values that the
non-dominated individuals of each algorithm yield at the last generation.

4.4 The number of non-dominated individuals in the population

Tables 3 and 4 show the number of non-dominated individuals that individual algorithms
produces at the last generation. Its average and standard deviation results are obtained based
on 20 independent experiments. A bold font face is used to indicate the best result(s) in each
noise level case of each problem.
Tables 3 and 4 demonstrate that NSGA-II-A and NSGA-II consistently yield the best and
worst results, respectively, in both cases with normal and uniform distribution noises. Under
normal distribution noise, NSGA-II-A produces 95 or more non-dominated individuals, while
NSGA-II produces only 32.2 in the high noise case of lin318. Under uniform distribution noise,
NSGA-II-A evolves all individuals to be non-dominated in all cases, while NSGA-II produces
only 49.7 non-dominated individuals in the high noise case of lin318. Tables 3 and 4 illustrate
that the α-dominance operator successfully retains a high pressure to evolve and converge

Problem Noise level
NSGA-II-A NSGA-II NSGA-II-N NSGA-II-U
Avg Sd Avg Sd Avg Sd Avg Sd

ch130
Low 100 0 74.7 9.89 100 0 100 0

Medium 99.2 2.8 52.5 9.1 98.8 2.7 93.2 3.9
High 98.9 0 34.1 9.3 90.1 8.9 89.5 2.1

pr226
Low 100 0 68.2 6.9 100 0 94.2 5.1

Medium 99.0 12.5 42.3 4.7 93.2 8.2 86.5 7.9
High 97.1 5.87 30.1 7.6 89.5 5.9 80.4 13.5

lin318
Low 100 0 66.3 9.5 99.5 7.8 96.5 3.5

Medium 99.5 1.8 49.35 8.6 90.4 5.2 83.8 16.5
High 95.0 12.5 32.2 7.2 85.3 4.6 80.1 12.4

Table 3. The Number of Non-dominated Individuals at the last Generation when Normal
Distribution Noise is injected to Objective Functions

Problem Noise level
NSGA-II-A NSGA-II NSGA-II-N NSGA-II-U
Avg Sd Avg Sd Avg Sd Avg Sd

ch130
Low 100 0 96.9 5.7 100 0 100 0

Medium 100 0 56.2 10.4 98.1 2.1 100 0
High 100 0 43.3 9.9 92.3 4.5 98.4 2.1

pr226
Low 100 0 83.8 11.1 100 0 100 0

Medium 100 0 56.5 9.9 86.5 5.4 100 0
High 100 0 46.3 7.9 80.6 10.2 90.0 4.8

lin318
Low 100 0 73.4 9.1 100 0 100 0

Medium 100 0 58.4 6.9 89.9 8.7 98.4 1.1
High 100 0 49.7 8.7 69.6 11.6 89.3 8.1

Table 4. The Number of Non-dominated Individuals at the last Generation when Uniform
Distribution Noise is injected to Objective Functions
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individuals even in a harder problem (lin318) with a high level of noise. On the contrary,
NSGA-II significantly loses the pressure as a given problem becomes harder and a given noise
level becomes higher because its dominance operator does not handle noise at all.
In Table 3, NSGA-II-N produces 100 non-dominated individuals in two cases and yields
better results than NSGA-II and NSGA-II-U because it assumes normal distribution noise
beforehand. However, NSGA-II-A outperforms NSGA-II-N as a given problem becomes
harder and a given noise level becomes higher. A similar observation is made in Figure 4;
NSGA-II-A outperforms NSGA-II-U even when uniform distribution noise is injected to
objective functions, as a given problem becomes harder and a given noise level becomes
higher.

