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1. Introduction 

Every process of our universe is based on the fundamental elements of nature: information 
and computation. The basic motivation behind the study of quantum cellular automata 
(QCA) is the wish to analyze the processes of nature. QCA provide a natural framework 
within which to describe many classically undescribable and uncomputable physical 
phenomena, such as the properties of quantum physical systems and the complex 
background of quantum dynamics. Quantum cellular automata models are based on the 
working mechanism of classical cellular automata models and use the power of reversible 
quantum computation. Cellular automata can be used in many fields of science, such as 
parallel computation, artificial intelligence, image processing, biological systems, simulation 
of physics systems, hardware design, algorithm theory, and many more.  
In the first part of this chapter, we give a brief overview of the basic properties of quantum 
information processing and analyze the quantum versions of classical cellular automata 
models. We present all materials in a clear, perspicuous, and comprehensible manner, 
without using a complex mathematical background. After reviewing physical QCA 
implementations, we sketch future directions, and then conclude the first part. 
In the second part of the chapter, we examine one possible application of QCA, which uses 
quantum computing to realize real-life based, truly random network organization. This 
abstract machine is called a Quantum Cellular Machine (QCM), and we design it for 
controlling a truly random biologically-inspired network, and to integrate quantum learning 
algorithms and quantum searching into a controlled, self-organizing system. The self-
organizing processes in classical systems cannot be truly random. Using our quantum 
probabilistic QCM unit, we can add truly random behavior to the self-organizing processes 
of biological networks.  A quantum mechanical-based quantum cellular machine (QCM) 
controls the self-organizing processes of the network and uses a closed, non-classical 
quantum mechanical-based language inside the QCM.  The proposed QCM solution has 
deep relevance in the evolution of truly random quantum probabilistic self-organizing 
network structures. The QCM controls the evolution of the system, changes its environment 
and creates plans without any human interaction, using truly random quantum probabilistic 
decisions. In a classical system, the classical circuits can only exhibit deterministic behavior. 
In a quantum probabilistic control system, the quantum circuits can follow both 
deterministic and quantum probabilistic quantum cellular machine control behaviors. The 
QCM has classical and quantum communication layers, it uses the classical layer to detect 
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the network environment. The lower layer of the quantum cellular machine contains the 
non-deterministic quantum probabilistic decisions and interacts with the classical level. The 
quantum cellular machine model with the power of quantum computing can be used for the 
development of a real-life based network organism. We show, that a real, biologically 
inspired, non-deterministic, truly random network model can be achieved by the discussed 
QCM model.  
In the third part of this chapter, we show that a very efficient quantum searching algorithm 
can be integrated into the QCM, to find the best solution to a given network input 
command. We present a quantum searching based method specially designed for quantum 
probabilistic self-organizing networks, to reduce the complexity of the classical traditional 
search in the network. The proposed QCM can process both quantum and classical 
information, and accomplish both deterministic and quantum probabilistic tasks. The 
information unit is a quantum bit, which can lie in a coherent superposition state of logical 
states zero and one, and can thus simultaneously store zero and one. Using quantum bits, 
we can speed up the solutions of classical problems, and even solve some hard problems 
that classical computers can’t solve. The key aspect behind the optimal decisions of a QCM 
is to design a high-efficiency searching algorithm. A QCM updates the probability 
amplitudes of its quantum register, according to a given reward value, derived from the 
network environment. The QCM repeatedly applies a unitary transformation to the 
quantum states, thus it can enhance, for example, the probability amplitude of the optimal 
path in the self-organizing network environment, while suppressing the amplitude of all 
other solutions. The QCM’s quantum searching algorithm can help resolve many hard tasks, 
for example it could be applied to find an optimal logical path, using the effects of quantum 
mechanics. In the numerical analysis we will show that the quantum communication layer 
could improve the performance of classical systems.  

2. Quantum Cellular Automata  

The field of quantum information processing is growing dynamically, and the revolutionary 
properties of quantum dynamics can be exploited in many fields of science. The classical 
cellular automata (CA) model uses a discrete and infinite network, equipped with cells. The 
working mechanism of a CA can be described through the change of states of these discrete 
cells. The classical automata is deterministic and the state of the cells depends on the states 
of the neighbouring cells. The state of the automata is determined by the state of all its cells. 
The quantum version of the classical cellular automata has many advantages over the 
classical model. The quantum cellular automata (QCA) uses quantum parallelism, which 
makes it possible to address the cells simultaneously, in parallel, hence the behaviour of a 
QCA can be controlled globally. The global updating mechanism of the QCA model makes 
its physical implementation easy in practice, hence the individual manipulation of the 
quantum bits of the quantum register is not required (Watrous, 1995).  

2.1 Related work 

In classical computation, the automata—which in general describes parallel processes —
could easily become very complex. Using the power of quantum computation and quantum 
parallelism, the complexity of these structures can be decreased dramatically (Perez-
Delgado and Cheung, 2005). As we will see, the phenomena of quantum mechanics can be 
exploited and can be integrated into the quantum cellular machine. According to the 
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physical attributes of the quantum cellular machine, the evolution of quantum systems can 
be analysed and discussed by the framework of the QCA, which is a hard task in many 
physical quantum systems (Dam, 1996).   
In a quantum cellular machine, the information processing is realized by quantum 
operations and transformations. These quantum transformations are called unitary 
transformations, and these processes are applied on quantum bits, instead of classical bits. 
Quantum bits represent the fundamental basic unit of quantum information. In practice, 
quantum states can be realized by photons, electrons, atoms or half-spin particles (Grössing 
and Zeilinger, 1988). One of the most important properties of quantum states is that these 
qubits can be in a superposition state, which cannot be imagined for classical bits. This 
property means that a quantum state can be simultaneously in the logical state of 0 and 1. 
However, to convert the superponated information into ‘useful’ information, we have to 
apply a measurement to the qubit, which converts the quantum information encoded in the 
position of the state into classical information (Benioff, 1980), (Gyongyosi et al., 2009), (Imre 
and Balazs, 2005), (Nielsen and Chuang, 2000). The output of the measurement is not 
completely determined by the position of the qubit, hence its result is not deterministic, but 
probabilistic (Curtis and Meyer, 2004), (Miller et al., 2006). We will call this property, 
quantum probabilistic output or behaviour. The measurement destroys the state of the 
qubit, and changes its state to a “classical” or orthogonal state—according to the basis of the 
measurement, and the logical value of the classical output. Quantum algorithms, which 
exploit quantum parallelism, use quantum registers—the collection of superponated 
quantum states. Using a quantum register, tasks can be computed with an exponential 
speed up as the number of quantum states in the quantum register increases linearly 
(Margolus, 1991).  
The idea of a cellular automata, or machine, was formulated by von Neumann, a Hungarian 
mathematician, who showed that a cellular automata based system was capable of self-
reproduction (Neumann, 1966). Later, a two-dimensional cellular automata model became 
extremely popular—later known as the ‘Game of Life’ (Gardner, 1970). The model uses 
‘alive’ and ‘dead’ cells, and there are many rules for the state ‘dead’ and for the state ‘alive’. 
The cells can change between these two states, according to the properties of their 
neighbours. After the Game of Life had become so popular, new ideas have been presented. 
As has been shown, the physical properties of the processes of the classical world can be 
traced back to the fundamental properties of cellular automata behaviour. Later, the one 
dimensional cellular automata also was introduced (Watrous, 1995). The cellular automata 
models the world through parallel processes—hence, it is natural to apply the results of 
quantum information processing to cellular automata models. The idea of a Quantum 
Cellular Automata (QCA) was first mentioned by Toffoli and Margolus (Toffoli et al., 1990), 
(Margolus, 1991). Later, Feynman (Feynman, 1982), Grössing and Zeilinger (Grössing and 
Zeilinger, 1988), and Watrous (Watrous, 1995) have published some formalized results on 
the subject. The term QCA was first used by Grössing and Zeilinger, and the model of 
Watrous is based on Feynman’s ideas. Based on these works, Richter and Werner (Richter 
and Werner, 1996) showed some new results in the field.  
Parallelism of processes can be exploited dramatically with the help of quantum parallelism, 
since the transformations of the QCA’s are applied in parallel on all the qubits of the 
quantum register. It also means that the quantum states of the QCA do not have to be 
addressed separately, since all the quantum states can be used simultaneously in the 
processes (Vollbrecht and Cirac, 2008). From an engineering viewpoint, the QCA machine 
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can be regarded as a natural extension of the original classical CA model, since the working 
mechanism of the CA is defined as the combination of parallel processes (Benioff, 1980), 
(Neumann, 1966), (Miller et al., 2006). Since all the unitary transformations can be realized 
simultaneously in the model, the quantum states of the quantum register can be handled as 
an indistinguishable quantum register, where it is not required to control all the qubits in a 
separate manner, individually (Arrighi et al., 2007), (Toth and Lent, 2001).  

