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1. Introduction

The A DFT (Discrete Fourier Transform) has seen studied and applied to signal processing
and communication theory. The relation between the Fourier matrix and the Hadamard
transform was developed in [Ahmed & Rao, 1975; Whelchel & Guinn, 1968] for signal
representation and classification and the Fast Fourier-Hadamand Transform(FFHT) was
proposed. This idea was further investigated in [Lee & Lee, 1998] as an extension of the
conventional Hadamard matrix. Lee et al [Lee & Lee, 1998] has proposed the Reverse Jacket
Transform(R]JT) based on the decomposition of the Hadamard matrix into the Hadamard
matrix(unitary matrix) itself and a sparse matrix. Interestingly, the Reverse Jacket(R]) matrix
has a strong geometric structure that reveals a circulant expansion and contraction
properties from a basic 2x2 sparse matrix.

The discrete Fourier transform (DFT) is an orthogonal matrix with highly practical value
for representing signals and images [Ahmed & Rao, 1975; Lee, 1992; Lee, 2000]. Recently,
the Jacket matrices which generalize the weighted Hadamard matrix were introduced in
[Lee, 2000], [Lee & Kim, 1984, Lee, 1989, Lee & Yi, 2001; Fan & Yang, 1998]. The Jacket
matrix! is an abbreviated name of a reverse Jacket geometric structure. It includes the
conventional Hadamard matrix [Lee, 1992; Lee, 2000; Lee et al., 2001; Hou et. al., 2003],
but has the weights, @, that are j or 2F where k is an integer, and j= J-1 , located in
the central part of Hadamard matrix. The weighted elements' positions of the forward
matrix can be replaced by the non-weighted elements of its inverse matrix and the signs
of them do not change between the forward and inverse matrices, and they are only as
element inverse and transpose. This reveals an interesting complementary matrix
relation.

Definition 1: If a matrix [ ] ]m of size mxm has nonzero elements

j0,0 jO,l jO,m—l
ULZ ]1:,0 ]1:,1 ]1,;:17-1 ’ (6-1)
jm—l,O jm—l,l jm—l,m—l

www.intechopen.com



140 Fourier Transforms - Approach to Scientific Principles

T

1/]'0,0 1/j0,1 1/]'O,m—l

[] 1 :l 1/j1,0 1/]'1,1 1/]'1,71171
m C . . .

1/jm—l,O 1/jm—1,1 1/jm—l,m—1

(6-2)

where C is the normalizing constant, and T is of matrix transposition, then the matrix []ll
is called a Jacket matrix [Whelchel & Guinn, 1968],[Lee et al., 2001],[Lee et al, 2008; Chen et
al., 2008]. Especially orthogonal matrices, such as Hadamard, DFT, DCT, Haar, and Slant
matrices belong to the Jacket matrices family [Lee et al., 2001]. In addition, the Jacket
matrices are associated with many kind of matrices, such as unitary matrices, and Hermitian
matrices which are very important in communication (e.g., encoding), mathematics, and
physics.

In section 2 DFT matrix is revisited in the sense of sparse matrix factorization. Section 3
presents recursive factorization algorithms of DFT and DCT matrix for fast computation.
Section 4 proposes a hybrid architecture for implentation of algorithms simply by adding a
switching device on a single chip module. Lastly, conclusions were drawn in section 4.

2. Preliminary of DFT presentation

The discrete Fourier transform (DFT) is a Fourier representation of a given sequence x(m),
0<m<N -1 and is defined as

X(n)= Nilx(m)W”m, 0<n<N-1, (6-3)

m=0

27

where W=e 'N . Let's denote N -point DFT matrix as F, = [W”’”JN ,n,m={0,1,2,..,N -1},

27

where W=¢ 'V (see about DFT in appendix), and the N xN Sylvester Hadamard matrix
as [H]N , respectively. The Sylvester Hadamard matrix is generated recursively by

successive Kronecker products,

[H] =[HLe®[H], (6-4)

1 1
for N=4, 8, 16, ... and [Hl :L J . For the remainder of this chapter, analysis will be

concerned only with N=2, k=1,2,3, ... as the dimensionality of both the F and H matrices.
Definition 2: A sparse matrix [S]N , which relates [F :LV and [H :LV , can be computed from the
factorization of F based on H.

The structure of the S matrix is rather obscure. However, a much less complex and more
appealing relationship will be identified for S [Park et al., 1999].