4.5 Optimality evaluation with hypervolume

Figures 6 to 11 show the hypervolume measures that individual algorithms yield in each
problem with different noise distributions. NSGA-II-A yields the best hypervolume results
in most cases (except in ch130 with uniform distribution; Figure 7). NSGA-II yields the worst
results in most cases (except in pr226 with normal distribution; Figure 9), which is reasonable
because its dominance operator does not handle noise in objective functions.
In Figure 6 (ch130 with normal distribution noise), NSGA-II-A performs similarly to
NSGA-II-N, which outperforms NSGA-II and NSGA-II-U, because it designed to handle
normal distribution noise. As a given problem becomes harder with normal distribution noise,
NSGA-II-A yields better hypervolume measures than NSGA-II-N. (See Figures 8 and 10.) A
similar observation is made in Figures 7, 9 and 11. In Figure 7, NSGA-II-A is outperformed by
NSGA-II-U, which is designed to handle uniform distribution noise. However, it outperforms
NSGA-II-U in harder problems (Figures 9 and 11). These results demonstrate that the
α-dominance operator allows NSGA-II-A to successfully seek quality solutions toward the
Pareto-optima regardless of problems and noise distributions.
In general, all algorithms yield smaller hypervolume measures as the amount of noise
increases. However, the hypervolume measures of NSGA-II-A do not vary largely under
different noise levels. It can maintain the hypervolume of 0.6 or higher in all the cases.
NSGA-II, NSGA-II-N (under uniform distribution noise) and NSGA-II-U (under normal
distribution noise) significantly decrease their hypervolume measures as given noise levels
increases. In the pr226 problem with the highest normal distribution noise, NSGA-II-A
performs 32.8% better than NSGA-II-U, 50.8% better than NSGA-II and 67.2% better than

285Evaluating the α-Dominance Operator in
Multiobjective Optimization for the Probabilistic Traveling Salesman Problem with Profits

www.intechopen.com



0

0.2

0.4

0.6

0.8

1

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00%

Noise

NSGA-II-A

NSGA-II

NSGA-II-N

NSGA-II-U

Fig. 8. Hypervolume (pr226, Normal
Distribution Noise)

Fig. 9. Hypervolume (pr226, Uniform
Distribution Noise)

0

0.2

0.4

0.6

0.8

1

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00%

Noise

NSGA-II-A

NSGA-II

NSGA-II-N

NSGA-II-U

Fig. 10. Hypervolume (lin318, Normal
Distribution Noise)

Fig. 11. Hypervolume (lin318, Uniform
Distribution Noise)

NSGA-II-N. These results demonstrate that the α-dominance operator is less sensitive against
noise levels than existing noise-aware dominance operators in NSGA-II-U and NSGA-II-N.

4.6 Evaluation of optimality and noise canceling with D1R

Figures 12 to 17 show the D1R measures that individual algorithms yield in each problem with
different noise distributions. As Figures 12, 14 and 16 depict, when normal distribution noise is
injected to objective functions, NSGA-II-U performs poorly. This is understandable because it
does not expect normal distribution noise at all. The other three algorithms perform similarly.
Although NSGA-II-A is outperformed by NSGA-II-N and NSGA-II in the cs130 problem
(Figure 12), it outperforms them in the other harder problems (the pr226 and lin318 problems;
Figures 14 and 16). In the lin318 problem, which is hardest in the three test problems in this
evaluation study, NSGA-II-A exhibits its superiority over NSGA-II-N and other algorithms.
When uniform distribution noise is injected to objective functions, NSGA-II-A outperforms
the other three algorithms in all problems, although all algorithms perform similarly,
particularly in the ch130 problem (Figures 13, 15 and 17). NSGA-II-A exhibits its superiority
in the lin318 problem than the other two problems. These results illustrates that the
α-dominance operator allows NSGA-II-A to successfully suppress the impacts of noise on the
evolution/convergence of individuals and seek quality solutions toward the Pareto-optima.
As Figures 12 to 17 show, D1R measures grow in all algorithms when the amount of injected
noise increases. This means that the evolution/convergence of individuals suffers a higher
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interference by a higher noise level. This trend is consistent with the results of hypervolume
measures (Section 4.5). However, the D1R measures of NSGA-II-A do not vary largely under
different noise levels. NSGA-II-A can maintain the D1R measure of approximately 0.2 or lower
in all the cases except the ch130 problem with normal distribution noise (Figures12). This
contrasts with, for example, NSGA-II-U that significantly increases D1R under higher noise
levels in all problems. In the lin 318 problem with normal distribution noise, NSGA-II-A’s D1R

is under 0.2 under the highest noise level while NSGA-II-U’s D1R exceeds 0.8. These results
demonstrate that the α-dominance operator is less sensitive against noise levels than existing
noise-aware dominance operators in NSGA-II-U and NSGA-II-N.
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4.7 Diversity evaluation with U-metric