2.2 Quantum computing 

In this section, we give a brief overview of quantum mechanics, and we introduce the basic 
definitions of quantum information processing which will be used in the text.  

2.2.1 Brief overview of quantum information processing  

In quantum information processing, the logical values of classical bits are replaced by state 

vectors 0  and 1 , - called the Dirac notation. Contrary to classical bits, a qubit ψ  can 

also be in a linear combination of basis vectors  0  and 1 .  
The state of a qubit can be expressed as  

 0 1ψ α β= + , (1) 

where α  and β  are complex numbers, which is also called the superposition of the basis 

vectors, with probability amplitudes α  and β . A qubit ψ  is a vector in a two-

dimensional complex space, where the basis vectors 0  and 1  form an orthonormal basis.  

The orthonormal basis { }0 , 1  forms the computational basis, in Fig. 1 we illustrate the 

computational basis for the case where the probability amplitudes are real (Imre and Balazs, 

2005).  
 

 

Fig. 1. Computational basis and general representation of a qubit in superposition state. 

The vectors or states 0  and 1  can be expressed in matrix representation by  

 
1

0
0

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and 
0

1 .
1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (2) 

If 
2α  and 

2β  are the probabilities, and the number of possible outputs is only two, then 

for 0 1ψ α β= +  we have 
2 2

1α β+ = , and the norm of ψ  is 
2 2

1ψ α β= + = .  
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The most general transformation of ψ  that respects this constraint is a linear 

transformation U  that takes unit vectors to unit vectors.  
A unitary transformation can be defined as  

 † † ,U U UU I= =  (3) 

where ( )† * T
U U= , hence the adjoint is equal to the transpose of complex conjugate, and I  

is the identity matrix.  
The tensor product has an important role in quantum computation, here we quickly 

introduce the concept of tensor product. If we have complex vector spaces V  and W  of 

dimensions m  and n , then the tensor product of V W⊗  is an mn  dimensional vector 

space. The tensor product is non-commutative, thus the notation preserves the ordering. The 
concept of a linear operator also can be defined over the vector spaces. If we have two linear 

operators A  and B , defined on the vector spaces V  and W , then the linear operator 

A B⊗  on V W⊗  can be defined as ( )( ) ,A B v w A v B w⊗ ⊗ = ⊗  where v V∈  and 

.w W∈  In matrix representation, A B⊗  can be expressed as  

 
11 1

1

m

m mm

A B A B

A B

A B A B

⎡ ⎤
⎢ ⎥⊗ = ⎢ ⎥
⎢ ⎥⎣ ⎦

…
# % #

…
, (4) 

where A  is an m m×  matrix, and B  is an n n×  matrix, hence A B⊗  has dimension 

mn mn× .  

The state ψ  of an n-qubit quantum register is a superposition of the 2n  states 

0 , 1 , , 2 1 ,n −…  thus  

 
2 1

0

,

n

i
i

iψ α
−

=
= ∑  (5) 

with amplitudes iα  constrained by 

 
2 1

2

0

1.

n

i
i

α
−

=
=∑  (6) 

The state of an n-qubit length quantum register is a vector in a 2n -dimensional complex 

vector space, hence if the number of the qubits in the quantum register increases linearly, 

the dimension of the vector space increases exponentially.  

A complex vector space V  is a Hilbert space H  if there is an inner product  

 ψ ϕ  (7) 

with ,x y∈C  and , , ,u v Vϕ ψ ∈  satisfying the rules 
*
,ψ ϕ ϕ ψ=  

( ) ,a v b v a u b vϕ ϕ ϕ+ = +  and 0ϕ ϕ >  if 0.ϕ ≠  If we have vectors 
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0 1a bϕ = +  and 0 1c dψ = + , then the inner product in matrix representation can be 

expressed as  

 * * * * .
c

a b a c b d
d

ϕ ψ
⎡ ⎤⎡ ⎤= = +⎢ ⎥⎣ ⎦ ⎣ ⎦

 (8) 

The norm of the vector ϕ  can be expressed as ϕ ϕ ϕ= , and the dual of the vector 

ϕ  is denoted by ϕ . The dual is a linear operator from the vector space to the complex 

numbers, defined as ( ) .v vϕ ϕ=  The outer product between two vectors ϕ  and ψ  

can be defined as  

 ψ ϕ , (9) 

satisfying ( ) v vψ ϕ ψ ϕ= . The matrix of the outer product ψ ϕ  is obtained by 

usual matrix multiplication of a column matrix by a row matrix, however the matrix 
multiplication can be replaced by tensor product, since: 

 .ϕ ψ ϕ ψ= ⊗  (10) 

If we have vectors 0 1a bϕ = +  and 0 1c dψ = + , the outer product in matrix 

representation can be expressed as  

 
* *

* *

* *
.

a ac ad
c d

b bc bd
ϕ ψ

⎡ ⎤⎡ ⎤ ⎡ ⎤= = ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (11) 

In Fig 2. we illustrate the general description of a unitary transformation on an n-length 

quantum state, where the  input state iψ  is either 0  or 1 , generally. After the 

application of a unitary transformation U  on the input states, the state of the quantum 

register can be given by a state vector ψ .  

 

1
ψ

1
ψ

2
ψ

n
ψ

# #U ψ

 

Fig. 2. General sketch of a unitary transformation on an n-length quantum register. 
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The unitary operator U is a 2 2n n×  matrix, with, in principle, an infinite number of possible 

operators. The result of the measurement of the state ψ  results in zeros and ones that form 

the final result of the quantum computation, based on the n-length qubit string stores in the 

quantum register.  

The quantum circuit of a QCM realizes a reversible operation, and any reversible quantum 

operation can be expressed as a unitary matrix. For a unitary transformation U , the 

following property holds: 

 1( )*TU U−= , (12) 

where T denotes transposition and * denotes complex conjugation. The inverse 

transformation of U  also can be expressed by the adjugate †U , which is equal to 1U− . One 

of the most standard quantum gates is the Controlled-NOT (CNOT) gate (Nielsen and 

Chuang, 2000), (Toffoli et al., 1990).  

The CNOT gate is a very important gate in quantum computation, since from the one qubit 

quantum gates and the CNOT gates every unitary transformation can be expressed, hence 

these gates are universal. This gate is a two-qubit gate and it contains two qubits, called the 

control and the target qubit. If the control qubit is 1 , then the gate negates the second 

qubit—called the target qubit. The general CNOT gate is illustrated in Fig. 3.  
 

a

b

control qubit

a

⊕b a
target qubit

 

Fig. 3. The Controlled-NOT (CNOT) gate. 

