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1. Introduction  

In supply chain management manufacturing flow lines consist of two or more work areas, 
arranged in series and/or in parallel, with intermediate storage areas. The first work area 
processes raw items and the last work area produces end items or products, which are 
stored in a storage area in anticipation of future demand. Firstly managers should analyze 
and organize the long term production optimizing the production planning of the supply 
chain. Secondly, they have to optimize the short term production analyzing and organizing 
the production scheduling of the supply chain and finally taking under consideration the 
stochasticity of the real world, managers have to analyze and organize the performance of 
the supply chain adopting the best control policy.   
In supply chain management production planning is the process of determining a tentative 
plan for how much production will occur in the next several time periods, during an 
interval of time called the planning horizon. Production planning also determines expected 
inventory levels, as well as the workforce and other resources necessary to implement the 
production plans. Production planning is done using an aggregate view of the production 
facility, the demand for products and even of time (ex. using monthly time periods). 
Production planning is commonly defined as the cross-functional process of devising an 
aggregate production plan for groups of products over a month or quarter, based on 
management targets for production, sales and inventory levels. This plan should meet 
operating requirements for fulfilling basic business profitability and market goals and 
provide the overall desired framework in developing the master production schedule and in 
evaluating capacity and resource requirements.  
In supply chain management production scheduling defines which products should be 
produced and which products should be consumed in each time instant over a given small 
time horizon; hence, it defines which run-mode to use and when to perform changeovers in 
order to meet the market needs and satisfy the demand. Large-scale scheduling problems 
arise frequently in supply chain management where the main objective is to assign sequence 
of tasks to processing units within certain time frame such that demand of each product is 
satisfied before its due date.  
For supply chain systems the aim of control is to optimize some performance measure, 
which typically comprises revenue from sales less the costs of inventory and those 
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associated with the delays in filling customer orders. Control is dynamic and affects the rate 
of accepted orders and the production rates of each work area according to the state of the 
system. Optimal control policies are often of the bang-bang type, that is, they determine 
when to start and when to stop production at each work area and whether to accept or deny 
an incoming order. A number of flow control policies have been developed in recent years 
(see, e.g., Liberopoulos and Dallery 2000, 2003).  Flow control is a difficult problem, 
especially in flow lines of the supply chain type, in which the various work and storage 
areas belong to different companies. The problem becomes more difficult when it is possible 
for companies owning certain stages of the supply chain to purchase a number of items 
from subcontractors rather than producing these items in their plants.  
In general, a good planning, scheduling and control policy must be beneficial for the whole 
supply chain and for each participating company. In practice, however, each company tends 
to optimize its own production unit subject to certain constraints (e.g., contractual 
obligations) with little attention to the remaining stages of the supply chain. For example, if 
a factory of a supply chain purchases raw items regularly from another supply chain 
participant, then, during stockout periods, the company which owns that factory may 
occasionally find it more profitable to purchase a quantity immediately from some 
subcontractor outside the supply chain, rather than wait for the delivery of the same 
quantity from its regular supplier. Although similar policies (decentralized policies) can be 
individually optimal at each stage of the supply chain, the sum of the profits collected 
individually can be much lower than the maximum profit the system could make under a 
coordinated policy (centralized policies).  
The rest of this paper is organized as follows. Section 2 a literature review is presented. In 
section 3, 4 and 5 three cases studies are presented where centralized and decentralized 
optimization is applied and qualitative results are given. Section 5 draws conclusions.  

2. Literature review  

There are relatively few papers that have addressed planning and scheduling problems 
using centralized and decentralized optimization strategies providing a comparison of these 
two approaches. 
(Bassett et al., 1996) presented resource decomposition method to reduce problem 
complexity by dividing the scheduling problem into subsections based on its process 
recipes. They showed that the overall solution time using resource decomposition is 
significantly lower than the time needed to solve the global problem. However, their 
proposed resource decomposition method did not involve any feedback mechanism to 
incorporate “raw material” availability between sub sections. 
(Harjunkoski and Grossmann, 2001) presented a decomposition scheme for solving large 
scheduling problems for steel production which splits the original problem into sub-systems 
using the special features of steel making. Numerical results have shown that the proposed 
approach can be successfully applied to industrial scale problems. While global optimality 
cannot be guaranteed, comparison with theoretical estimates indicates that the method 
produces solutions within 1–3% of the global optimum. Finally, it should be noted that the 
general structure of the proposed approach naturally would allow the consideration of other 
types of problems, especially such, where the physical problem provides a basis for 
decomposition. 
(Gnoni et al., 2003) present a case study from the automotive industry dealing with the lot 
sizing and scheduling decisions in a multi-site manufacturing system with uncertain multi-
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product and multi-period demand. They use a hybrid approach which combines mixed-
integer linear programming model and simulation to test local and global production 
strategies. The paper investigates the effects of demand variability on the economic 
performance of the whole production system, using both local and global optimization 
strategies. Two different situations are compared: the first one (decentralized) considers 
each manufacturing site as a stand-alone business unit using a local optimization strategy; 
the second one (centralized) considers the pool of sites as a single manufacturing system 
operating under a global optimization strategy. In the latter case, the problem is solved by 
jointly considering lot sizes and sequences of all sites in the supply chain. Results obtained 
are compared with simulations of an actual reference annual production plan. The local 
optimization strategy allows a cost reduction of about 19% compared to the reference actual 
situation. The global strategy leads to a further cost reduction of 3.5%, smaller variations of 
the cost around its mean value, and, in general, a better overall economic performance, 
although it causes local economic penalties at some sites. 
(Chen and Chen, 2005) study a two-echelon supply chain, in which a retailer maintains a 
stock of different products in order to meet deterministic demand and replenishes the stock 
by placing orders at a manufacturer who has a single production facility. The retailer’s 
problem is to decide when and how much to order for each product and the manufacturer’s 
problem is to schedule the production of each product. The authors examine centralized and 
decentralized control policies minimizing respectively total and individual operating costs, 
which include inventory holding, transportation, order processing, and production setup 
costs. The optimal decentralized policy is obtained by maximizing the retailer’s cost per unit 
time independently of the manufacturer’s cost. On the contrary, the centralized policy 
minimizes the total cost of the system. An algorithm is developed which determines the 
optimal order quantity and production cycle for each product. It should be noted that the 
same model is applicable to multi-echelon distribution/inventory systems in which a 
manufacturer supplies a single product to several retailers. Several numerical experiments 
demonstrate the performance of the proposed models. The numerical results show that the 
centralized policy significantly outperforms the decentralized policy. Finally, the authors 
present a savings sharing mechanism whereby the manufacturer provides the retailer with a 
quantity discount which achieves a Pareto improvement among both participants of the 
supply chain. 
(Kelly and Zyngier, 2008) presented a new technique for decomposing and rationalizing 
large decision-making problems into a common and consistent framework. The focus of this 
paper has been to present a heuristic, called the hierarchical decomposition heuristic (HDH), 
which can be used to find globally feasible solutions to usually large decentralized and 
distributed decision-making problems when a centralized approach is not possible. The 
HDH is primarily intended to be applied as a standalone tool for managing a decentralized 
and distributed system when only globally consistent solutions are necessary or as a lower 
bound to a maximization problem within a global optimization strategy such as Lagrangean 
decomposition. The HDH was applied to an illustrative example based on an actual 
industrial multi-site system as well as to three small motivating examples and was able to 
solve these problems faster than a centralized model of the same problems when using both 
coordinated and collaborative approaches. 
(Rupp et al., 2000) present a fine planning for supply chains in semiconductor 
manufacturing. It is generally accepted that production planning and control, in the make-
to-order environment of application-specific integrated circuit production, is a difficult task, 
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as it has to be optimal both for the local manufacturing units and for the whole supply chain 
network. Centralised MRP II systems which are in operation in most of today’s 
manufacturing enterprises are not flexible enough to satisfy the demands of this highly 
dynamic co-operative environment. In this paper Rupp et al. present a distributed planning 
methodology for semiconductor manufacturing supply chains. The developed system is 
based on an approach that leaves as much responsibility and expertise for optimisation as 
possible to the local planning systems while a global co-ordinating entity ensures best 
performance and efficiency of the whole supply chain. 