Figures 18 to 23 show the U-metric measures that individual algorithms yield in each problem
with different noise distributions. The four algorithms perform more similarly to each other
in the problems with uniform distribution noise than normal distribution noise. In all cases,
NSGA-II-A yields the best U-metric measures under the highest noise level. Considering
that all algorithms perform the same (NSGA-II’s) crowding distance operator for diversity
preservation among individuals, the α-dominance operator produces the lowest interfere to
diversity preservation based on crowding distance.
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Noise C(NSGA-II-A, C(NSGA-II, C(NSGA-II-A, C(NSGA-II-U, C(NSGA-II-A, C(NSGA-II-N,

Level NSGA-II) NSGA-II-A) NSGA-II-U) NSGA-II-A) NSGA-II-N) NSGA-II-A)

ch130
Low 4.23e − 03 1.05e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Medium 2.28e − 03 0.00e+00 3.21e − 03 1.25e-03 0.00e+00 0.00e+00
High 1.20e − 03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

pr226
Low 5.01e − 03 0.00e+00 5.23e − 03 1.11e-03 0.00e+00 0.00e+00

Medium 0.21e − 03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
High 3.10e − 03 1.01e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00

lin318
Low 8.27e − 03 1.10e-03 2.01e − 03 0.00e+00 0.00e+00 0.00e+00

Medium 2.22e − 03 0.00e+00 1.00e − 03 0.00e+00 0.00e+00 0.00e+00
High 9.36e − 03 2.01e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Table 5. C-metric Measures under Normal Distribution Noise

4.8 Algorithm comparison with C-metric

Tables 5 and 6 show the C-metric measures to compare individual algorithms with each other
under normal distribution noise and uniform distribution noise, respectively.
With normal distribution noise injected to objective functions (Tables 5), C(NSGA-II-A,
NSGA-II) > C(NSGA-II, NSGA-II-A) in all of nine cases. (A bold font face is used to indicate a
higher C-metric measure between C(NSGA-II-A, NSGA-II) and C(NSGA-II, NSGA-II-A).) This
means that NSGA-II-A outperforms NSGA-II in all the cases. In five of nine cases, NSGA-II
produces no individuals that dominate the ones produced by NSGA-II-A. In comparison
between NSGA-II-A and NSGA-II-U, C(NSGA-II-A, NSGA-II-U) > C(NSGA-II-U, NSGA-II-A)
in three of nine cases. This means that NSGA-II-A outperforms NSGA-II-U in the three cases
and the two algorithms tie in the other six cases. In seven of nine cases, NSGA-II-U produces
no individuals that dominate the ones produced by NSGA-II-A. In comparison between
NSGA-II-A and NSGA-II-N, the two algorithm tie in all nine cases. Even though NSGA-II-N
is designed to handle normal distribution noise, it produces no individuals that dominate the
ones produced by NSGA-II-A. Note that NSGA-II-A often outperforms NSGA-II-N in harder
problems with higher normal distribution noise in terms of the number of non-dominated
individuals (Section 4.4), hypervolume (Section 4.5) and D1R (Section 4.6).