As can be verified, the quantum CNOT gate can be regarded as the generalization of the 

classical XOR transformation, hence ,  ,  a b a b a= ⊕CNOT , which unitary transformation 

can be expressed in matrix form as follows:  

 

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

CNOT . (13) 

The controlled behaviour of the CNOT gate can be extended to every unitary 

transformation, and the generalized control quantum gate can be defined. In Fig. 4, we 

show a controlled U  transformation, the U  transformation is applied to the target qubit 

b  only if the control qubit a  is in high logical state. We note that the CNOT gate cannot 

be used to copy a quantum state, while the classical XOR gate can be applied to copy a 

classical bit.  
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a

b

control qubit

target qubitU
 

Fig. 4. A controlled-U gate. 

As can be seen easily, for the CNOT gate, this unitary transformation U  is equal to the 

NOT-transformation, hence the CNOT gate is a controlled-X gate, actually.  We can also 

define the inverse of this transformation as the controlled- †U  transformation, as follows:  
 

a

b

control qubit

target qubit
†U

 

Fig. 5. A controlled inverse U gate. 

Another important issue in the QCMs quantum circuit is the measurement operator M . The 

measurement operator converts the quantum information to classical, since after the 

measurement of a quantum state, the quantum information which is encoded in the 

quantum state becomes classical, and can be expressed as a logical 0 or 1. The general 

measurement circuit is illustrated in Fig. 6.  
 

U M C

Quantum Input

Classical Output

ψ

 

Fig. 6. The measurement of quantum information. The M measurement converts the 
quantum information to classical. 

If we measure the quantum state 0 1ψ α β= + , then the output will be 0M =  with 

probability 
2α  or  1M = with probability 

2β .  

For the general case, if we measure the n-length quantum register 
2 1

0

,

n

i
i

iψ α
−

=

= ∑  with  

possible states 0 , 1 , , 2 1 ,n −…  then the quantum measurement can be described as a set 

of { }mM  of linear operators. The number of the possible outcomes is n , hence the number 

m of possible measurement operators is between 1 m n≤ ≤ . 
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If we measure the quantum register in state 
2 1

0

,

n

i
i

iψ α
−

=

= ∑  then the outcome i  has a 

probability of  

 ( ) †Pr i ii M Mψ ψ= . (14) 

 

The sum of the probabilities of all possible outcomes is ( ) †

1 1

Pr 1
m m

i i
i i

i M Mψ ψ
= =

= =∑ ∑ , 

according to the completeness of the measurement operators, since †

1

.
m

i i
i

M M I
=

=∑  

After the measurement of outcome i, the state of the quantum register collapses to  

 
( )†

.
Pr

i i

i i

M M

iM M

ψ ψ
ψ

ψ ψ
′ = =  (15) 

Using the previous example, if we have single quantum state 0 1ψ α β= + , then the 

measurement operators can be defined as  

 0 0 0M =  and 0 1 1M = , (16) 

since the unknown qubit is defined in the orthonormal basis of 0  and 1 . 

2.3 Properties of Quantum Cellular Automata 

The main idea behind QCA models can be stated as follows: exploit maximally the 

phenomena of quantum mechanics to outperform the classical model. It seems to be a 

natural extension to use the properties of quantum information processing, since all the 

operations of the classical version are parallelized. The QCA models have the advantage, 

that its can be used to simulate any quantum circuit, or the quantum Turing machine, or can 

be used to simulate the properties of entanglement transmission. This property is called the 

universality of the quantum cellular automata models, (Curtis and Meyer, 2004), (Grössing 

and Zeilinger, 1988).  

The definition of the QCA model was formalized by Watrous (Watrous, 1995). The QCA can 

be described as a four-tuple, which consists of a d-dimensional construction of cells, a finite 

set of states, a finite set of neighbours, and a local transaction function. The quantum version 

of the classical CA uses discrete time and discrete space, however in the quantum case, the 

transitions are realized by unitary transformations. Moreover, according to quantum 

parallelism, each of the transformations of the QCA are realized simultaneously on all cells 

of the QCA. On the other hand, the transformations can be applied only for a small set of 

local neighbourhoods, in this case, the updating is achieved locally. The updating 

transformations operate probabilistically on the cells, and for a well-formed QCA, all the 

probabilities of the unitary transformations have to preserve the squared sum of these 

properties, which is equal to one. As has also been shown, this ‘well-formed’ property can 

be verified algorithmically (Dam, 1996), (Perez-Delgado and Cheung, 2005).  

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

122 

In the classical CA model, the processes and the cell updating mechanisms are achieved on 
classical bits, and the transformations are classical transformation. In a quantum system, the 
processes are realized by unitary transformations, and the transition functions of these unitary 
transformations are slightly different from the classical approach. Moreover, according to the 
no-cloning theorem (Wootters and Zurek, 1982), an unknown quantum state cannot be cloned 
perfectly, hence the quantum states cannot be split into two quantum registers, and then 
spliced into one quantum register again. In classical CA, this synchronization method can be 
applied easily, since the classical bits can be copied freely, an unlimited number of times. The 
quantum states of the QCA are updated without the possibility of register duplication, using 
different approaches, such as the partitioning of the quantum register. The partitioning scheme 
is used to construct a reversible version of the classical cellular automata model. A cellular 
automata is called reversible if there exists only one possible configuration for every actual 
configuration. The QCA is a reversible automata, however to define the QCA we have to 
extend the reversibility property and we have to add other properties. 

2.3.1 The formal model of the QCA  

The transition function of the QCA realizes the map instantaneously and for all the qubits of 
the quantum register simultaneously (Watrous, 1995). Watrous’s one-dimensional QCA 
consists of the finite set of all possible states, the finite set of the automata’s neighborhoods, 
and a local transition function. The cells of the quantum automata are described in a Hilbert 
space, and the cells are in superposition states, hence all the possible classical CA states can 
be handled simultaneously in the QCA model. The results of the transition functions are 
described as complex numbers in the Hilbert space (Arrighi et al., 2007), (Meyer, 1996).  
In a QCA, the transformations are generally achieved by physical processes, hence they can 
be naturally described as unitary transformations. The unitarity of the one-dimensional 
QCA can be verified by algorithmic tools, checking whether the sum-squared probabilities 
of the transformations is equal to 1, or not.  

2.3.2 Partitioned and Block-partitioned QCA 

The main purpose of the quantum cellular automata model is the realization of the 
computation of all computable functions in a parallel way, using the fundamental properties 
of quantum mechanics. After Watrous published the one-dimensional QCA model, the 
partitioned version of this automata was also introduced (Dam, 1996), (Meyer, 1996), (Toffoli 
et al., 1990).  
The partitioned QCA model uses cells, which can be divided into sub-cells: these cells are the 
left, right and centre cells. In a partitioned QCA model, the next state of a cell is determined 
by the right sub-cell of the left neighbour of the cell, and by the middle sub-cell of itself and 
by the left sub-cell of the right cell. The cell structure of the partitioned QCA is illustrated in 
Fig. 7. The local transition function is denoted by μ .  

In the partitioned one-dimensional QCA model, the transition function μ  can be divided 

into many permutations of the sub-cells in the neighbourhood of a given cell. The 
decomposition of μ  is based on the fact that transition function can be expressed as unitary 

transformations, which transformations act on the given cell.  
The decomposed transformation function μ  can be described as these unitary 

transformations and by swap transformations between the sub-cells of different cells. A 
swap transformation between the sub-cells of the neighbouring cells is illustrated in Fig. 8.  
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Left cell Right cell 

Right 
sub-cell 

Left 
sub-cell 

Middle 
sub-cell 

Next state of cell 

The cell to be updated 

μ
Transition function 

 

Fig. 7. The one-dimensional QCA. Each cell can be decomposed into three sub-cells.  