3. Centralized vs decentralized deterministic planning: A case study of 
seasonal demand of aluminium doors 

3.1 Problem description 

In this section, we study the production planning problem in supply chain involving several 

enterprises whose final products are doors and windows made out of aluminum and 

compare two approaches to decision-making: decentralized versus centralized. The first 

enterprise is in charge of purchasing the raw materials and producing a partially competed 

product, whereas the second enterprise is in charge of designing the final form of the 

product which needs several adjustments before being released to the market. Some of those 

adjustments is the placement of several small parts,  the addition of paint and the placement 

of glass pieces. 

We focus on investigating the way that the seasonal demand can differently affect the 
performances of our whole system, in the case, of both centralized and decentralized 
optimization. Our basic system consists of two production plants, Factory 1 (F1) and Factory 
2 (F2), for which we would like to obtain the optimal production plan, with two output 
stocks and two external production facilities called Subcontractor 1 and Subcontractor 2 
(Subcontractor 1 gives final products to F1 and Subcontractor 2 to F2). We have also a finite 
horizon divided into periods. The production lead time of each plant is equal to one period 
(between the factories or the subcontractors). In Figure 1 we present our system which has 
the ability to produce a great variety of products. We will focus in one of these products, the 
one that appears to have the greatest demand in today’s market. This product is a type of 
door made from aluminum type A. We call this product DoorTypeA (DTA). The demand 
which has a seasonal pattern that hits its maximum value during spring and its minimum 
value during winter as well as the production capacities and all the certain costs that we will 
talk about in a later stage are real and correspond to the Greek enterprise ANALKO.  
Factory 1 (F1) produces semi-finished components for F2 which produces the final product. 
The subcontractors have the ability to manufacture the entire product that is in demand or 
work on a specific part of the production, for example the placement of paint. Backorders 
are not allowed and all demand has to be satisfied without any delay. Each factory has a 
nominal production capacity and the role of the subcontractor is to provide additional 
external capacity if desirable. For simplicity, we assume that both initial stocks are zero and 
also that there is no demand for the final product during the first period. All factories have a 
large storage space which allows us to assume that the capacity of storing stocks is infinite. 
Subcontracting capacity is assumed to be infinite as well and both the production cost and 
the subcontracting cost are fixed during each period and proportional to the quantity of 
products produced or subcontracted respectively. Finally the production capacity of F1 is 
equal to the capacity of F2. 
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Fig. 1. The two-stage supply chain of ANALKO 

On the one hand in the decentralized approach, we have two integrated local optimization 
problems from the end to the beginning. Namely, we first optimize the production plan of 
F2 and then that of F1. On the other hand, in centralized optimization we take into account 
all the characteristics of the production in the F1 and F2 simultaneously and then we 
optimize our system globally. The initial question is: What is to be gained by centralized 
optimization in contrast to decentralized? 

3.2 Methodology 

Two linear programming formulations are used to solve the above problems. In appendix A 
all decision variables and all parameters are presented: 

3.2.1 Centralized optimization 

The developed model, taking under consideration the final demand and the production 
capacity of two factories as well as the subcontracting and inventories costs, optimizes the 
overall operation of the supply chain. The objective function has the following form: 

 
2

, , ,
1 1 1 1

Z  [ csc ]
T T T

i i t i i t i i t
i t t t

Min cp P h I SC
= = = =

= + +∑ ∑ ∑ ∑  (1) 

The constraints of the problem are mainly two: a) the material balance equations: 

 1, 1, 1 1, 1, 2, 2,t t t t t tI I P SC P SC−= + + − − ,  t∀  (2) 

 2, 2, 1 2, 2,t t t t tI I P SC d−= + + − , t∀  (3) 

 1, 2, 0t TI I= =  (4) 

and b) the capacity of production: 

 Pi,t ≤ production capacity of factory i during period t  (5) 

 1, 2,1 0TP P= =  (6) 

3.2.2 Decentralized optimization 

In decentralized optimization two linear mathematical models are developed. The fist one 
optimizes the production of Factory 2 satisfying the total demand in each period under the 
capacity and material balance constraints of its level:  

www.intechopen.com



Supply Chain Management 

 

8 

 2 2, 2 2, 2 2,
1 1 1

 Z  csc
T T T

t t t
t t t

Min cp P h I SC
= = =

= + +∑ ∑ ∑  (7) 

subject to balance equations: 

 2, 2, 1 2, 2,t t t t tI I P SC d−= + + − , t∀  (8) 

 2, 0TI =  (9) 

and production capacity: 

 P2,t  ≤ production capacity of factory 2 during period t , t∀  (10) 

 2,1 0P =  (11) 

The second model optimizes the production of Factory 1 satisfying the total demand coming 
from Factory 2 in each period under the capacity and material balance constraints of its 
level:  

 1 1, 1 1, 1 1,
1 1 1

 Z  csc
T T T

t t t
t t t

Min cp P h I SC
= = =

= + +∑ ∑ ∑  (12) 

subject to balance equations: 

 1, 1, 1 1, 1, 2, 2,t t t t t tI I P SC P SC−= + + − − , t∀  (13) 

 1, 0tI =  (14) 

and production capacity: 

 P2,t ≤ production capacity of factory 2 during period t , t∀  (15) 

 1, 0TP =  (16) 

3.3 Qualitative results 
We have used these two models to explore certain qualitative behavior of our supply chain. 
First of all we proved that the system’s cost of centralized optimization is less than or equal 
to that of decentralized optimization (property 1).  
Proof: This property is valid because the solution of decentralized optimization is a feasible 
solution for the centralized optimization but not necessarily the optimal solution ■  
In terms of each one factory’s costs, the F2’s production cost in local optimization is less than 
or equal to that of global (property 2). 
Proof: The solution of decentralized optimization is a feasible solution for the centralized 
optimization but not necessarily the optimal centralized solution ■  
In terms of F1’s optimal solution and using property 1 and 2 it is proved that the production 
cost in decentralized optimization is greater than or equal to that of centralized optimization 
(property 3).     
In reality for the subcontractor the cost of production cost for one unit is about the same as 
that of an affiliate company. The subcontractor in accordance with the contract rules wishes 

www.intechopen.com



Supply Chain Optimization: Centralized vs Decentralized Planning and Scheduling 

 

9 

to receive a set amount of earnings that will not fluctuate and will be independent of the 
market tendencies. Thus when the market needs change, the production cost and the 
subcontracting cost change but the fixed amount of earnings mentioned in the contract stays 
the same. The system’s optimal production plan is the same when the difference between 
the production cost and the subcontracting cost stays constant as well as the difference 
between the costs of local and global optimization is constant (property 4). Using this 
property we are not obliged to change the production plan when the production cost 
changes. In addition, in some cases, we could be able to avoid one of two analyses. 

Proof: If for factory F2, 2 2 2 2 2csc csccp cp′ ′Δ = − = −  where 2 2csc csc′≠ and 2 2cp cp′≠ then it is 
enough to demonstrate that the optimal value of the objective function as well as the 
optimal production plan are the same when the production cost and the subcontracting cost 
are 2 2,csccp and when the production cost and the subcontracting cost are 2 2,csccp′ ′ . For 

2 2, csccp′ ′ , we take the following objective function: 

 2 2, 2 2, 2 2,
1 1 1

 Z  csc
T T T

t t t
t t t

Min cp P h I SC
= = =

′ ′= + +∑ ∑ ∑  (17) 

Subject to: 
Balance equations: 

 2, 2, 1 2, 2,t t t t tI I P SC d−= + + − , t∀  (18) 

 2, 0TI =  (19) 

Production capacity: 

 P2,t ≤ production capacity of factory 2 during period t, t∀  (20) 

 2,1 0P =  (21) 

It is also valid that: 

 2, 2,
1 1

T T

t t t
t t

P SC d
= =

+ =∑ ∑ , t∀  (22) 

 2 2 2csc cp′ ′− = Δ  (23) 

 

Using equalities (22), (23) the objective function becomes: 

2 2, 2 2, 2 2,
1 1 1

 Z  [ ] csc
T T T

t t t t
t t t

Min cp d SC h I SC
= = =

′ ′= − + + ⇒∑ ∑ ∑  

2 2 2, 2 2 2, 2 2
1 1 1

Z  (csc ) (csc )
T T T

t t t
t t t

Min cp d h I cp SC cp
= = =

′ ′ ′ ′ ′= + + − ⇒ − = Δ∑ ∑ ∑  

 2 2 2, 2 2,
1 1 1

 Z  
T T T

t t t
t t t

Min cp d h I SC
= = =

′= + + Δ∑ ∑ ∑  (24) 
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Following the same procedure and using as production cost and subcontracting cost 2csc , 