To illustrate the DFT using direct product we alter the denotation of W to lower case

w=e?" so that w%’ becomes the n-th root of unit for N -point W . For instance, the DFT
matrix of dimension 2 is given by:
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% 0
w w 1 1
[F] = % =[1 _J:[Hl : (6-5)

Let’s define

%0{1

i e St T e

and in general, We define

I:W]N — diag(woﬁN,wl/ZN’wZ/zN’m’w(N—l)/ZN)

and

[E], =[F1,[W], =[PRIFL W], . 6-7)

where [P], is a permutation matrix and [F], =[P],[F]y is a permuted version of DFT

matrix [F], .

3. A sparse matrix factorization of orthogonal transforms

3.1 A sparse matrix analysis of discrete Fourier transform
Now we will present the Jacket matrix from a direct product of a sparse matrix computation
and representation given by [Lee, 1989], [Lee & Finlayson, 2007]

[7],={H1[s],. ©9)

where m=2""ke{1,2,3,4,..} and [SL is sparse matrix of []lq. Thus the inverse of the

Jacket matrix can be simply written as

01)" =(s1,) 11, (©9)

As mentioned previously, the DFT matrix is also a Jacket matrix. By considering the sparse
matrix for the 4-piont DFT matrix [F l ,

1 1 1 1
we we w® we .z L% —i%a3 1 1 1 1
WO Wl W2 W3 1 e 2 e’ ? e 2 1 _]' -1 ]
F = = T T T = .
[£) we wr wt wel |1 2 U |1 11 -
whowr oW we —iEx3 —jExe —jZx9 Lj -1
1 e 2 e 2 e ? |

we can rewrite [F :L by using permutations as
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1000|111 1 111 1 1 1
- 00101 - -1 j| |1 -1 1 1| |[F], [F]
[F} =[Pr][F], = ] N D . 2
4 01 0 0jj1 -1 1 1 1 - -1 E, E,
000 1j1 j -1 -] |1 j -1 —j
— - T
— IZ IZ [F]Z 0 (6_10)
_12 -1, 0 Ez_ I
1 -5 . . W .
where E, = 1 | its inverse matrix is from element-inverse, such that
J
1 17 (/1 <1/
- —1/]
(Ez)l{. }{ } . (6-11)
J - 1/1 1/j

In general, we can write that

ot F IN 2 IN 2 F N/2 '
[F]N Z[Pr];\,[F]N _ |:[£]N/2 [P]N/z} =[|:I / _I / }l:[F]O/ 0 :U , (6-12)

N/2 _EN/2 N/2 N/2 EN/2

where [F l = [IE L . And the submatrix E,, could be written from (6-7) by

[E], =[FlWly =[P} [ F] [W],, (6-13)
we o0 - 0
0o W 0 . . . :
where [W:L' = . . . |,and W is the complex unit for 2N point DFT matrix.
o - 0 wv¥!

1
For example, [E]Z = [1 ]} can be calculated by using
J

G R ) L B FR e R

By using the results from (6-12) and (6-13), we have a new DFT matrix decomposition as

(7], =[Pl [F], [E 0 }{[E]S” 0 D

N/2 N/2 EN/z

(Fly 0 |l Ly Ty
0 EN/z IN/2 _IN/2
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[15} _ [F]N/Z NO {Iw/z IN/2:|
N 0 Pry »[Fly /Wy 2 Iy =Inp
_ IN/2 0 [ﬁ]N/Z 0 IN/Z 0 IN/Z IN/Z (6-15)
0 Pry, 0 [F]N/2 0 WynllIne —Inp
Finally, based on the recursive form we have
. r[1 0o 1[[F] 0o 1 0 1[Iy, I
1 =(pr Pl =(rpr N/2 N/2 ) N/2 N/2 N/2
[:lN ([ :'N) [ :|N ([ JN) [ 0 PrN/j_ 0 [Fly 2 0 Wy Ineg —Ing
oIy, 0 7] 1, ©
=([Prly) { 0 Pr,|" Ins®| Pr, [1y,,®F]
- " . (6-16)
I ® I, 0 I ® I, 1, IN/Z 0 IN/2 IN/2
N 0 Wz N _I2 _Iz 10 WN/z IN/Z _IN/Z

Using (6-16) butterfly data flow diagram for DFT transform is drawn from left to right to

perform X =[F] x.