The cells are divided into three sub-cells. In the updating process, the quantum automata 
swaps the left and right sub-cells of the neighbouring cells. Next, it updates each cell 
internally, with the help of a unitary operation, which acts on the three sub-cells of every 
cell. The partitioned QCAs form a subclass of QCA. There exist several other important 
subclasses, such as the Block-partitioned QCA (Dam, 1996).  
 

Right 
sub-cell 

Left 
sub-cell 

Middle 
sub-cell 

( )μcell n

( )− 1cell n
( )cell n ( )+ 1cell n

( )μ − 1cell n ( )μ + 1cell n
 

Fig. 8. The updating rule of the QCA. The position of the left and right sub-cells of the 
neighbouring cells are changed in the next state of the given cell. The updating process is 
realized by unitary operations applied to each sub-cell of the cells.  

The block-partitioned model was introduced by Margolus and Toffoli (Margolus, 1991), 
(Toffoli et al., 1990) and in this type of model, the cells are divided into blocks, where each 
block contains two cells. This subclass has deep relevance in practice, since it can be applied 
to model the properties of physical systems, and other properties also can be explored with 
this model. The transition function is achieved on block-level, hence the maps are realized 
between the blocks, or the states of the blocks (Dam, 1996), (Meyer, 1996). In the 
communication process, the blocks can be shifted, and the unitary transformations are 
applied to the blocks. The rules can be realized by quantum gates as we will see in the 
second part of this chapter, in which we will define the most important quantum gates.  

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

124 

As a natural generalization of the block-partitioned QCA model, every one-dimensional 
QCA can be expressed as a set of local unitary operations. According to the Margolus 
partitioning scheme, a one-dimensional QCA can be expressed by unitary operations 
(Nielsen and Chuang, 2000), (Watrous, 1995).  
In Fig. 9, we show a one-dimensional QCA, partitioned into unitary transformations. The 
unitary transformations belong to the blocks of the QCA.  
 

U U

V V

…

%# #

Block of cells

…
 

Fig. 9. Block-partitioned QCA. The blocks can be used to realize unitary transformations. 

As a result of the decomposition of quantum transformations into elementary quantum 
gates, every quantum transformation and behaviour can be expressed using one-qubit and 
two-qubit quantum gates. In the second part of this chapter, we show a reduction method, 
which is able to find the most simple version of a given quantum transformation. It makes 
the circuits of the quantum cellular automata very easy to implement in practice, using basic 
quantum devices and tools. The rules of the quantum cellular automata can be viewed as 
elementary quantum gates applied to the cells, hence the quantum circuit of a QCM can be 
expressed as the concatenation of different rules, which rules are applied to the cells of the 
automata model. 
Using Margolus’s result (Margolus, 1991), in the second part of this chapter we will show, 
that any quantum probabilistic controller logic can be constructed from elementary unitary 
quantum transformations. Moreover, an intelligent self-organizing structure can be 
constructed from these results, as we will see in the second and the third parts of this 
chapter.  
In the next part of this chapter, we show a quantum cellular automata based approach, 
called the Quantum Cellular Machine (QCM), which uses reversible quantum probabilistic 
quantum circuits to vest quantum probabilistic, truly random behaviour in a self-organized 
network structure. The QCM combines the basic properties of the block partitioned QCA 
model and adds many extended functions, according to its quantum circuit realization. The 
QCM’s quantum circuit can realize any unitary transformation, using one- and two-qubit 
elementary quantum gates, and combines classical and quantum information processing.  

2.3.3 Physical QCA Implementations 

In this section, we have reviewed the basic properties of Quantum Cellular Automata 
(QCA). The QCA model refers to the quantum computational analogy with conventional 
classical models of cellular automata. The physical implementation of a ‘classical’ cellular 
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automata—called the quantum dot cellular automata—can be exploited by the fundamental 
properties of the phenomena of quantum mechanics. The quantum dots are nano-structures, 
which can be constructed from standard semi conductive materials. In these structures, the 
electrons are trapped inside the dot, however the smaller physical quantum dot requires a 
higher potential energy for an electron to escape. In a quantum dot QCA, the quantum dots 
respond to the charge state of their neighbours.  
In the quantum dot implementation, the working processes of the logic are based on 
neighbour interactions, or the movement of charge. The main advantage of these 
implementations is their very low power, however in these implementations the input and 
the output is not isolated well.  
As in Fig. 10, there are two energetically equivalent ground state polarizations, which can be 
labelled as logical ‘0’ and logical ‘1’ (Arrighi et al., 2007), (Meyer, 1996), (Toth and Lent, 2001).  
 

Quantum Dot Electron

Logical 1 Logical 0
 

Fig. 10. The basic logic unit of the QCA is the cell. The QCA cell contains four quantum dots.  

In experimental realizations, the quantum dot can be described as a nanometre sized 
structure. The quantum dot has the capability of trapping electrons. To represent the logical 
zero and one states, the quantum dot confines these electrons, which can escape only if a 
high potential is available.  
The first implementation of physical quantum dot QCA machine was introduced by Toth 
and Lent (Toth and Lent, 2001). In their method, the state of the system converges to the 
lowest energy state, which state can be regarded as a uniquely defined state in the system. 
Later, the construction of a physical QCA model was extended to tunnel junctions and other 
phase changer nano-technological devices, using correlated magnetic and electrical states, or 
other magnetic and non-magnetic particles such as the metal tunnel junction QCA or the 
molecular and magnetic QCA (Arrighi et al., 2007), (Richter and Werner, 1996).  

3. Quantum probabilistic control of self-organizing networks 

A novel approach to future network communication is the quantum probabilistic self-
organizing network structure. The main component of this kind of network structure is the 
QCM (Quantum Cellular Machine). The QCM uses a classical language to communicate with 
the components of the quantum probabilistic self-organizing networks, and uses a closed, 
non-classical quantum mechanical based language inside the component model. The 
proposed QCM model uses quantum computing for the development and the control of a 
truly random network organism.  

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

126 

In this part, we propose the QCM model to use quantum computing for the development of 
a real-life based network organism. The QCM model applies quantum mechanics and 
quantum computing to act on the QCM’s internal self model and on its lower quantum 
layer. The particular quantum effects such as superposition or entanglement can be used to 
represent a real-life based self-organism and to demonstrate the quantum mechanically 
based unpredictable logical behaviour. The non-deterministic effects of quantum mechanics 
can be implemented well in the QCM model by the probabilistic outputs and quantum 
measurements. The QCM’s internal self quantum state cannot be formalized classically; 
however its internal state machine can be implemented as a cellular automaton. The cells 
communicate directly by the real inputs and outputs and general transformations are 
performed on a global level by quantum circuits and quantum algorithms. The proposed 
quantum model’s goal is to demonstrate the quantum mechanical based model’s superiority 
to classical cellular automata based self-organizing networks.  
In this part of this chapter, we define the theoretical basis of the QCM’s quantum logic; then 
we give an example of implementation of the QCM module. Finally we conclude with the 
results and benefits of our quantum mechanical based model.  

3.1 Properties of QCM 

In the biologically inspired network organization models, the non-repeating output is 

desired for the same input (Curtis and Meyer, 2004), (Miller et al., 2006) and thus the QCM 

component behaviour has to be non-deterministic. However, the classical cellular automata 

model has no more dynamical patterns, only the information from the environment and its 

local state. Thus, if we want to construct a real biologically inspired non-deterministic 

model, we have to use quantum mechanics and a mapping that allows the QCM to use 

quantum level communication on a higher, logical level (Gyongyosi et al., 2009). The QCM 

can redefine the classical-level actions by this lower quantum control level, by applying the 

rules of the quantum level.  