2cp the objective function becomes: 

 
2 2 2, 2 2,

1 1 1

 Z  
T T T

t t t
t t t

Min cp d h I SC
= = =

= + + Δ∑ ∑ ∑  (25) 

Objective function (24) and (25) have the same components (except the constant term  

2
1

T

t
t

cp d
=
∑ which does not influence the optimization). This results the same minimum value 

and exactly the same production plan due to the same group of constraints (13)-(14)■ 
When the centralized optimization gives an optimal solution for F2 to subcontract the extra 
demand regardless of F1’s plan, the decentralized optimization gives exactly the same 
solution (property 5).  
Proof: In this case F1 obtains the demand curve which is exactly the same to the curve of the 
final product. In the case of decentralized optimization (which gives the optimal solution for 
F2) in the worst scenario we will get a production plan which follow the demand or a mix 
plan (subcontracting and inventory). The satisfaction of the first curve (centralized 
optimization) is more expensive for F1 than the satisfaction of the second (decentralized 
optimization) because the supplementary (to the production capacity) demand is greater. 
For this reason the production cost of F1 in decentralized optimization is greater than or 
equal to the production cost of the centralized optimization and using property 2 we prove 
that centralized and decentralized optimal production cost for F1 should be the same ■ 
Finally, we have demonstrated that when at the decentralized optimization, the extra 
demand for F2 is satisfied from inventory then the centralized optimization has the same 
optimal plan (property 6). 
Proof: In this case of decentralized optimization, F1 has the best possible curve of demand 
because F2 satisfy the extra demand without subcontracting. In centralized optimization in 
the best scenario we take the same optimal solution for F2 or a mix policy. If we take the 
case of mix policy then the centralized optimal solution of F1 will be greater than or equal to 
the decentralized optimal solution and using property 3 we prove that centralized and 
decentralized optimal production cost for F1 should be the same■ 

4. Centralized vs decentralized deterministic scheduling: A case study from 
petrochemical industry 

4.1 Problem description 
Refinery system considered here is composed of pipelines, a series of tanks to store the 
crude oil (and prepare the different mixtures), production units and tanks to store the raw 
materials and the intermediate and final products (see Figure 2). All the crude distillation 
units are considered continuous processes and it is assumed that unlimited supply of the 
raw material is available to system. The crude distillation unit produces different products 
according to the recipes. The production flow of our refinery system provided by 
Honeywell involves 9 units as shown in Figure 2. It starts from crude distillation units that 
consume raw materials ANS and SJV crude, to diesel blender that produces CARB diesel, 
EPA diesel and red dye diesel. The other two final products are coker and FCC gas. All the 
reactions are considered as continuous processes. We consider the operating rule for the 
storage tanks where material cannot flow out of the tank when material is flowing into the 
tank at any time interval, that is loading and unloading cannot happen simultaneously. This 
rule is imposed in many petrochemical companies for security and operating reasons. 
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Fig. 2. Flowchat of the refinery system of Honeywell 

In the system under study the production starts from cracking units and proceed to diesel 
blender unit to produce home heating oil (Red Dye diesel) and automotive diesel (Carb 
diesel and EPA diesel). Cracking unit, 4CU, processes Alaskan North Slope (ANS) crude oil 
which is stored in raw material storage tanks ANS1 and ANS2, whereas cracking unit 2 
(2CU) processes San Joaquin Valley (SJV) crude oil. SJV crude oil is supplied to 2CU via 
pipeline. The products of cracking units are then processed further downstream by vacuum 
distillation tower unit and diesel high pressure desulfurization (HDS) unit. The coker unit 
converts vacuum resid into light and heavy gasoil and produces coke as residual product. 
The fluid catalyzed high pressure desulfurization (FCC HDS) unit, FCC, Isomax unit 
produce products that are needed for diesel blender unit. The FCC unit also produces by- 
product FCC gas. The diesel blender blends HDS diesel, hydro diesel, and light cycle oil 
(LCO) to produce three different final products. The diesel blender sends final products to 
final product storage tanks. The byproduct FCC gas and residual product Coke is not stored 
but supplied to the market via pipeline. The system employs four storage tanks to store 
intermediate products, vacuum resid, diesel, light gasoil, and heavy gasoil. 

4.2 Methodology 

A mixed integer linear programming (MILP) model is first developed for the entire problem 
with the objective to minimize the overall makespan. The formulation is based on a 
continuous time representation and involves material balance constraints, capacity 
constraints, sequence constraints, assignment constraints, and demand constraints. The long 
term plan is assumed to be given and the objective is to define the optimal production 
scheduling. In such a case the key information available for the managers is firstly the 
proportion of material produced or consumed at each production units. These recipes are 
assumed fixed to maintain the model’s linearity. The managers also know the minimum and 
maximum flow-rates for each production unit and the minimum and maximum inventory 
capacities for each storage tank. The different types of material, that can be stored in each 
storage tank, are known as well as the demand of final products at the end of time horizon. 
The objective is to determine the minimum total makespan of production defining the 
optimal values of the following variables: 1) starting and finishing times of task taking place 
at each production unit; 2) amount and type of material being produced or consumed at 
each time in a production unit; and 3) amount and type of material stored at each time in 
each tank. In the following subsections the mathematical formulation of the centralized and 
decentralized optimization approach is presented as well as the structural decomposition 
rule developed for the decentralization of the global system. Notice that this 
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decentralization rule is generally applicable in this type of system where intermediate stock 
areas (eg. tanks) appear and in the same time the production is a continuous process. In the 
end of this section an analytical mathematical proof is given in order to demonstrate that the 
application of this structural decomposition rule, for the decentralization of the system, 
gives the same optimal solution as the centralize optimization. 

4.2.1 Centralized optimization 

In this section the centralized mathematical model is presented. Notice that all parameters of 
the problem as well as the decision variables are given in appendix B. The objective function 
of the problem is the minimization of makespan (H). The most common motivation for 
optimizing the process using minimization of makespan as objective function is to improve 
customer services by accurately predicting order delivery dates. 

 min H  (26) 

Constraints (27) to (29) define binary variables wv, in, and out, which are 1 when reaction, 
input flow transfer to tanks and output flow transfer from tanks occur at event point n, 

respectively. Otherwise, they become 0. Variable ( , , )in j jst n  is equal to 1 if there is flow of 

material from production unit (j) to storage tank (jst) at event point (n); otherwise it is equal to 

0. Variable ( , , )out jst j n  is equal to 1 if material is flowing from storage (jst) to unit (j) at 

event point (n), otherwise it is equal to 0. Equations (28) and (29) are capacity constraints for 
storage tank. Constraints (28) state that if there is material inflow to tank (jst) at interval (n) 
then total amount of material inflow to the tank should not exceed the maximum storage 
capacity limit. Similarly, constraints (29) state that if there is outflow from tank (jst) at 
interval (n) then the total amount of material flowing out of tank should not exceed the 
storage limit at event point (n). 

 , , , ,*i j n i j nb U wv≤  (27) 

 max
, , , ,inflow *j jst n jst j jst nV in≤  (28) 

 max
, , , ,outflow *j jst n jst j jst nV out≤  (29) 

Material balance constrains (30) state that the inventory of a storage tank at one event point 

is equal to that at previous event point adjusted by the input and output stream amount. 

 , , 1 , , , , ,inflow inflow1
jst jst

jst n jst n j jst n jst n j jst n
j Jprodst j Jstprod

St St outflow−
∈ ∈

= + + −∑ ∑  (30) 

The production of a reactor (31) should be equal to the sum of amount of flows entering its 

subsequent storage tanks and reactors, and the delivery to the market. 