2
| r—]
_| AN
B — = w
‘PI‘2‘ WN/
| o
| o =
: PrN/4 0 o
Pr, AN N OO/
| s
- AR
i we 2 W
i Pr, W = 0K/ wd/ XX
P OO T /Y
10 L 2/ e/
T [Py D BN
| Pr, A0 s I AU
], 1y 71y

Fig. 1. Butterfly data flow diagram of proposed DFT matrix with order N

3.2 A Sparse matrix analysis of discrete cosine

transform

Similar to the section 3.1, we will present the DCT matrices by using the element inverse or
block inverse Jacket like sparse matrix [Lee, 2000; Park et al., 1999] decomposition. In this
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section, the simple construction and fast computation for forward and inverse calculations
and analysis of the sparse matrices, was very useful for developing the fast algorithms and
orthogonal codes design.

Discrete Cosine Transform (DCT) is widely used in image processing, and orthogonal
transform. There are four typical DCT matrices [Rao & Yip, 1990; Rao & Hwang, 1996],

2 mnr
DCT-1I: | C; :\/:k k,cos——, m,n=0,1,..,N ; 6-17
|: N+l:|mln N m'vn N ( )
5 m(n+1)7r
DCT-IL [C"] = =k, cos——2—, mn=0,1,.,N-1 ; (6-18)
N dm,n N m N
5 (m+—-)nrw
DCT-IIL: [C"] = |=k,cos—2—, mn=0,1,..,N-1 ; (6-19)
N m,n N n N
5 (m+-)(n+-)x
DCT-1v: [C! ] =\/:cos 22  mn=01,.,N-1, (6-20)
N N N

where

1, j=12,.,N-1
k.= 1
! —, j=0,N
NG J
To describe the computations of DCT, in this chapter, we will focus on the DCT - II
algorithm, and introduce the sparse matrix decomposition and fast computations.
The 2-by-2 DCT - II matrix can be simply written as

1 1

1 1] | = L
cl=|77 7|2 */? =E _11}% (6-21)

1
ct ¢ —_ ——
4 4 \/5 \/E
where 1/ \/E can be seen as a special element inverse matrix of order 1, its inverse is \/E ,

and C, = cos(iz /I) is the cosine unit for DCT computations.
Furthermore, 4-by-4 DCT - II matrix is of the form

[cl=|G & & | (6-22)
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we can write

1 1 1 1 ]

100 0]l — — —

V2 2 2 2

plcl=0 Y Pl @ o ¢

CS CS C8 C8

L -8 8 8 8 |
100 0
0010
where[Plzo 10 0
000 1

which has the form

1 00
0 0 O
010
0 0O
[Pl :[l]z’and [PJN: 00 1
0 0 O
0 0O
10 00

where
[P, =[pn,],

with

pr., ;= 0, others.

where 7,j€{0,1,..,N -1} .
Since Cy =—C;,C; =—Cs,C5 =-C3 , we rewrite (6-23)

[P][C]=]C Ci C& Cs|=

www.intechopen.com

o -

4

as

1

Cy
Cs
Cy

S O O O O O r O
o O O O =R O O O

pr,; =1, if i=2]j, OS]'S%—L

_ O O O O O O O

11
2 V2
G G
G G
G G

p;’i,jzl, if i=(2j+1)modN, %S]’SN—L

7

(6-23)

is permutation matrix. [P]N permutation matrix is a special case

(6-24)
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1 0 00
. ) ) 0100 .
and let us define a column permutation matrix [Pcllz 000 10" and [PC]N is a
0 010
reversible permutation matrix which is defined by
[Pc]z =[I]z ,and
Iy, O 0 0
0 Iy, O 0
pc] = / , N>4
[Peh=l 0 0 0 Iy/s
0 0 Iy, O
Thus we have
1 1 1 1
— — — —1||1 000
V2 2 2 2 01 0 0
[P][C][Pc] =] C: C¢ C5 Cg 00 0 1
C; Cg Cg Cg 00 10
G G G G

(6-25)

1 1
5 5 1 3
where [C] = V22 , the 2-by-2 DCT - Il matrix and [B], = Ci Cgl . Thus we can
1 1 c: -C!
V2 V2
write that

[Pl[Cl[Pcl{Zj _ng{ﬁj f;jﬁf ;)ZDT, (6-26)

C, 0
it is clear that [ 2 } is a block inverse matrix, which has
2

{Cz 0}1_[(@)1 0 } 62
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The (6-27) is Jacket -like sparse matrix with block inverse.