The two layers use two different communication methods. The classical level describes the 

QCM and network interacting using the classical communication layer. The QCM uses the 

classical layer to perceive the network environment through the data and information sent 

by other network components and to execute the given instructions. The lower layer of the 

QCM represents the non-deterministic quantum probabilistic decisions. The quantum level 

evolves dynamically, and it represents the properties of the biological organizations and 

interacts with the classical level.  

Our purpose is to implement quantum mechanics based probabilistic decisions in 

biologically inspired network organizations and network adaptation, and to use them in 

problems where real non-deterministic behaviour is needed.  

The logical output function remaps the network’s actual logical state and the internal self 

model according to either the self model or the logical output function. The logical output 

function is used by the QCM’s self model to modify both the network’s state and the 

internal self model state. The logical output function affects the execution of the network 

commands, and hence the results of the quantum learning algorithm are converted back to 

classical ones.  

In Fig. 11 we illustrated the hierarchical structure of the QCM. The decisions are based on 
the internal state and network model, and the output of the QCM is propagated back to the 
classical layer. The output of the QCM is determined by quantum learning and quantum 
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searching algorithms. The network model and the self model variables are stored as qubits 
in the quantum layer of the QCM. The other network variables are stored and handled on 
the classical layer.  
 

Internal State

Network Model (t+1)

Input command

QCM Logical
State

Output

Self Model state (t+1)
Internal decision

Rational behaviors

Network
Model

Self
Model

 

Fig. 11. The hierarchical structure of the QCM model. 

In classical systems, the classical network elements can realize only deterministic behaviour. 
In our quantum probabilistic control system, the quantum circuits can realize both 
deterministic and quantum probabilistic behaviours. The quantum control based QCM 
forms a quantum system exploiting the superposition of the state of the QCM with the state 
of the network environment.  
The quantum probabilistic controlled QCM uses automated methods to synthesize quantum 
behaviours from the examples, the cares of the quantum controlled QCM’s quantum control 
table. The minterms not given as examples are the don’t knows. The minterms not given as 
examples are converted to output values with various probabilities (Miller et al., 2006). We 
use the simplicity principle by seeking circuits of reduced complexity. We extend the QCM’s 
logic synthesis approach to a learning method using quantum circuits (Nielsen and Chuang, 
2000), (Curtis and Meyer, 2004). 

3.1.1 Learning quantum behaviours from network examples 

Logic synthesis methods applied to binary functions with many don’t cares are used as the 
basis of various learning approaches. The learning process creates a circuit description and 
converts don’t cares to cares trying to satisfy the simplicity. The method of logic synthesis 
based learning has already been applied to binary and multiple-valued circuits; however it 
has not been applied to quantum circuits.  
In our learning method we use the EPR circuit to realize entanglement. The EPR-generator 
circuit is illustrated in Fig. 12. The circuit contains a Hadamard gate and a Controlled-NOT 
(CNOT) gate.  
Our QCM controller’s unitary matrix is the mapping between QCMs inputs and outputs. The 
unitary mapping is closely related to the behaviour observed on the QCM. The behaviours 
of the QCM combine quantum probabilistic and deterministic behaviours given by the 
unitary controller matrix. 
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Ha
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2Q

Quantum
Entanglement

EPR-state generator

 

Fig. 12. The EPR-state generator quantum circuit. 

The self-organizing processes of the network can be modelled as many cellular automata in 
parallel, which permute the cells and apply the rules in parallel for many cells. From this 
viewpoint, the constructed QCM model can be described as a cellular automata model, 
which uses permutation and parallel quantum transformations on the quantum register. The 
permutations and unitary transformations are realized in two individual steps, sequentially. 
The automata repeats the sequences, until the evolution of the quantum system reaches its 
desired output (Dam, 1996).  
The abstract cellular automata-based model of the QCM is illustrated in Fig. 13. 
 

Left cell Right cell 

Right 
sub-cell 
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sub-cell 

Middle 
sub-cell 

Middle cell

Right 
sub-cell 

Left 
sub-cell 

Middle 
sub-cell 

U

Left 
sub-cell 

Left cell Right cell 
Middle cell

Right 
sub-cell 

U
 

Fig. 13. Extended parallel gate construction. The unitary transformations of the QCA are 
realized by the quantum gates in parallel.   

In this abstract cellular automata representation, the quantum transformations can be 
changed in every step, and the sequence of the gates can be different in every 
transformations.  
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3.1.2 Learning incompletely specified quantum functions  

In the quantum probabilistic controlled system, any quantum control function is constructed 

in the complex Hilbert space 
N

H⊗  from a set of a single-quantum bit and two-quantum bit 

operators  

 [ ] [ ] [ ]{ }†, , ,G I controlled U controlled U CNOT⎡ ⎤= − −⎣ ⎦ . (17) 

 

In general the synthesis problem is to find the simplest circuit for a Unitary Control Map 
(UCM) table with few given examples and many don’t cares. The given examples are mean cares 
in the UCM table. Let G be a set of single-qubit and two-qubit unitary operators on complex 

NH ; then the process of synthesis can be expressed as a minimization of the given function 
with respect to the width of the QCM’s circuit and the amount of elementary operators used 

inside the QCM’s unitary control mechanism. Thus, this synthesis NH
S  can be written as 

follows (Miller et al., 2006):  

 ( ) ( )min, , ,NH
S n G V n G⎯⎯⎯→  (18) 

 

where ( ),V n G  is the cost of the QCM’s circuit constructed of gates from set G. We use only 

single-qubit and two-qubit gates, and thus the QCMs learned by this method are directly 

implementable in quantum hardware, have low hardware costs, and satisfy the simplicity 

criteria (Curtis and Meyer, 2004).  

3.2 Quantum probabilistic controlling system  

We define the quantum probabilistic QCM controlling system. Let I  be a set of vectors such 
that 

 { }0 1, , ,p
nkI i i i= … , 2Nn =  (19) 

 

is the k-th input vector of an N quantum bit length state of pattern P  or function 
specification, and  

 :f I O→  (20) 

is a reversible function. The output vector  

 { }0 1, , ,p
nkO o o o= …  (21) 

 

is the expected result vector for the input pattern p
kI  and O  is the set of all output vectors. Let 

{ }0,1ki ∈  and { }0,1ko ∈  be the elements of the input and output vectors respectively. Let 

ψ  be a three-qubit quantum state and G  be the set of possible operators, and thus quantum 

gates (Curtis and Meyer, 2004). Then, there exists a quantum logic circuit fU  such that for 

any pair of input patterns p
iI  and output patterns  

 ( ),p p
i iI O  : ,  p p p p

i iI I O O∈ ∈ , (22) 
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where p p
i iO O I I∀ ∈ ∃ ∈  such that ( )p p

i if I O=  is a one-to-one mapping. This means that there is 

a unitary transform on a quantum system 'fU ψ ψ→  for ,  ' .p pI Oψ ψ∈ ∈  The learning 

of such a function implies finding the minimal set of quantum gates implementing function 

f  and realizing unitary control matrix .fU  The unspecified outputs are denoted by X; these 

values represent a don’t care logic value and correspond to an unknown output. The set of 
examples is given as a set of pairs 

 { }, , 1, , 2 .N
k kP i o k n= = ≤…  (23) 

For the incompletely specified functions, the QCM uses a process to explicitly find a mapping 

or function satisfying each pair  ( ),p p
k kI O  from the given set P  such that 

 ( ) .p p
k kf I O=  (24) 

The goal of the QCM’s learning process is to find a circuit that realizes a complete mapping 

with incomplete specifications and that agrees with the set of input-output pairs from the 

specification examples. The result of the QCM’s learning process is thus a circuit that 

describes a complete mapping that agrees with the set of input-output pairs from the 

specification examples (Miller et al., 2006).  

Thus, let f  be a three-qubit incompletely specified reversible function defined in Table 1.  

 

Target 0 1 

Control: ab   

00 000 001 

01 X X 

11 100 101 

10 X X 

Table 1. An incompletely specified UCM table of the QCM.  