 , , , , , , , ',
'

inflow unitflow
J j S j s

P
s i i j n j jst n s j j n

i I jst JSTprodst JST j Jseq Junitc

bρ
∈ ∈ ∈

= +∑ ∑ ∑
∩ ∩

, ,outflow2s j n+  (31) 

Similarly, the consumption of a reactor (32) is equal to the sum of amount of streams coming 

from preceding storage tanks and previous reactors, and stream coming from supply. 
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 , , , , ,*
J j S

C
s i i j n jst j n

i I jst Jstprod JST

b outflowρ
∈ ∈

= +∑ ∑
∩

, , ', , ,
'

inf 2
j s

s j j n s j n
j Jseq Junitp

unitflow low
∈

+∑
∩

 (32) 

Demand for each final product rs must be satisfied in centralized problem and also in 
decentralized problem. Constraints (33) state that production units must at least produce 
enough material to satisfy the demand by the end of the time horizon.  

 , , ,
, ,

1 2
s

jst n s j n s
jst JST n j n

outflow outflow r
∈

+ ≥∑ ∑  (33) 

Constraints (34) enforce the requirement that material processed by unit (j) performing task 
(i) at any point (n) is bounded by the maximum and minimum rates of production. The 
maximum and minimum production rates multiply by the duration of task (i) performed at 
unit (j) give the maximum and minimum material being processed by unit (j) 
correspondingly.  

 min max
, , , , , , , , , , , ,( ) ( )i j i j n i j n i j n i j i j n i j nR Tf Ts b R Tf Ts− ≤ ≤ −  (34) 

In the same reactor, one reaction must start after the previous reaction ends. If binary 
variable wv in inequality (35) is 1 then constraint is active. Otherwise the right side of the 
constraint is relaxed. 

 , , 1 ', , ', ,* (1 )i j n i j n i j nTs Tf U wv+ ≥ − −  (35) 

If both input and output streams exist at the same event point in a tank, then the output 
streams must start after the end of the input streams.  

 , , , , , ', , ',* (1 ) * (1 )j jst n j jst n jst j n jst j nTsf U in Tss U out− − ≤ + −  (36) 

When a reaction takes place in a reactor, its subsequent reactions must take place at the 
same time. Constraints (37) and (38) are active only when both binary variables are 1. 

 ', ', , , ', ', , , ', ', , , ', ',* (2 ) * (2 )i j n i j n i j n i j n i j n i j n i j nTs U wv wv Ts Ts U wv wv− − − ≤ ≤ + − −  (37) 

 ', ', , , ', ', , , ', ', , , ', ',* (2 ) * (2 )i j n i j n i j n i j n i j n i j n i j nTf U wv wv Tf Tf U wv wv− − − ≤ ≤ + − −  (38) 

Also when one reaction takes place, the flow transfer to its subsequent tanks must occur 
simultaneously. 

 , , , , , , , , , , , , , ,* (2 ) * (2 )j jst n i j n j jst n i j n j jst n i j n j jst nTss U wv in Ts Tss U wv in− − − ≤ ≤ + − −  (39) 

 , , , , , , , , , , , , , ,* (2 ) * (2 )j jst n i j n j jst n i j n j jst n i j n j jst nTsf U wv in Tf Tsf U wv in− − − ≤ ≤ + − −  (40) 

Similar constraints are written for the reaction and its preceding flow transfer from tanks to 
the reactor, as in constraints (41) and (42). 

 , , , , , , , , , , , , , ,* (2 ) * (2 )jst j n i j n jst j n i j n jst j n i j n jst j nTss U wv out Ts Tss U wv out− − − ≤ ≤ + − −  (41) 

 , , , , , , , , , , , , , ,* (2 ) * (2 )jst j n i j n jst j n i j n jst j n i j n jst j nTsf U wv out Tf Tsf U wv out− − − ≤ ≤ + − −  (42) 
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Finally, the following constraints (43) define that all the time related variables are less than 
makespan (H). 

 , ,i j nTf H≤ , , ,j jst nTsf H≤ , , ,jst j nTsf H≤  (43) 

4.2.2 Decentralized optimization 
The decentralized strategy proposed here decomposes the refinery scheduling problem 
spatially. To obtain the optimal solution in decentralized optimization approach, each sub-
system is solved to optimality and these optimal results are used to obtain the optimal 
solution for the entire problem. In our proposed decomposition rule, we split the system in 
such a way so that a minimum amount of information is shared between the sub-problems. 
This means splitting the problem at intermediate storage tanks such that the inflow and 
outflow streams of the tank belong to different sub-systems. The decomposition starts with 
the final products or product storage tanks, and continues to include the reactors/units that 
are connected to them and stops when the storage tanks are reached. The products, 
intermediate products, units and storage tanks are part of the sub-system 1. Then following 
the input stream of each storage tank, the same procedure is used to determine the next sub-
system. If input and output stream of the tank are included at the same local problem then 
the storage tank also belongs to that local problem. 
 

 

Fig. 3. Intermediate storage tank connecting two sub-systems 

When the problem is decomposed at intermediate storage tanks, storage tanks become a 
connecting point between two sub-systems. The amount and type of material flowing out of 
the connecting intermediate storage tank at any time interval (n) becomes demand for the 
preceding sub-system (k+1) at corresponding time interval (see Figure 3). 
After decomposing the centralized system, the individual sub-systems are treated as 
independent scheduling problems and solved to optimality using the mathematical 
formulation described in previous subsection. It should be also noticed that the operating 
rules for the decentralized system are the same as those required for the centralized 
problem. In general the local optimization of sub-system k gives minimum information to 
the sub-system k+1 which optimizes its schedule with the restrictions regarding the demand 
of the intermediates obtained by sub-system k. In Figure 4, we present the decomposition of 
the system under study after the application of the developed decomposition rule. The 
system is split in two sub-systems where sub-system 1 produces all of the final products and 
one by-product. The sub-system 1 includes 5 production unit, 7 final product storage tanks, 
and 3 raw material tanks. Raw material tanks in sub-system 1 are defined as intermediate 
tanks in centralized system. The sub-system 2 includes 4 production units, 1 intermediate 
tank, 2 raw material tanks and it produces 4 final products. Except Coke, all other final 
products in sub-system 2 are defined as intermediate products in centralized system. 
The sub-systems obtained using this decomposition rule have all the constraints presented 
in the basic model but in addition to that the k+1 sub-system has to satisfy the demand of  
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Fig. 4. Decomposition of Honeywell production system  

final products produced by this sub-system and also the demand of intermediate products 
needed by sub-system k. The demand constraints for intermediate final products for sub-
system k+1 are given by equation (44). 

 outflow2(s,j,n) r(s,n),    s S, j Junitp( , 1),n N
j

s k≥ ∀ ∈ ∈ + ∈∑  (44) 

 

When production units in sub-system k+1 supply material to storage tanks located in sub-

system k, in order to obtain globally feasible solution, the following capacity constraints are 

added to sub-system k+1. Constraint in equation (45) is for time interval n=0; sum of the 

material supplied to storage tank (jst) in sub-system k and initial amount present in the 

storage tank must be within tank capacity limit. Whereas equations (46) and (47) represents 

capacity constraints for event point n=1 and n=2 respectively. 

 maxoutflow2(s,j,n) stin(jst) V (jst),    s S, jst Jst(s,k), j Junitp(s,k+1), 0
j

n+ ≤ ∀ ∈ ∈ ∈ =∑  (45) 

1 maxoutflow2(s,j,n) stin(jst) (0) V ( jst),    s S, jst Jst(s,k), j Junitp(s,k+1),n N
0

rs
nj

+ − ≤ ∀ ∈ ∈ ∈ ∈∑ ∑
=

 (46) 

2 1 maxoutflow2(s,j,n) stin(jst) r(s,n) V (jst),    s S, jst Jst(s,k), j Junitp(s,k+1),n N
0 0j n n

+ − ≤ ∀ ∈ ∈ ∈ ∈∑ ∑ ∑
= =

(47) 

Constraints (48) and (49) represent lot sizing constraints for sub-system k+1. The demand of 
intermediate final product s at event point n is adjusted by the amount present in the 
storage tank after the demand is satisfied at previous event point (n-1). This adjusted 
demand is then used in demand constraints for intermediate final products. 

r(s,1) outflow2(s,j,0) stin(jst) r(s,0) r (s,1),    s S, j Junitp(s,k+1), jst Jst(s,k)
j

⎛ ⎞
⎜ ⎟ ′− + − = ∀ ∈ ∈ ∈∑
⎜ ⎟
⎝ ⎠

 (48) 

1 1
r(s,2) outflow2(s,j,n) stin(jst) r(s,n) r (s,2),    s S,j Junitp(s,k+1), jst Jst(s,k),n N

0 0j n n

⎛ ⎞
⎜ ⎟ ′− + − = ∀ ∈ ∈ ∈ ∈∑ ∑ ∑
⎜ ⎟= =⎝ ⎠

(49) 
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The optimal time horizon of global problem is obtained by combining the optimal schedules 

of sub-systems at each point (n) such that the material balance constraints are satisfied for 

connecting intermediate storage tanks. Since sub-system k+1 satisfies the demand of sub-

system k, sub-system k+1 will happen before the sub-system k. 