Noise C(NSGA-II-A, C(NSGA-II, C(NSGA-II-A, C(NSGA-II-U, C(NSGA-II-A, C(NSGA-II-N,

Level NSGA-II) NSGA-II-A) NSGA-II-U) NSGA-II-A) NSGA-II-N) NSGA-II-A)

ch130
Low 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.01e-03 2.01e − 03

Medium 1.11e − 03 0.00e+00 4.01e − 03 0.00e+00 2.10e − 03 1.30e-03
High 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.58e − 03 0.00e+00

pr226
Low 1.22e − 03 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Medium 4.29e − 03 0.00e+00 1.01e − 03 0.00e+00 6.07e − 03 3.12e-03
High 5.18e − 03 2.14e-03 0.89e − 03 0.00e+00 1.00e − 03 0.00e+00

lin318
Low 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.01e − 03 0.00e+00

Medium 12.28e − 03 0.00e+00 0.00e+00 0.00e+00 6.31e − 03 0.00e+00
High 2.33e − 03 0.00e+00 5.14e − 03 1.02e-03 1.08e − 03 0.00e+00

Table 6. C-Metric Measures under Uniform Distribution Noise

With uniform distribution noise injected to objective functions (Tables 6), NSGA-II-A
outperforms NSGA-II in six of nine cases. In eight cases, NSGA-II produces no individuals
that dominate the ones produced by NSGA-II-A. In comparison between NSGA-II-A and
NSGA-II-U, which assumes uniform distribution noise in advance, NSGA-II-A outperforms
NSGA-II-U in four of nine cases, and the two algorithms tie in the other five cases. In eight
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cases, NSGA-II-U produces no individuals that dominate the ones produced by NSGA-II-A.
A general observation is that NSGA-II-A outperforms NSGA-II-U in harder problems with
higher uniform distribution noise. It is consistent with the observations made with the number
of non-dominated individuals (Section 4.4), hypervolume (Section 4.5) and D1R (Section 4.6).
In comparison between NSGA-II-A and NSGA-II-N, NSGA-II-A outperforms NSGA-II-N in
seven of nine cases. In six cases, NSGA-II-N produces no individuals that dominate the ones
produced by NSGA-II-A.
As Tables 5 and 6 illustrate, NSGA-II-N performs better under normal distribution noise
than uniform distribution noise. This is reasonable because it anticipates normal distribution
noise in advance. However, it never outperforms NSGA-II-A in Table- 5). On the contrary,
NSGA-II-U performs poorly under both normal and uniform distribution noise. It never
outperforms NSGA-II-A in Tables 5 and 6. These results demonstrate that, although the
α-dominance operator assumes no noise distribution in advance, it performs under both
normal and uniform distribution noise. Moreover, it exhibits higher superiority under higher
noise levels.

4.9 Optimality evaluation with objective values

Tables 7 and 8 show the objective values that each algorithm’s individuals yield at the last
(the 500th) generation under normal and uniform distribution noise, respectively. L, M and H
mean that low, medium and high levels of noise. Each table shows the average and standard
deviation results that are obtained from 20 independent experiments. A bold font face is used
to indicate the best average result among four algorithms on an objective by objective basis.
An asterisk (*) is placed for an average result when the result is significantly different (worse)
than the best average result based on a t-test with 19 degrees of freedom and 95% confidence
level.
Table 7 depicts that, in the ch130 problem, NSGA-II-A is the best among four algorithms in cost
under the low noise level, in profit under the medium noise level, and in both objectives under
the high noise level. Under the high noise level, NSGA-II-A exhibits statistical significance
over NSGA-II and NSGA-II-N in cost and over NSGA-II and NSGA-II-U in profit. In the
pr220 problem, NSGA-II-A is the best among four algorithms in cost under all noise levels.
It is also the best in profit under the low and high levels of noise. Under the high noise
level, NSGA-II-A exhibits statistical significance over NSGA-II-N and NSGA-II-U in cost and
over NSGA-II-R and NSGA-II-U in profit. Moreover, NSGA-II-A yields the lowest standard
deviation in both objectives in all noise levels. This means that the variance of it’s objective
values is the lowest among different experiments. In the lin318 problem, NSGA-II-A yields
the best objective values and the best standard deviation values in both objectives under all
noise levels. Under the high noise level, it exhibits statistical significance over NSGA-II and
NSGA-II-U in cost and over all the other three algorithms in profit. Table 7 demonstrates that
the α-dominance operator allows NSGA-II-A to outperform the other algorithms more often
in more metrics as a given problem becomes harder and a given noise level becomes higher.
Table 8 shows qualitatively similar results to the ones in Table 7. In the lin318 problem with the
highest noise level, NSGA-II-A yields the best objective values and the best standard deviation
values in both objectives under all noise levels. It exhibits statistical significance over NSGA-II
and NSGA-II-N in cost and over all the other three algorithms in profit.
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ch130 pr220 lin318