The function can be completed as a reversible map since all output care values 

{ }000,001,100,101  are different. The table thus represents the set of learning examples, also 

called the problem specification. Then an arbitrary unitary transformation U  satisfies all the 

specified transitions 000 000 ,  001 001 , 110 100U U U→ → →  and 111 101 .U →  

Together, these transformations are a valid solution to the learning problem specified in Table 

1. Using simplicity criteria, the circuit is reduced and its UCM unitary matrix is simplified as 

well (Miller et al., 2006).  

3.2.1 The difference between classical and quantum learning 

In the classical learning method the QCMs learn a deterministic function. In our 

probabilistic quantum learning, the QCM learns a unitary mapping to a quantum state that 

is quantum-deterministic only before the measurement. However the observer never knows 
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to which classical state this deterministic state will collapse as the result of the measurement. 

Thus, when we design the network, we set certain constraints for the QCM’s behaviour but 

we can only probabilistically predict how the QCM will behave within the constraints 

(Curtis and Meyer, 2004).  

The QCM’s UCM unitary control map represents the learned function using the quantum 

probabilistic learning. The don’t cares are denoted by 0U  and 1U , where the subindex 

denotes the desired output value. The quantum probabilistic learning has similar results to 

standard probabilistic learning with the difference that the probabilities are calculated from 

quantum states, which are complex vectors.  
Assume a single output function defined by the QCM’s UCM table specifying the desired 
outputs as would result by observing values 0 and 1 on the QCM’s quantum output in some 
special cases of the state of the environment. The UCM table contains don’t cares and cares, 
and assuming there is a method to synthesize the cares, the problem that remains to be 
solved is the manner in which it is possible to specify the values of don’t cares. The unitary 
operators used in the quantum probabilistic control based QCM network model are:  

 [ ] [ ] [ ] [ ]{ }† †, , , , , .NOT U U CNOT controlled U controlled U⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦  (25) 

How the don’t cares are filled with respect to the QCM’s learning method should be 

specified. For this, let { }0 10,1, ,outS U U=  be the set of all possible symbolic outputs of the 

given single output function. The 0 0U U=  and 1 1U U=  symbols represent quantum 

states, vectors, or complex numbers that correspond to measuring or observing the QCM’s 

system in state ( )0M U  and ( )1M U , where M  is the quantum measurement operator 

(Curtis and Meyer, 2004). 

The QCM’s expected input-output mapping can be changed by replacing the controlled-U 

operators by controlled-Hadamard gates. The well defined input values 0 and 1 remain the 

same; however the don’t care input specifications can be mapped to four different symbols: 

0 10,1, , .U U  The X don’t cares will be replaced with 00,1,U  or 1.U  The well defined inputs 

remain the same, while the don’t cares are mapped to one of the four possible 

values 0 10,1, , .X U U→  The probabilities of the output states depend directly on the logic of 

the QCM and thus on the quantum gates selected by the learning algorithm (Miller et al., 

2006). We use the reversible quantum gates, CNOT, Controlled-U , and Controlled- †U  

gates. In our quantum probabilistic based control system, if the controlled quantum bit is an 

eigenvalue of the unitary transformation, the behaviour is deterministic. Otherwise the 

behaviour is probabilistic, according to the rules of quantum measurement (Curtis and 

Meyer, 2004).  

3.2.2 Deterministic solution to the QCM’s learning 

In that case, if the QCM has a global three-qubit state in superposition, for example for state 

110 ,  the transition can be expressed as follows:  

 
1 1

110 101 111 .
2 2

U i i− +
⎯⎯→ +  (26) 

At the end of the transition, the first and last qubits are unaffected by the measurement 
process, but if we assume deterministic learning, the required quantum circuit also satisfies 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

132 

the incomplete function for a single qubit (Miller et al., 2006). The more detailed view of the 

implementation allows us to make the next analysis based on symbols †,U U , and their 

algebra  

 † † † †,  ,  .UU NOT U U NOT UU U U I= = = =  (27) 

The deterministic quantum circuit is shown in Fig. 14.  
 

U†U M

a

b

1Q

2Q

C

Quantum Output

Classical Output

Quantum Cellular Machine

†U

 

Fig. 14. A deterministic circuit to realize the learning of the QCM with incomplete function 
specification. The don’t cares will be selected deterministically.  

In Table 2, the example of analysis of the QCM’s target signal C in the circuit from Fig. 14 is 
shown.  
 

Target 0 1 

Control: ab   

00 I I 

01 †UU  †UU  

11 † †U U  † †U U  

10 †U U  †U U  

Table 2. Analysis of the QCM’s target qubit in the circuit. The mapping of the UCM table for 
the incompletely defined specifications is deterministic.  

Let us assume that the QCM gets an 110  input from the environment. The output of its 

quantum circuit can be derived as follows: 

1. Since the second qubit is the control of the first †U  transformation, the QCM applies 

the controlled- †U  transformation on the third qubit.  

 ( )† 1
11 0 1 .

2

controlled U i− −
⎯⎯⎯⎯⎯⎯→ +  (28) 

2. Since the first qubit is the control of the second †U  transformation, the QCM applies 

the controlled- †U  transformation on the third qubit.  

 
†

110 .controlled U−⎯⎯⎯⎯⎯⎯→  (29) 
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3. The QCM applies the controlled-NOT  transformation:  

 101 .CNOT⎯⎯⎯⎯→  (30) 

On the other hand, if the input is 111 , then the output of the circuit is 100 . As can be 

concluded from the results, the QCM generates the inverse of the target as the output only if 

ab = 11; otherwise it makes an identity transformation.  

As we have seen, the QCM’s quantum circuit realizes a deterministic output for input 110 ; 

on the other hand – as we will see here – it becomes quantum probabilistic for input 100 . 

However, to achieve the quantum probabilistic behaviour of the QCM, we have to make a 

small modification on the circuit, as follows (Curtis and Meyer, 2004):  
 

U†U M

a

b

1Q

2Q

C

Quantum
Output

Classical
Output

Quantum Cellular Machine

†U

U

 

Fig. 15. The quantum probabilistic circuit. 

Compared to the previous quantum circuit, we have added the controlled-U  transformation 

to the circuit. As a result, after a measurement on the third qubit, the state of the second 

qubit becomes quantum probabilistic (Miller et al., 2006).  

The new quantum circuit can generate deterministic output; however it also has quantum 

probabilistic behaviour. To see it, we analyze the QCM’s transition for the input state 100  as 

follows. 

1. Since the first qubit is the control of the †U  transformation, the QCM applies the 

controlled- †U  transformation on the third qubit.  

 ( )† 1
10 0 1 .

2

controlled U i− −
⎯⎯⎯⎯⎯⎯→ +  (31) 

2. The QCM applies the controlled-NOT  transformation:  

 ( )1
11 0 1 .

2

CNOT i−
⎯⎯⎯⎯→ +  (32) 

3. Then, the QCM applies the controlled-U  transformation on the third qubit, since the 

CNOT gate has changed the value of its control qubit b :  

 110 .controlled U−⎯⎯⎯⎯⎯→  (33) 
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Finally, the QCM applies the gate’s controlled-U on the second qubit: 

 

( )

( )

1
1 0 1 0

2

1
                   100 110 .

2

controlled U i

i

− +
⎯⎯⎯⎯⎯→ +

+
→ +

 (34) 

The original three-to-one incompletely specified function is mapped to a reversible quantum three-
by-three circuit. The map of the deterministic circuit with incomplete function specification 
will have probabilistic behaviour from the multiple qubit measurement. The output value of 
the second qubit is not determined after the measurement made on the third qubit. This 
output can be used to control other parts of the network or to realize truly random 
behaviour in the network. 
 