4.3 Qualitative results 

In this section an analytical proof is presented in order to demonstrate that the 

decentralization of the system under study using the rule presented in section 4.2.2 gives 

exactly the same optimal makespam as the one obtained by centralized optimization. 
Proof: The makespam (HL: local makespam and HG: global makespam) is defined as follow: 

,
,

k

k

k z
k z

H HH= ∑ where , , ,, ,
,

( )
k

f s
k z i j ni j n

i n

HH T T= −∑  corresponds to zth group of kth sub-system. 

The zth group is a group where all the j which belong to the zth group happen at the same 
time due to continuity of process operations. In the system under study applying the 
decomposition rule, we have 2 sub-systems which means k=2. For the 1st sub-system (k=1), 
z1=1,2 which means that we have 2 groups of units which do not operate at the same time 
(because of the coker tank). For the 2nd sub-system (k=2) all the units work at the same time 
z2=1. For z1=1: Vacum_tower, 2CU and 4CU, for z1=2: Coker and for z2=1: FCC HDS, 

Isomax, FCC, Diesel HDS and Blender. If all the members of the sum ,
,

k

k

k z
k z

H HH= ∑  in 

decentralized and centralized optimization are equal then L GH H= .  

Without loss of generality, we are going to prove that for k=2 and z2=1 the centralized and 

decentralized optimization gives the same optimal makespam. The same procedure can be 

used to prove the case of k=1 and z1=1, 2.  

We have to prove that for i,j which belong to z2=1, the equality 50 is valid:   

 , , , ,, , , ,
, ,

( ) ( )f fs s
i j n i j ni j n i j n

i n i nL G

T T T T− = −∑ ∑  (50) 

Proof of (50): If  , , , ,i j n i j n
n nL G

b b=∑ ∑ (51) then the equality (50) is valid ( 2,1 2,1L GHH HH= for 

appropriate i,j). From constraints (34) we have for the decentralized model (34L) and 
centralized model (34G): 

 , , , , , , , ,, , , ,( ) ( )f fMIN s MAX s
i j L i j nL i j nL i j L i j nLi j n i j nR T T b R T T− ≤ ≤ −  (34L) 

 , , , , , , , ,, , , ,( ) ( )f fMIN s MAX s
i j G i j nG i j nG i j G i j nGi j n i j nR T T b R T T− ≤ ≤ −   (34G) 

We sum (34L, 34G) over n and we get the following: 

 , , , , , , , ,, , , ,( ) ( )f fMIN s MAX s
i j L i j nL i j nL i j L i j nLi j n i j n

n n n

R T T b R T T− ≤ ≤ −∑ ∑ ∑  (34L') 

 , , , , , , , ,, , , ,( ) ( )f fMIN s MAX s
i j G i j nG i j nG i j G i j nGi j n i j n

n n n

R T T b R T T− ≤ ≤ −∑ ∑ ∑  (34G ') 

We then make the following steps: (31L'-31G ') and (31G '-31L') and using (51) we prove (50). 
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Proof of (51): In general only one unit j produces a product s. Thus, in constraints (33) only 

one of the two parts exists because a product s is produced by a unique unit or is unloaded 

from a tank or sum of tanks. 

 ,
,

1
s

jst n s
jst JST n

outflow r
∈

≥∑   { }11,12,13s∈   (33A) 

 , ,
,

2s j n s
j n

outflow r≥∑  { }10,14s∈  (33B) 

 

In decentralized and centralized optimization demand sr  is the same which means that:  

 { }, ,
, ,

1 1 11,12,13
s s

jst n jst n
jst JST n jst JST nL G

outflow outflow s
∈ ∈

= ∈∑ ∑   (52) 

 { }, , , ,
, ,

2 2 10,14s j n s j n
j n j nL G

outflow outflow s= ∈∑ ∑  (53) 

 

We can obtain (52) and (53) by subtracting (33AL-33AG) and (33AG-33AL) where (33AL), 

(33AG) are constraints (33A) for the decentralized and centralized case, respectively for (52) 

and (33BL-33BG) and (33BG-33BL) (where (33BL), (33BG) are constraints (33B) for the 

decentralized and centralized case) respectively for (53). It should be pointed out that the 

sum over j in (53) can be eliminated because only one j produces the product s.  

A general constraint of the system is that the production and the storage of a produced 

product take place in the same time.  

That means that: , , ,
, ,

1 2
s s

jst n s j n
jst JST n j n

outflow outflow
∈

=∑ ∑  and eliminating the sum over j for the 

same reason as in (53) we take: , , ,
,

1 2
s

jst n s j n
jst JST n n

outflow outflow
∈

=∑ ∑  (54) for { }11,12,13s∈  

and sj J∈ which is unique. From (53) and (54) we take: 

{ }, , , ,2 2 , 10,11,12,13,14s j n s j n
n nL G

outflow outflow s= ∈∑ ∑  (55). Let’s then consider the problem 

constraints (31): { }, , , ,, 2 10,11,12,13,14
j

p
i j n s j ns i

i I

p b outflow s
∈

= ∈∑ . Using constraints (27) only 

one i happens at j in a certain period n. Then the sum over i can be relaxed: 

{ }, , , ,, 2 10,11,12,13,14p
i j n s j ns ip b outflow s= ∈  (56). Equation (56) is for the specific s which is 

produced from a unique j from exact task i in a certain period n. Using equation (55) we have: 

, , , ,2 2s j n s j n
n nL G

outflow outflow=∑ ∑ ⇒  using (56) ⇒  

, , , ,, ,
p p

i j n i j ns i s i
n nL G

p b p b=∑ ∑ ⇒ , , , ,i j n i j n
n nL G

b b=∑ ∑   ⇒  

, , , ,, , , ,( ) ( )f fs s
i j n i j ni j n i j n

n nL G

T T T T− = −∑ ∑ ⇒ , , , ,, , , ,
, ,

( ) ( )f fs s
i j n i j ni j n i j n

i n i nL G

T T T T− = −∑ ∑

{ }, , 10,11,12,13,14j si I j J s∀ ∈ ∈ ∈ . 
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That means that equality (50) is satisfied. Summarizing the presented proof is based on the 
fact that the total time needed to produce a group of products which are produced in the 
same period in units j of z group is the same in local and global optimization ■ 

5. Centralized vs decentralized control policies: A case study of aluminium 
doors with stochastic demand 

5.1 Problem description 

In this session, we examine a stochastic supply chain which corresponds at ANALKO 
enterprise. This supply chain is composed by two manufacturers that produce a single 
product type.  The first manufacturer provides the basic component of the final product, 
and the second one makes the final product (see figure 4). Factory F1 purchases raw 
material, produces the basic component of product and places its finished items at buffer 1. 
The second factory makes final products and stores them in buffer 2 in anticipation of future 
demand. The processing times in each factory have exponential distributions and demand is 
a Poisson process with a constant rate. There is ample supply of raw items before the first 
factory so that F1 is never starved. There are also two external suppliers, subcontractor SC1 
and, possibly, subcontractor SC2. SC1 can provide basic components to F2 whenever buffer 1 
becomes empty. Thus, F2 is also never starved. SC2 can satisfy the demand during stockouts; 
if SC2 is not available, then all demand during stockouts is lost. Demand is satisfied by the 
finished goods inventory, if buffer 2 is not empty, otherwise it is either backlogged or 
satisfied by SC2. Whenever a demand is backlogged, backorder costs are incurred. Holding 
costs are incurred for the items held in buffer 1 and buffer 2 as well as for those being 
processed by F1 and F2. The objective is to control the release of items from each factory and 
each subcontractor to the downstream buffer so that the sum of the long-run average 
holding, backordering, and subcontracting costs is minimized. We use Markov chains to 
evaluate the performance of the supply chain under various control policies. 
  