In general the permuted DCT - II matrix [é ]N can be constructed recursively by using

<], :[P]N[C]N[Pc]fﬁzi CN”}[FW " }{Cgﬂ ’ DT (6-28)

_BN/Z IN/z _IN/Z BN/z

where [C ]N » denotes the % X % DCT - II matrix, and [B]N ), can be calculated by using

[81,.=| (c¢™),,. ] 629)

7
N/2

where

f(m,1)=2m-1,
mmne{l,2,.,N/2}. (6-30)

f(mn+1)= f(m,n)+ f(m,1)x2,

For example, in the 4-by-4 permuted DCT - II matrix [é ]4 , B, could be calculated by using
f@1,1)=1, f(2,1)=3, f(1,2)=f(1,1)+ f(1,1)x2=3,and f(2,2)=f(2,1)+ f(2,1)x2=9,

(Cg(m)) (Cga,z))

[B]z - [(Ct{(mln))m,nll - (Céf(z,l) )M (Cg(z,z) )1,2 . (6-31)

2,1 2,2

and its inverse is of [é }N can be simply computed from the block inverse

evaear |z 52T 2

N/2 N/2

C B —1I —I
— ( N/z) 0 N N/2 N N/2 (6_32)
N/2 ﬁ N/2 _E N/2

For example, the 8x8 DCT - II matrix has
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[Pl[cl[Pcl - C166 _C126 _Cfﬁ C126 C166 _C126 _C166 C126 Z{QL C4 }

Additionally, it is clearly that the function (6-28) also can be recursively constructed by

using different permutations matrices [IB}N and [f’cl\l , as

aard s Sl we o w] e

By, By Iyp —Inj By,

where [é ] and [B}N/z are the permutated cases of [CJN /2 and [BJN P respectively. The

N/2
new permutation matrices have the form

[P]N _ {[P]Ow/z I:])/j and [PC]N _ {[Pc(])mz [Pc(])N/j , N>4. (6-34)

Easily, we can check that

- - - P 0 ||IC C P 0
FL e - s S e ]

N/2 || Pny2 N/2
_ Py/2Cynja Pry;nCypa || Penya 0
IN/ZBN/Z _IN/ZBN/Z 0 PCN/Z
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[f)} [é] [IBC} _ PN/ZCN/ZPCN/Z PN/ZCN/ZPCN/Z _ CN/z N/2 (6-35)
N N N | IyaByaPeyn  —Iy/2By 2Py n By,, -B

where [Bl\m =[B]N/2[PC]N/2 .

For example, the 4-by-4 DCT - II case has

Cg Ci|l1 O Cy Ci
[}4/2_[1311/2[1%]4/2 I:CS —C1:|[0 1:| l:cg _CJ- (6-36)

G G

Moreover, the matrix [B]z :[C3 cl
8§ -8

} can be decomposed by using the 2-by-2 DCT - 1II
matrix as
Cs 2 Cs O
Bl =] * |=|K|[C||D] = , 6-37
g )| G ]fcz fcjo S e

J2 0 C: 0
where | K is a upper triangular matrix, [D] =| 8 is a diagonal matrix,
(K] = { G o PP g x [DL= o g

8

and we use the cosine related function
cos(2k +1)¢,, = 2cos(2kg, )cosg, —cos(2k—1)g,, . (6-38)

where ¢, is m-th angle.

In a general case, we have

(B, =[K][CL[D]. (6-39)

where
2 0 0 - Ch» 0 - 0
2 2 0 0 C2 :
(K], = D], =| . ™. , (6-40)
200202 : .0
: : 0 .0 Cfli\ll—l

and ®;,=2i+1, 1€{0,1,2,...,N -1} . See appendix 2 for proof of (6-39).

By using the results from (6-28) and (6-39), we have a new form for DCT - II matrix

e P i R

N/Z BN/Z BN/z IN/Z IN/Z

www.intechopen.com
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IN/Z IN/2 }

5
N 0 KN/2CN/2DN/2 Ipm Iy
_ IN/Z 0 CN/Z 0 IN/Z 0 IN/Z IN/Z
0 KN/z 0 CN/2 0 DN/2 IN/Z _IN/Z
Given the recursive form of (6-41), we can write
0 I, 0
N/2
015 & Hovioto [y 2Joec
I, 0 I, 1,
{INM@{O DJ {IN /4®L2 Izﬂ[ v ®([(Pc],) } . (6-42)
IN/2 0 IN/Z N/2
Pc
{ 0 DN/2 IN/Z N/2 ([ ]N)
By taking all permutation matrices outside, we can rewrite (6-42) as

- Al T 0 I, O
[C:|N :(|:Pr:|N) |: 1\6/2 KN/2:|,,. IN/4 ®|:(; K2:|:||:IN/2 ®C2:|

I, 0 L, I, Iyp 0 N Iy Ing (15 =
{IN/‘*@{O DJ {IN/4®L2 —IZH”{ 0 DypllIne —Inp ([PC}N)

Using (6-43) butterfly data flow diagram for DCT-II transform is drawn as Fig.2 from left to
right to perform X=[C]n x.