Target 0 1 

Control: ab   

00 000  001  

01 010  011  

11 ( )1
1 0 1 1

2

i+⎡ ⎤+⎢ ⎥⎣ ⎦
 ( )1

1 0 1 0
2

i+⎡ ⎤+⎢ ⎥⎣ ⎦
 

10 ( )1
1 0 1 0

2

i+⎡ ⎤+⎢ ⎥⎣ ⎦
 ( )1

1 0 1 1
2

i+⎡ ⎤+⎢ ⎥⎣ ⎦
 

Table 3. The map of the deterministic circuit with incomplete function specification and 
quantum probabilistic behaviour. 

The quantum control based QCM forms a quantum system exploiting the superposition of the 

state of the QCM with the state of the network environment. In the presented quantum 

probabilistic QCM network the focus is not on how the QCM is implemented with respect to 

its environment, but rather on the strategies for learning the QCM network behaviours based 

on quantum circuit structures (Miller et al., 2006).  

3.3 Conclusion and future work 

The QCM’s internal self model modifies the classical commands and the logical behaviour 

of the QCM on different levels. The QCM’s internal self model is generated on the lowest 

level; the expressed logical behaviour is based on quantum measurements. The proposed 

quantum model demonstrates the quantum mechanical based model’s superiority to 

classical cellular automata based self-organizing networks. We constructed a real 

biologically inspired non-deterministic network model, based on quantum mechanics, 

allowing the QCM to use quantum level communication on a higher logical level.  

As future work we would like to extend our novel quantum mechanical based control 

mechanism to other biologically inspired self-organizing structures and to publish 

simulation results on the convergence rate of our quantum probabilistic learning method. 
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4. Quantum learning algorithm based controller QCM 

In this part we define the extended version of the QCM – called the controller QCM – and 
show that it can be used for solving hard problems, such as network controlling, routing, 
and network organizing, using very efficient quantum searching and quantum learning 
algorithms. We define quantum algorithms for controlling the truly quantum probabilistic 
network structure, and we demonstrate the performance of the quantum-learning based 
QCM over the classical network controlling solutions.  

4.1 Introduction 

In this part, we define the extended version of QCM as the main controller element. This 

QCM is able to interact with the other network components – using both quantum and 

classical information – and can dynamically reorganize the activities to serve the dynamic 

needs in an adaptive and goal-oriented way. Moreover, the QCM has a deep impact on the 

self-organizing capability of the network.  

The main component of the quantum probabilistic self-organizing network structure is the 

controller QCM, which offers and uses services that adapt without any human interaction to 

the changes of environment of the network, and creates plans and a knowledge map. The 

knowledge map represents a snapshot of the current network state. The primary task of the 

controller QCM is to use and provide services. It monitors the internal and external 

environment of the self-organizing network’s structure, adapts itself to the changing 

conditions, and knows its capabilities and how to adapt. The model consists of two parts. 

The common part contains the same functionalities as a common QCM. The specific part 

contains advanced functions, such as the implementation of the quantum-learning 

algorithm. The controller QCM uses quantum computing for the development of network 

controlling, routing, path finding, and other problems relating to the effectiveness of self-

organizing. The elements of the quantum probabilistic self-organizing networks are other, 

simpler QCMs, without integrated advanced quantum searching and learning methods. In 

the QCM model, quantum mechanics and quantum computing act on the QCM’s quantum 

registers and it modifies its output. The quantum based communication appears in two 

major forms in our quantum network model, since both the self-organizing processes in the 

network are truly random and the controlling and routing tasks are also solved quantum 

mechanically. We present the quantum mechanical based learning and controlling 

algorithm of the QCM component model, which is the core of the quantum probabilistic 

self-organizing framework.  

The actual part of this chapter is organized as follows. First, we introduce the basic 

properties of the controller QCM. In the section, we describe the properties of the extended 

version of the QCM module. At the end of this part, we conclude with the results and 

benefits of our quantum mechanical based model. 

4.2 Related work  

The quantum searching algorithm was presented by Grover et al. for quantum database 

searching (Imre and Balazs, 2005), (Nielsen and Chuang, 2000). The effectiveness of 

quantum searching is based on a fundamental property of quantum information processing, 

the quantum parallelism. The problem of quantum searching was developed to solve the 

problem of identification of an item in an unsorted database with N elements. This kind of 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

136 

sorting problem generally requires 2N  steps in classical systems, and hence the complexity 

of the problem is ( )NO  classically. With the help of quantum information processing the 

searching can be solved with complexity ( )NO ; hence, with the quantum based approach 

a quadratic increase can be achieved in the speed of the searching process (Imre and Balazs, 

2005).  
In this section we present an extended version of the QCM shown in the previous part of 
this chapter, using quantum searching and quantum learning algorithms to speed up the 
steps of self-organizing and other hard problems such as routing in self-organizing systems 
or path selection, and so on. One of the most important properties of quantum searching 
methods is that it can be implemented by elementary quantum circuit elements, and hence 
the implementation of the algorithm can be realized easily in practice. We implement a more 
advanced version of the quantum algorithm, compared to the original searching algorithm. 
We call it the quantum learning algorithm, and it is able to use the fundamental properties 
of quantum searching and can combine it with service and environment demands. The 
extended version of the QCM has the capability to control and sense the network and can 
find solutions for network-related problems using the quantum-searching based quantum 
learning method. 

4.3 Problem discussion and motivation 

The controller QCM reads the classical command from the self-organizing network, builds a 
map from the current network structure, and applies a unitary transform to modify the 
current state of the network. After the transformation the QCM measures the state of its 
final quantum register that affects the output. The actual state of the network model is 
stored in the QCM’s initial quantum register. The result of the advanced quantum learning 
algorithm and the results of the quantum iteration processes are stored in the QCM’s final 
quantum register, which then realizes a direct contact with the network. The structure of the 
network controller QCM has a different structure from the one presented in Section 2, since 
it is equipped with advanced quantum-learning algorithms. From an engineering point of view, 
the controller QCM is an extended version of the traditional QCM, equipped with advanced 
quantum learning methods. The traditional QCM is not implemented with the quantum-
searching algorithm, hence its complexity is much higher than the controller QCMs. 
In Fig. 16 we illustrated the decision mechanism of the controller QCM module. The input 
command is modified by the state of the internal quantum state, and the decisions are based 
on the result of the quantum learning algorithm. As can be concluded, the controller QCM 
can be viewed as an extended QCM with extended functions – such as quantum learning 
and quantum probabilistic decisions. The other parts of the self-organizing network 
structure can be realized by simpler QCMs, which are responsible only for simpler tasks 
such as self-organizing and so on.  
The QCM uses the logical function to determine its output. The logical output is processed 
from the value of the QCM’s final quantum register, which stores the result of the quantum 
learning algorithm. The result of the QCM’s quantum probabilistic decision acts mainly on 
he network command language by rewriting the network structure. 
In Fig. 17 we illustrate the connection between controller-QCMs and ordinary QCMs. The 
controller-QCMs have extended capabilities such as advanced quantum searching and 
learning methods. The ordinary QCMs communicate with each other and the controller-
QCMs to realize the self-organizing network structure.  

www.intechopen.com



Quantum Cellular Automata Controlled Self-Organizing Networks   

 

137 

Quantum Decision

Quantum Algorithm

Internal State

Input 
command Modification

Output 
command

Extended QCM functions

Controller QCM

 

Fig. 16. The decision and output determination of the extended QCM. 
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Fig. 17. The controlled self-organizing quantum probabilistic network structure. 

To realize the controlling of the network, we implement a very efficient ( )NO  quantum 

searching algorithm to control the self-organizing processes of the network and to find the 

best solution to the input command (Arrighi et al., 2007).  