 

raw items 
factory F1 

subcontractor SC1

buffer1 

products

demand factory F2 

subcontractor SC2

buffer2 

FIRST COMPANY SECOND COMPANY 

basic components 

 

Fig. 4. The tow-stage supply chain of ANALKO 

Let I1 denote the number of items in buffer 1 plus the item that is currently being processed 

by F2, if any. Also, I2 is the inventory position of the second stage, that is, the number of 

finished products in buffer 2 minus outstanding orders. Raw items that are being processed 

by F1 are not counted in I1. The state variable I2 is positive when there are products in buffer 

2; during stockout periods, I2 is negative, if there are outstanding orders to be filled, or zero 

otherwise. Two production policies are examined: a) Base stock control (BS): Factory Fi, i = 1, 

2, produces items whenever Ii is lower than a specified level Bi and stops otherwise. This 

policy is commonly used in production systems, and b)Echelon base stock control (ES): Factory 

F2 employs a base stock policy with threshold B2 as in BS, while F1 produces items only as 
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long as its echelon (downstream) inventory position, I1 + I2, is lower than a specified level 

E1, which will be referred to as the echelon base stock. 

An order admission policy is also studied (in combination with BS and ES) whereby the 
arriving orders during a stockout period are accepted until a certain level C, called the base 
backlog. An arriving order that finds C outstanding orders ahead is subcontracted (or lost if 
SC2 is not available). This is a partial backordering policy (PB). Although it has received little 
attention in the past, PB is frequently applied in practice because it is more profitable than 
other policies such as lost sales or complete backordering (Kouikoglou and Phillis 2002; 
Ioannidis et al., 2008). 

5.2 Methodology 
5.2.1 Performance measures  

The overall performance measure of the system is the mean profit rate. This quantity 

depends on the revenue from sales and the costs of backlog, inventory, production, and 

subcontracting. The inventory cost typically includes direct costs for storing goods and a 

loss of opportunity to invest in a profitable way the capital spent for the raw material which 

resides in the system in the form of semi-finished or end items (see, e.g., Zipkin 2000, p. 34). 

The backlog cost is in general difficult to measure (Hadley and Whitin 1963, p. 18); it 

comprises the loss of opportunity to invest an immediate profit, the loss of goodwill when a 

customer faces a stockout, and a penalty per time unit of delay in filling orders (e.g., 

discounts offered to customers willing to wait). 

We consider the following profit or cost parameters: a) p1 price at which F1 sells a 

component to F2 (produced by F1 or by SC1), b) p2 selling price of the final product 

(produced by F2 or by SC2), c) sci price at which the external subcontractor SCi sells finished 

items to Fi, d) ci unit production cost at Fi (c1 includes the cost of purchasing a raw item), e) 

hi unit holding cost rate in Fi (per item per time unit), and f) b backlog cost rate incurred by 

F2 (per time unit of delay of one outstanding order). If SC2 is not available, then all demand 

not satisfied by the system (either immediately or after some delay) is lost. This case can be 

analyzed by setting sc2 equal to the loss of profit p2 plus an additional penalty for rejecting a 

customer order. For each factory, we assume that it is more costly to purchase an item from 

a subcontractor than to produce it. Thus, sc1 > c1 and sc2 > p1 + c2. We also assume that 

production is profitable; hence p1 > c1 and p2 > p1 + c2.  

The following quantities are long-run statistics, assuming they exist, of various stochastic 

processes associated with the performance of the supply chain: a) THi mean throughput rate 

of factory Fi, b) THSCi mean rate of purchasing items from subcontractor SCi, c) αI stationary 

probability that Fi is busy, d) B mean number of outstanding orders, i.e., B = E[max(−I2, 0)] 

(57) where E is the expectation operator, and e) Hi mean number of items in Fi (being 

processed and finished), i.e., H1 = α1 + E(I1) − α2 (58) and H2 = α2 + E[max(I2, 0)] (59) where 

max(I2, 0) is the number of products in buffer 2. Equations (58-59) follow from the fact that, 

by definition, H1 includes the item which is being processed by F1 but I1 does not include it; 

on the contrary, H1 does not include the item that is being processed by F2, which, however, 

is included in I1 and in H2.  

Using the parameters and statistics defined above we can compute performance measures 

for the individual factories and the whole system. The mean profit rate Ji of Fi, i = 1, 2, and 
the overall profit rate J of the system are given by: 

www.intechopen.com



Supply Chain Management 

 

20 

 J1 = (p1 − c1)TH1 + (p1 − sc1)THSC1 − h1H1  (60) 

 J2 = (p2 − c2 − p1)TH2 + (p2 − sc2)THSC2 − h2H2 − bB  (61) 

 J = J1 + J2  (62) 

In equations (57) and (58), the terms involving the throughput rates THi and THSCi 
represent net profits from sales of factory Fi. In equilibrium, the mean inflow rate of F2 

equals its mean outflow rate, i.e., TH1 + THSC1 = TH2, and the mean demand rate equals 
TH2 + THSC2. If SC2 is not available, then THSC2 is the rate of rejected orders. 
Along with the policies BSPB and ESPB described in previous subsection, we consider two 
strategies the companies participating in ANALKO can adopt to maximize their profits: 
decentralized or local optimization and centralized or global optimization. In both cases, the 
objective is to determine C, B2, and B1 (under BSPB) or E1 (under ESPB) so as to maximize 
certain performance measures which are discussed next. 
Under decentralized optimization, factory F2 determines C and B2 which maximize its own 
profit rate J2. Recall that this factory is never starved. Therefore, regardless of the choice of 
B1 or E1, the second stage of the supply chain can be modeled as a single-stage queueing 
system in isolation in which the arrivals correspond to finished items leaving F2, the queue 
represents the products stored in buffer 2, and the departures correspond to customer 
orders. After specifying its control parameters, F2 communicates these values and also 
information about the demand to the first stage F1 which, in turn, seeks an optimal value for 
B1 or E1 so as to maximize J1. Under centralized optimization, the primary objective is to 
maximize the profit rate J of the system in all control parameters jointly. Intuitively, 
centralized optimization is overall more profitable than LO, i.e., JGO ≥ JLO. This can easily be 
shown by comparing the maximizing arguments (argmax) of profit equations. 
A general rule is that each company must benefit from being member of the supply chain. 
Under decentralized optimization, the second factory maximizes its own profit in an 
unconstrained manner, so J2LO ≥ J2GO. However, it follows from JGO ≥ JLO and (61) that 
J1GO ≥ J1LO. Thus, centralized optimization is more preferable than decentralized 
optimization for the first factory, provided that the second factory agrees to follow the same 
strategy. If the individual profits JiLO are acceptable for both factories, then LO could be used 
as a basis of a profit-sharing agreement: a) adopt centralized optimization, so that F1 
accumulates more profit, and b) decrease the price p1 at which F1 sells to F2 so that, in the 
long run, factory Fi has a profit rate equal to JiLO plus a pre-agreed portion of the additional 
profit rate JGO − JLO. If, on the other hand, F1 is not willing to participate to a supply chain 
operating under decentralized optimization but it would be willing to do so under 
centralized optimization, then there are several possibilities for the two companies to reach 
(or not reach) a cooperation agreement, depending on the magnitude of the extra profit 
JGO − JLO and the profit margins of the company that owns F2. In general, such problems are 
difficult and often not well-posed because they are fraught with conflict of interests and 
subjectivity. In this paper, we assume that both companies are willing to adopt 
decentralized optimization, as is the case of ANALKO. The problem then is to investigate 
under which conditions the additional profit rate JGO − JLO would make it worth introducing 
centralized optimization and how the optimal control parameters can be computed. 

5.2.2 Centralized and decentralized optimization 

We assume that the processing times of F1 and F2 are independent, exponentially distributed 

random variables with means 1/μi and the products are demanded one at a time according 
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to a Poisson process with rate λ. In practice, the processing times often have lower variances 
than the exponential distribution. The assumption of exponential processing and interarrival 
times is adopted here in order to facilitate the analysis by Markov chain models. Systems 
with more general distributions can be evaluated using higher-dimensional Markovian 
models or simulation. The state of the system is the pair (I1, I2), i.e., the number of 
components which have not yet being processed by F2 and the inventory position of the 
second stage. The state variables provide information about the working status of each 
factory, and form a Markov chain whose dynamics depend on the production control policy 
as we shall discuss in the next two subsections. 
Modeling Base stock control with partial backordering: Factory F1 is working when I1 < B1. 