(6-41)

(6-43)

B Ky Cy A\ OO

Al ) Cs i—*v>®< :CZN/é -
KN/Z Cl:i)j;si N
] b/ eV L

oL LK PGk < e /Y B
_ K, LCl A el B
[p], [Dly/4 D]y,

Fig. 2. Butterfly data flow diagram of proposed DCT - II matrix with order N
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3.3 Hybrid DCT/DFT architecture on element inverse matrices

It is clear that the form of (6-43) is the same as that of (6-16), where we only need change K,
to Pr, and D, to W, with 1€{2,4,8,...,N / 2} . Consequently, the results show that the DCT
- II and DFT can be unified by using same algorithm and architecture within some
characters changed. As illustrated in Fig.1, and Fig.2, we find that the DFT calculations can
be obtained from the architecture of DCT by replacing the [D]N to [W]N , and a permutation
matrix [Pr]N to [KlV Hence a unified function block diagram for DCT/DFT hybrid
architecture algorithm can be drawn as Fig.3. In this figure, we can joint DCT and DFT in
one chip or one processing architecture, and use one switching box to control the output
data flow. It will be useful to developing the unified chip or generalized form for DCT and
DFT together.

Hybrid Architecture for DCT/DFT Processor

A
'ah N

OFT o o
X Recursion X
> 0] For Cyye >
in Py X % out
DCT \ 7
| SWdevice | @ o0 ® ‘ e
Dwzz || Wz Kazz || Pz
DCcT DFT DCT  DFT

Fig. 3. A unified function block diagram for proposed DCT/DEFT hybrid architecture algorithm

4. Conclusion

We propose a new representation of DCT/DFT matrices via the Jacket transform based on
the block-inverse processing. Following on the factorization method of the Jacket transform,
we show that the inverse cases of DCT/DFT matrices are related to their block inverse
sparse matrices and the permutations. Generally, DCT/DEFT can be represented by using the
same architecture based on element inverse or block inverse decomposition. Linking
between two transforms was derived based on matrix recursion formula.

Discrete Cosine Transform (DCT) has applications in signal classification and
representation, image coding, and synthesis of video signals. The DCT-II is a popular
structure and it is usually accepted as the best suboptimal transformation that its
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performance is very close to that of the statistically optimal Karhunen-Loeve transform for
picture coding. Further, the discrete Fourier transform (DFT) is also a popular algorithm for
signal processing and communications, such as OFDM transmission and orthogonal code
designs. Being combined these two different transforms, a unified fast processing module
to implement DCT/DEFT hybrid architecture algorithm can be designed by adding switching
device to control either DCT or DFT processing depending on mode of operation.

Further investigation is needed for unified treatment of recursive decomposition of
orthogonal transform matrices exploiting the properties of Jacket-like sparse matrix
architecture for fast trigonometric transform computation.
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6. Appendix

6.1 Appendix 1
The DFT matrix brings higher powers of w , and the problem turns out to be

1 12 . 171 ¢ Y, ]
w w .w ¢ Y,
1 @ wt WV e =]y, | (A-1)
_1 w' Wt w(”’l)2 | 1 Coc1 | [ Yue
and the inverse form
1 1 1 1 ]
1 -1 -2 w Y
1 _ _ Y
F'l=={1 w? wt L WY, (A-2)
n
_1 w D g2 w—(n—l)2 |

Then, we can define the Fourier matrix as follows.
Definition A.1: An nxn matrix F = [aij] is a Fourier matrix if

(i-1)(j-1) 27i/n

a; =w ,w=e ,andi,je{l,2,..,n}. (A-3)

and the inverse form F' = %[(ﬂi}. )1} = %[(w"“"l)(i—”)} :

For example, in the cases n=2 andn =3, and inverse is an element-wise inverse like Jacket
matrix, then, we have