Cost profit Cost profit Cost profit

Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd

L

A 2533.8 174.6 3129.0* 34.2 92236.2 181.2 6828.3 82.4 45353.2 204.3 8852.7 111.0

R 2890.5* 167.9 3124.3 46.4 116225.3* 192.5 6826.9 95.3 47927.6 248.2 8748.9 118.3

N 2646.2* 186.7 3208.8 49.4 104295.2* 188.7 6806.4 107.4 48918.3* 212.2 8398.4* 152.2

U 2760.1* 214.3 2958.6* 39.2 114219.1* 214.0 6485.0* 111.0 50688.4* 302.3 8539.0* 185.8

M

A 3471.6 244.8 3855.1 79.2 132637.8 242.4 7077.6 93.1 45894.5 402.3 8740.5 185.4

R 3280.9 272.2 3768.2 76.4 136017.3 290.4 7153.1 142.6 56162.1* 499.8 8520.8* 321.0

N 3971.8* 266.1 3685.7* 76.9 135070.4 345.7 6944.9* 112.6 56649.0* 461.0 8522.2* 201.8

U 3698.3* 291.9 3602.3* 85.8 139797.3* 293.2 6920.4* 150.2 61204.3* 481.4 8622.2 342.4

H

A 4564.2 312.5 3734.6 84.1 148905.8 243.2 6752.2 101.0 56227.3 527.4 8504.8 385.1

R 4740.3* 248.5 3534.6* 93.1 150162.1 277.8 6557.8* 161.4 70204.6* 599.4 8361.9* 414.4

N 4702.5* 324.2 3656.2 89.4 171468.0* 267.3 6733.6 143.3 56450.7 582.2 8292.8* 442.1

U 4615.1 352.8 3593.6* 98.7 171936.6* 391.0 6436.6* 165.0 66661.1* 701.3 8258.3* 499.5

Table 7. Objective Values at the Last Generation under Normal Distribution Noise

ch130 pr220 lin318

Cost profit Cost profit Cost profit

Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd

L

A 2368.5 242.4 3139.9 183.1 99782.9 144.2 6949.3 131.0 41937.1 309.7 9010.6 119.9

R 2777.2* 223.6 3167.6 184.1 105385.1* 214.0 6566.0* 152.1 43865.8 351.9 9000.9 134.7

N 2466.0 265.9 2895.2* 100.3 122022.7* 183.5 6779.7* 141.1 53194.4* 408.6 8937.6* 177.4

U 2860.1* 281.2 3252.0 78.6 110096.8* 188.3 6920.4 158.8 50819.3* 469.5 8805.6* 102.4

M

A 2976.3 203.2 3117.2 146.3 97879.5 248.3 7137.8 136.8 48109.6 677.9 8829.7 87.7

R 3705.6* 296.2 2666.7* 145.6 110639.5* 321.0 6925.2* 148.5 53918.6* 686.5 8374.6* 123.6

N 3573.3* 210.3 2709.3* 163.5 119108.1* 295.4 6680.0* 146.1 53346.2* 707.5 8442.0* 118.4

U 3368.7 189.3 3344.5 135.3 122815.9* 274.1 6816.6* 148.5 53640.5* 706.9 8519.1* 171.0

H

A 4384.6 404.1 3838.0 137.7 151578.5 381.1 7022.4 132.2 61174.5 439.8 8887.9 114.8

R 4463.5* 426.7 2798.0* 142.6 164282.2* 458.4 6523.2* 139.8 66035.3* 647.3 8152.2* 267.4

N 4992.5* 445.8 2730.0* 152.8 178198.2* 422.2 6830.6* 136.9 62668.5* 553.8 8566.8* 168.0

U 4299.3 499.1 3330.0* 163.6 166907.1* 461.9 6711.4* 142.5 61701.4 520.3 8285.4* 189.1

Table 8. Objective Values at the Last Generation under Uniform Distribution Noise