Hence, a transition from state (I1, I2) to state (I1 + 1, I2) occurs with rate μ1, but these 

transitions are disabled in states (B1, I2). A transition from state (I1, I2) to (I1 − 1, I2 + 1) occurs 

with rate μ2 whenever I2 < B2. When I1 = 1, F2 is working on one item and buffer 1 is empty; 
in this case, if this item is produced before F1 sends another one to buffer 1, then the first 
company is obliged to deliver an item to F2 by purchasing one from SC1. We then have a 

transition from state (1, I2) to (0, I2 + 1) with rate μ2, followed by an immediate transition to 

(1, I2 + 1) which ensures that F2 will continue to produce. However, in state (1, B2 − 1), if F2 
produces one item, then it stops producing thereafter since I2 reaches the base stock B2. 
Hence, there is no need to buy from SC1 and the new system state is (0, B2). Finally, we 
consider the state transitions triggered by a demand. According to the partial backordering 

policy, an arriving customer order is rejected when I2 = −C, otherwise it is backordered and 

the new state is I2 − 1. These transitions occur with rate λ. A diagram showing the state 
transitions explained above is shown in figure 5. 
 

 

0, B2 1, B2 2, B2 B1 −1, B2 B1, B2 

1, B2 −1 2, B2 −1 B1 −1,B2 −1 B1, B2 −1

1, −C+1 2, −C+1 B1 −1,−C+1 B1, −C+1

1, −C 2, −C B1 −1, −C B1, −C 

1, −C+2 2, −C+2 B1 −1,−C+2 B1, −C+2

μ1 

μ2 

μ1 

μ1 

μ1 μ1 
μ1 

μ1 

μ1 

μ1 

μ2 

μ2 

μ2 

λ λ λ λ 

λ λ λ λ 

λ λ λ λ 

μ2 μ2 μ2 

μ2 μ2 μ2 

μ2 μ2 μ2 

μ2 μ2 
μ2 

λ λ λ λ 

μ1 

μ1 

μ1 

μ1 

μ1 

…

…

…

…

…

…

…

…

…

μ1 μ1 

 

Fig. 5. Markov chain of the supply chain under BSPB. 

The Chapman-Kolmogorov equations for the equilibrium probabilities P(I1, I2) are 

I2 = B2:  μ1P(0, B2) = μ2P(1, B2 − 1)    

  (λ + μ1)P(I1, B2) = μ1P(I1 − 1, B2) + μ2P(I1 + 1, B2 − 1) ,  1 ≤ I1 ≤ B1 − 1, 

  λP(B1, B2) = μ1P(B1 − 1, B2) 

B2 > I2 > −C: (λ + μ1 + μ2)P(1, I2) = μ2[P(1, I2 − 1) + P(2, I2 − 1)] + λP(1, I2 + 1) 
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  (λ + μ1 + μ2)P(I1, I2) = μ1P(I1 − 1, I2) + μ2P(I1 + 1, I2 − 1) 

                                        + λP(I1, I2 + 1),  2 ≤ I1 ≤ B1 − 1, 

  (λ + μ2)P(B1, I2) = μ1P(B1 − 1, I2) + λP(B1, I2 + 1) 

I2 = −C:  (μ1 + μ2)P(1, −C) = λP(1, −C + 1)  

  (μ1 + μ2)P(I1, −C) = μ1P(I1 − 1, −C) + λP(I1, −C + 1),  2 ≤ I1 ≤ B1 − 1, 

  μ2P(B1, −C) = μ1P(B1 − 1, −C) + λP(B1, −C + 1). 

We solve the first of the equations given above for P(0, B2) = (μ2/μ1)P(1, B2 − 1). We define 

the column vectors PI2 = [P(1, I2) … P(B1, I2)]T for I2 = B2, B2 − 1, …, −C. The Chapman-

Kolmogorov equations can be written more compactly as: 

 A1PB2 = H1PB2−1 I2 = B2  (63) 

 API2 = GPI2+1 + HPI2−1 ,  I2 = B2 − 1, …, −C + 1 (64) 

 A0P−C = G0P−C+1, I2 =  −C  (65) 

 

where A, A0, A1, H1, H, G, and G0 are matrices of suitable dimensions whose elements are 
the transition rates from and to the states of a given system level I2. This system of equations 

can be solved sequentially: a) We solve equation (63) for PB2 = DB2PB2−1, where DB2 = A1
−1H1, 

b) then, we use the expression found in the previous iteration to solve equations (64) for 

PI2 = DI2PI2−1, where DI2 = (A − GDI2+1)
−1 and I2 = B2 − 1, B2 − 2, …, −C + 1, c) next, we 

substitute P−C+1 = D−C+1P−C into equation (65) and compute P−C using the normalization 

condition P(0, B2) +
1 2

1 2

1 2
1

( , )
B B

I I C

P I I
= =−
∑ ∑ = (μ2/μ1)P(1, B2 − 1) +

1 2

1 2

1 2
1

( , )
B B

I I C

P I I
= =−
∑ ∑  = 1, and d) 

finally, we compute the remaining probability vectors recursively from PI2 = DI2PI2−1, for 

I2 = −C + 1, …, B2. From the equilibrium probabilities we can compute all the terms of 

equations (60)−(62). We have: 

THi = μiαi,   THSC2 = λ − TH2,   THSC1 = TH2 − TH1,  

α1 = P(I1 < B1) = 1 −
2

2

1 2( , )
B

I C

P B I
=−
∑ ,   α2 = P(I2 < B2) = 1 −

1

1

1 2
0

( , )
B

I

P I B
=
∑ , 

E(I1) = 
1

1 2

1 1 2
1 1

( , )
B C

I I

I P I I
−

= =
∑ ∑ ,    E[max(−I2, 0)] =

1

2 1

2 1 2
1 1

( , )
BC

I I

I P I I
−

=− =

⎡ ⎤
− ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ,   

E[max(I2, 0)] = B2P(0, B2) +
2 1

2 1

2 1 2
1 1

( , )
B B

I I

I P I I
= =

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ . 

 

Upon substituting these quantities into equations (60)−(62) we compute J1, J2, and J. 
Modeling Echelon base stock control with partial backordering: The Markov chain has a 

similar structure as previously, except that the maximum value of I1 is E1 − I2; so it is not 

constant but it depends on the inventory position I2 of the second stage. When I2 = B2, I1 
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takes on values from the set {0, 1, …, E1 − B2}; in all other cases, i.e. I2 = B2 − 1, …, 0, …, −C, 

we have I1 = 1, 2, …, E1 − I2.  

 
 

0, B2 1, B2 E1 −B2, B2 

1, B2 −1 E1 −B2, B2 −1 

1, −C E1 −B2, −C 

μ1 

μ2 

μ2 

λ λ 

μ2 

μ2 

λ λ 

μ1 

μ1 

E1−B2 +1, B2 −1

μ2 

μ2 

E1 + C, −C
μ1 

E1−B2 +1, −C

λ 

μ2 

μ1 

μ1 μ1 

…

…

… …

…

 

Fig. 6. Markov chain of the supply chain under ESPB 

The state transitions of the corresponding Markov chain are shown in figure 6. The 

equilibrium probabilities, throughput rates, and mean buffer levels at each stage are 

computed similarly as in the previous case. 