F_wo w' | |1 1 F_l_lwO w | 1]1 1
2w’ w'| |1 -1 2)w® wl| 2|1 -1
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and
1 1 1 1 1 1
i2r  idr 1 —i2r  -idw
E=|1 e3 e3 |,E'==[1 e3 e¢?
idn 8z 3 —idr  —i8z
1 e3 g3 1 e3 €3

We need to confirm that FF™' equals the identity matrix. On the main diagonal that is clear.
Row j of F times column j of F is (1/ n)(l +1+...+1), which is 1. The harder part is

off the diagonal, to show that row j of F times column k of F' gives zero:
Jif j#k. (A-4)
The key is to notice that those terms are the powers of

1+ W+W?+ ..+ W' =0, (A-5)

6.2 Appendix 2

In a general case, we have

[B], =[K[CL[P] -

where
2 0 0 - cC% 0 - 0
Y2 2 2 . N : .0
: : 0 - 0 Co

and ®,=2i+1, i€{0,1,2,...,N -1}.
Proof: In case of NxN DCT - II matrix, [C]N , it can be represented by using the form as

ANyl 1 1
V2 V2 V2 V2 V2
Cow  C Ch . Cle iy
[Cl,=| C¥™ CX™  C™ e CRT O C™ (A-6)
Ch e che . clee o
_CiIIiIN—ZCDO Cﬁ]N-qul CiI’i’N—zq)z CZIE]N—fDN—Z CiIIiIN—Z(DN—l_

where k;,=i+1, i€{0,1,2,..} .
According to (6-37), a N x N matrix [B]N from [C]m can be simply presented by
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Civ Ci ko G
ij\fo +1)@g Cﬁ\’;o +1)@y Cﬁ’;o o, ijjo +1)On
|:B:|N = Cﬁ;‘lﬂ)@o Cﬁ’]ﬁ +1)@y Cﬁ\llﬁ +1)0y Cﬁ\’;ﬁl)%\u . (A..7)
(2kn_p +1)D (2ky_p +1)D (2ky_p +1)D (2ky_p +1) Dy
_C4NN 2% CC@hy-at )01 COIn-2# @2 Ch-2+ )P4 |

And based on (6-78), we have the formula

(Zki +l)¢‘ — Zkiq)m @, (Zki _1)(Dm W (Zki _l)q)m 2kiq)m @,
C4N "= 2C4N C4N _C4N = _C4N + 2C4N C41\f ’ (A‘8)

where me{0,1,2,....} .
Thus we can calculate that

[KL[€LP]

7 1 1 1 1 1
2 0 0 0 - 0 — — —_ .. — —
2 2 V2 V2 V2
—~2 2 0 0 Ol ~2t00 2k 2k Yoy a  2obys
C4N C4N C4N C4N C4N
\/5 _2 2 0 O 2k1<1>0 2k1®1 2k1q)2 Zkl(DN—Z 2k1(1)N,1
= . Cin Cin Cin - Ciy Cin ’
—\/5 2 -2 2 2ky®y 2kydy 2ky D, 2kyOy_o 2ky Dy
C4N C4N C4N C4N C4N
V2 02 2 2 2
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1-2C50%0 4278 1 2C2k® 4P L 120N 20 hON-
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C Col Coy
_ ~Ciy +2C™CY ~Ci +2C8" e SO 20

_ , (A-9)
D, 2k ~D, 2k Dy ~D, D 2Ky Dy ~D 2k By ~D
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Since k, =1, we get

—Ciy +2C5"Clly = —Ci % + 200" Cliy =Cip0 ™™, (A-10)
and Cip —2Co""Cay = ~(=Cix* "™ +2Co0° " Ciiy ) = —Ciy ™ (A-11)

In case of k;=i+1, we have (2k, ; +1)®, =(2(k, -1)+ 1), = (2ki - 1)CDm , then we get

Clp —2CHnCly + 2CHInCSy = -Clia P 1 2CHnCYy )
—-CQUR 1 aCHPRCly = R
Taking the (A-10)-(A-12) to (A-9), we can rewrite that
&y [cly[ply
Ca Civ iy
| -cqpeaciy™egy - Oy + 20" Cy s O 20 Oy

Dy 2k ~Dy 2Dy Dy Dy ~2kDy D, 2k, D, D,
Can =2C,N " Cyy +2C5y ' Cyp - Cay =205 1 Cyy +2C, v ' Cyy

B ) o) D, ]
oy .
C‘(‘%‘OH)‘DO C‘(é\;‘o*'l)‘bl Ci%‘o"’l)@N—l
- C@k0 kO kO =[Bly- A13)

The proof is completed.
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