5. Related work

pTSP and TSPP have been studied extensively and used to model many real-world
applications in different fields (Feillet et al., 2005). Early pTSP studies adopted heuristics
that were modified from the heuristics to solve TSP (e.g., nearest neighbor, savings heuristic,
k-opt exchanges, 1-shift) (Bertsimas, 1988; Birattari et al., 2007). Recent studies often focus on
meta-heuristics, such as ant colony optimization algorithms (Branke & Guntsch, 2004) and
evolutionary algorithms (Liu, 2008; Liu et al., 2007), in favor of their global search capabilities.
However, these algorithms are not applicable for pTSPP because pTSP is a single objective
optimization problem and pTSPP is a multiobjective optimization problem as described in
Section 2..
TSPP is a multiobjective optimization algorithm; however, a number of existing work have
attempted to solve it as a single objective optimization problem by aggregating multiple
objectives into a single fitness function as, for example, a weighted sum of objective values
or considering extra objectives as constraints with given bounds (Awerbuch et al., 1999;
Laporte & Martello, 1990). These algorithms are not designed to seek the optimal tradeoff
(i.e., Pareto-optimal) solutions among conflicting objectives. Moreover, it is not always
straightforward to manually tune weight values in a fitness function that aggregates multiple
objective values.
A very limited number of existing work have attempted to solve TSPP with multiobjective
optimization algorithms (Jozefowiez et al., 2008b). These algorithms better address the
characteristics of pTSPP; however, they never consider noise in objective functions.
The α-dominance operator is designed to aid seeking the Pareto-optimality of solution
candidates in multiobjective optimization problems with noisy objective functions. In the
area of evolutionary multiobjective optimization, there exist several existing work to handle
uncertainties in objective functions by modifying NSGA-II’s classical dominance operator
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(Beyer, 2000; Jin & Branke, 2005). All of them assume particular noise distributions in advance.
For example,Babbar et al. (2003); Eskandari et al. (2007); Goh & Tan (2006) assume normal
distribution noise. Teich (2001) assume uniform distribution noise. Delibrasis et al. (1996);
Wormington et al. (1999) assume Poisson distribution noise. Given a noise distribution,
each of existing noise-aware dominance operators statistically estimates each individual’s
objective value by collecting its samples. In contrast, the α-dominance operator assumes no
noise distributions a priori because, in general, it is hard to predict and model them in
most (particularly, real-world) multiobjective optimization problems. Instead of estimating
each individual’s objective values, the α-dominance operator estimates the impacts of noise
on objective value samples and determines whether it is confident enough to compare
individuals.
Another line of relevant research is to handle uncertainties in decision variables (Deb & Gupta,
2006; Deb et al., 2009; 2006). These work proposes the notion of robust individuals, and the
robustness quantifies the sensitivity of noise in the decision space on the objective space. They
also assume normal distribution noise in advance. Unlike these work, α-dominance focuses
on uncertainties in the objective space and assumes no noise distributions in advance.

6. Conclusions

This chapter formulates a noisy multiobjective optimization problem, the Probabilistic
Traveling Salesman Problem with Profits (pTSPP), which contains noise in its objective
functions. In order to solve pTSPP, this chapter proposes an evolutionary multiobjective
optimization algorithm (EMOA) that leverages a novel noise-aware dominance operator,
called the α-dominance operator. The operator takes objective value samples of given two
individuals, estimates the impacts of noise on the samples and determines whether it is
statistically confident enough to judge which individual is superior/inferior to the other.
Experimental results demonstrate that the α-dominance operator allows the proposed EMOA
to effectively obtain quality solutions to pTSPP and it outperforms existing noise-aware
dominance operators.
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