5.3 Qualitative results 

Under a centralized strategy, the simplest method to find the optimal control parameters for 
BS with PB or ES with PB is to compare the profit rates of the system for all possible 
combinations of C, B2, and B1 or E1. Similarly, the optimal decentralized policies can be 
determined by finding the values of C and B2 which maximize J2 and, using these values, the 
value of B1 or E1 which maximizes J1. Since there are infinite choices for each control 
parameter, we must determine a finite grid of points (C, B2, B1) or (C, B2, E1) which contains 
the optimal parameter values. We do this via the following theorem: 
Theorem 1: Under the assumptions min (p1, sc1) > c1 and min (p2, sc2) > p1 + c2 the following 
hold: a) For both BS with PB and ES with PB, the optimal value of C under centralized 

optimization is less than (sc2 − c1 − c2)μ2/b, whereas under decentralized optimization it is 

less than (sc2 − p1 − c2)μ2/b, b) Under centralized optimization, the optimal values of B1 and 

B2 are less than 1 + (sc1 − c1)μ2/h1 and (sc2 − p1 − c2)λ/h2, respectively; the optimal value of 
E1 is less than the sum of the previous two bounds and c) Under centralized optimization, 
the optimal values of E1, B1, and B2 are bounded from above by [max (sc1 + c2, 

sc2) − c1 − c2]λ/min (h1, h2). 
Proof of part a: With C undelivered orders outstanding, the last order in the queue will be 

satisfied on average after C/μ2 time units. When this order is delivered to the customer the 

system (centralized optimization objective) makes profit (p2 − c1 − c2) − Cb/μ2 if the basic 

component is made in F1, or (p2 − sc1 − c2) − Cb/μ2 if the basic component is purchased from 

SC1. The maximum profit is (p2 − c1 − c2) − Cb/μ2. Under a decentralized optimization 

strategy F2 earns (p2 − p1 − c2) − bC/μ2. Each one of these two profits must be greater than 

(p2 − sc2), for otherwise it would be more profitable to purchase one item from SC2 and sell it 

to the customer ■ 

Proof of part b: Under a decentralized BS with PB strategy, a decision to produce one item 

in F1 and raise the stock level to I1 = B1 is not profitable for F1 if the profit from selling this 
item to F2 minus the corresponding holding cost is less than the profit from purchasing one 
item from SC1 selling it. The holding cost depends on the mean time to sell the item, which 
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is at least (B1 − 1)/μ2, assuming that F2, which is currently processing the first of the B1 items, 

will not idle thereafter. Hence, we must have (p1 − c1) − h1(B1 − 1)/μ2 > (p1 − sc1). Using the 

same argument for the second stage, we obtain (p2 − p1 − c2) − h2B2/λ > (p2 − sc2). From these 
inequalities we obtain the first two bounds of part (b). Under a decentralized ES with PB 

strategy, we have E1 = max (I1 + I2) ≤ max (I1) + max (I2); the right side of the inequality is 
less than the sum of the previous two bounds and this concludes the proof ■ 
Proof of part c: Under a centralized strategy, a decision to produce an item in F1 leads to a 

profit (p2 − c1 − c2) and a holding cost which is greater than min(h1, h2)(I1 + I2)/λ, where 

I1 + I2 is the total inventory of the system and 1/λ is a lower bound on the mean time to sell 

the item (relaxing the requirement that the item which is produced in F1 will experience an 

additional delay at F2). The decision to produce the item in F1 is not profitable if the net 

profit is less than the worst-case outsourcing profit p2 − max (sc1 + c2, sc2). So we have 

(p2 − c1 − c2) − min (h1, h2)(I1 + I2)/λ ≥ p2 − max (sc1 + c2, sc2) from which we obtain the 

bound on E1 = max (I1 + I2) given in part (c). Moreover, since max (I1 + I2) ≥ max (Ii) = Bi, 

i = 1, 2, the same bound is also valid for Bi ■ 

Concluding, Theorem 1 ensures that the search space of optimal control parameters is 

bounded. For example, suppose the extra cost for outsourcing from SC2 is sc2 − c1 − c2 = 10% 

of the unit selling price, min (h1, h2) = 1% of the unit selling price per time unit, the mean 

demand rate is λ = 5 products per time unit, and it holds that sc2 ≥ sc1 + c2, i.e., buying 
products from SC2 is more expensive than buying components from SC1 and processing 
them in F2 to make products. Then, from part (c) of Theorem 1, the upper bound on the 

echelon surplus and the stock level I1 is 10 × 5/1 = 50. This is the maximum dimension of the 

probability vectors and the transition matrices in equations (60−62). 

6. Conclusion  

It is known that decentralized planning results in loss of efficiency with respect to 
centralized planning. It is, however, difficult to quantify the difference between the two 
approaches within the context of production planning, production scheduling and control 
policies. In this chapter this issue was investigated in the setting of a two plant series 
production system of aluminum doors and a petrochemical multi-stage system.  
We have explored a “locally optimized” production planning procedure of ANALKO 
company where the downstream plant optimizes its production plan and the upstream 
plant follows his requests. Then we compared this decentralized optimized approach with 
centralized optimization where a single decision maker plans the production quantities of 
the supply chain in order to minimize total costs. Using our qualitative results, we have 
proved under which condition the two approaches give the same optimal solution. Future 
research could focus on development of efficient profit distribution strategies in case of 
centralized optimization.  
A structure decomposition strategy and formulation is also presented for short-term 
scheduling of refinery operations. An analytical mathematical proof is given in order to 
demonstrate that both optimization strategies result in the same optimal solution when the 
developed structural decomposition technique is applied. An interesting direction for the 
future is to examine the solutions given from centralized and decentralized strategy under 
different objective functions, such as maximization of profit, minimization of the inventory 
in the tanks.  

www.intechopen.com



Supply Chain Optimization: Centralized vs Decentralized Planning and Scheduling 

 

25 

Finally, we have presented some Markovian queueing models to support the task of 

coordinated decision making between two factories in a supply chain, which produces items 

to stock to meet random demand. During stockout periods, each factory can purchase end 

items from subcontractors. Production and subcontracting decisions in each factory are 

made according to pull control policies. From theoretical results, it appears that managing 

inventory levels and backorders jointly achieves higher profit than independently 

determined control policies. Upper bounds for the control parameters are given follow by 

analytical mathematical proofs. The study of multi-item, stochastic supply chains could be 

another research direction. Since an exact analysis of multistage and/or multi-item supply 

chains is usually hopeless, the development of efficient simulation algorithms and the 

improvement of the accuracy of existing approximate analytical methods are the subjects of 

ongoing research.  

7. Appendixes  

Appendix A: 

Variables: T: Time Horizon (12 months), ,i tP : Production in factory iF during period t, ,i tI : 

Inventory of factory iF during period t, ,i tSC : Subcontracting of factory iF during period t,  

Parameters: icp : production cost of factory iF , ih : inventory cost of factory iF , csci : cost of 

subcontracted products for factory iF , td : the demand of the final product during period t.  

Appendix B 

Sets: I : Tasks. J :Reactors, JST :Tanks, S :Materials, N : Event points, jI :Tasks that can 

happen in unit j, iIseq ′ : Tasks that follow task i ′  ( i ′  produces s product that will be 

consumed by i), jstJstprod :Units that follow tank jst, jstJprodst : Units that are followed by 

tanks jst, sJunitp : Units that can produce material s, sJunitc :Units that consume material s, 

jJseq ′ : Units that follow unit j′  (no storage in between), sJST : Tanks that can store material 

s, jJSTprodst :Tanks that follow unit j, jJSTstprodt : Tanks that are followed by unit j. 

Parameters: 
min

, jiR , 
max

, jiR :Min and Max production rate for unit j for task i, 
max

jstV :Maximum 

capacity of tank jst, ,
p
s jρ , ,

c
s jρ : Proportion of material s produced, and consumed from task i, 

sr : Demand for material s at the end of the time horizon. 

Decision Variables: i,j,nwv : Binary variables for task i at time point n, i,j,nb : Amount of 

material in task i at unit j at time n, i,j,nTs : Time that task i starts in unit j at event point n, 

i,j,nTf  Time that task in finishes in unit j at event point n, j,jst,nin : Binary variable for flow 

from unit j to tank jst, j,jst,n inflow : Amount of material flow from unit j to storage tank jst, 

j,jst,nTss : Time that material starts to flow from unit j to tank jst at event point n, j,jst,n Tsf : 

Time that material finishes to flow from unit j to tank jst at event point n, jst,j,nout : Binary 

variable for flow from tank jst to unit j, jst,j,n outflow : Amount of material flow from storage 

tank jst to unit j, jst,j,n Tss : Time that material starts to flow from tank jst to unit j at event 

point n, jst,j,nTsf : Time that material finishes to flow from tank jst to unit j at event point n, 

jst,n inflow1 : Inflow of raw material to storage tank jst at event point n, jst,n outflow1 : 

Outflow of final product from storage tank jst at event point n, s,j,ninflow2 : Inflow of raw 

material s to unit j at event point n, s,j,noutflow2 : Outflow of final product s from unit j at 

event point n, s,j,jj,nunitflow : Flow of material from unit j to unit jj for consumption, jst,n st : 

Amount of material in tank jst at event point n. 
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