4.3.1 Extended QCM functions 

The controller QCM senses and processes information from its external network 
environment. In this model, the external network is a quantum probabilistic self-organizing 
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system. The QCM can also process quantum and classical information and accomplish 
deterministic and quantum probabilistic tasks. The information unit is a quantum bit, which 
can lie in the coherent superposition state of logical states zero and one, and thus it can 
simultaneously store zero and one. Using quantum bits, we can effectively speed up the 
solutions of the classical problems and even solve some hard problems that a classical 
computer cannot solve (Feynman, 1982). The key aspect behind the optimal decisions of 
QCM is the design of a high-efficiency searching algorithm. In our model, we use the ability 
of quantum parallel processing to design a corresponding quantum learning control 
algorithm, which can effectively reduce the complexity of solving problems and speed up 
information processing (Nielsen and Chuang, 2000).  

4.3.2 Parallel processing of QCM module 

As we mentioned before, our QCM is basically a complex quantum system, its state is also 

represented by the quantum state, and thus we encode all information according to 

quantum bits. The state of the QCM’s internal ψ  quantum state can be written into a 

superposition state as 0 1 ,ψ α β= +  where α  and β  are complex coefficients and 
2 2

1.α β+ =  The states 0  and 1  are two orthogonal states; the eigenstates of ψ  

correspond to logic states zero and one. The 
2α  represents the occurrence probability of 

0  when the quantum state is measured, and 
2β  is the probability of obtaining result 

1 . The value of a classical bit is either zero or one; however a quantum state can be 

prepared in the coherent superposition state of zero and one. A quantum bit can 

simultaneously store zero and one, which is one of the main differences between quantum 

and classical information processing. If the QCM applies a unitary transformation U to a 

superposition state, the transformation will act on all eigenstates of the superposition state 

ψ , and the output will be a new superposition state obtained by superposing the results of 

eigenstates. If the QCM processes function ( )f x , the transformation U can simultaneously 

work out many different results for a certain input .x   
The ability of strong parallel processing is a very important advantage of our QCM’s 
module over traditional QCM. Let us consider an n-qubit quantum state which lies in a 
superposition state:  

 
11 1

00 0

,x
x

c xψ
=

= ∑
…

…
 (35) 

where 
11 1

2

00 0

1,x
x

c
=

=∑
…

…
 and xc  are the complex coefficients. The state x  has 2n  values; it 

contains all integers from 1 to 2 .n  Since U is linear, processing function ( )f x  can be 

expressed as follows:  

 ( )
11 1 11 1 11 1

00 0 00 0 00 0

,0 ,0 , ,x x x
x x x

U c x c U x c U x f x
= = =

= =∑ ∑ ∑
… … …

… … …
 (36) 

where ,0x  represents the input joint state and ( ),x f x  is the output joint state. The 

controller QCM uses the superposition principle of quantum states, and hence with an n-

qubit quantum register it can simultaneously process 2n  states.  
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4.4 Quantum circuits of quantum searching 

In our quantum searching algorithm, the controller QCM updates the probability 

amplitudes of the quantum register according to a given reward value derived from the 

network environment. The quantum searching process can be implemented using the 

Hadamard-transformations and conditional phase shift operations. Through the Hadamard-

gate, a quantum bit in the state 0  or 1  is transformed into a superposition state of two 

states as 

 ( )1
0 0 1

2
H = +  or ( )1

1 0 1
2

H = − , (37) 

that is, the magnitude of the amplitude in each state is 
1

2
, but the phase of the amplitude 

in the state 1  is inverted. Let us consider a quantum system described by n quantum bits 

which has 2n  possible states. To prepare an equally weighted superposition state, the 
controller QCM performs the transformation H on each qubit independently. The state 

transition matrix representing this operation will be of the dimensions 2 2n n×  and can be 
implemented by n Hadamard-gates. The process can be represented as:  

 

P
11 1

00 0

1
00 0 .

2

n
n

n

n
a

H x⊗

=
= ∑

…

…


��
…  (38) 

According to the above method, we can accomplish the initialization of state and action. To 
realize quantum searching, the controller QCM has to make a Hadamard-transformation on 
the initial quantum register. In the searching process, it selects the solutions from the 
quantum register using probability amplitude amplification, and finally applies a 
Hadamard-transformation to obtain the answer sought for the input problem.  
In Fig. 18 we illustrated the general scheme of the controller QCM’s searching process. The 
classical network input is stored in its internal quantum register, and the Hadamard-
transformations and the searching process are defined only in quantum space. 
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Controller
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Fig. 18. The general model of the controller QCM’s quantum searching module 
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The conditional phase-shift operation is an important element to carry out the quantum 

searching iteration. The phase-shift transformation φ  for a two-state system can be 

expressed as  

 
1

2

0
,

0

i

i

e

e

φ

φ
φ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎝ ⎠

 (39) 

 

where 1i = −  and 1φ , 2φ  are arbitrary real numbers. The conditional phase-shift operation 

does not change the probability of each state, since the square of the absolute value of the 

amplitude in each state is the same. To update probability amplitudes we reinforce the 

selected decision corresponding to a larger reward value through repeating the quantum 

searching process T times. We initialize the action  

 ( ) ( )
P
11 1

00 0

1
.

2

n

n
s

n
a

f s x x
=

= = ∑
…

…
 (40) 

 
Then we construct a reflection transform  

 ( ) ( )2 ,
n n

x s sU x x I= −  (41) 

 

which preserves ( )n
sx , but flips the sign of any vector orthogonal to ( )n

sx .  

Geometrically, if aU  acts on an arbitrary vector, it preserves the component along ( )n
sx  

and flips the component in the hyperplane orthogonal to ( )n
sx , and thus it can be viewed 

as an operation of inversion about the mean value of the amplitude (Nielsen and Chuang, 

2000). The controller QCM exchanges ( )n
sx  with the k-th computational basis state ,kx  

and constructs another reflection transformation 2 .
kx k kU I x x= −  Thus we can form a 

unitary transformation  

 .
kI s k x xU U U U U= =  (42) 

It repeatedly applies the transformation IU  on ( )n
sx , and thus it can enhance the 

probability amplitude of the k-th path in the quantum probabilistic self-organizing network 

environment, denoted by ,kx  while suppressing the amplitude of all other actions.  

In Fig. 19 we illustrated the realization of reflection and rotation transformations. The initial 

state is denoted by ψ , and the reflected state along the L-axis is denoted by ψ ′ . The 

angle of the rotation process is denoted by θ . 
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Fig. 19. The geometrical representation of reflection and rotation. 

This process can be viewed as a rotation in a two-dimensional space, and the initial decision 

( )f s  can be expressed as (Nielsen and Chuang, 2000):  

 ( ) ( ) 1 2 1
,

2 2

n
n

s k n
f s x x ϕ−

= = +  (43) 

where 
1

.
2 1

k

n
a a

xϕ
≠

=
−
∑  We define the rotation angle θ  satisfying 

1
sin ,

2n
θ =  and thus  

 ( ) ( ) sin cos .
n

s kf s x xθ θ ϕ= = +  (44) 

The controller QCM applies the quantum searching iteration IU  T times on ( )n
sx , and thus  

 ( ) ( )( ) ( )( )sin 2 1 cos 2 1 .
nT

I s kU x T x Tθ θ ϕ= + + +  (45) 

By repeating the quantum iteration operator, the controller QCM can reinforce the 
probability amplitude of the corresponding decision according to the feedback value 
(Gyongyosi et al., 2009). The QCM’s searching algorithm only applies the quantum iteration 
operator to reinforce the possible paths in the network environment.  

4.4.1 General description of searching problem 

In classical computation, an unstructured searching problem of searching space N, the 

classical algorithm complexity is ( )NO . In our network it is an important task to search for 

a suitable decision from quantum probabilistic self-organizing network space, based on the 

current state of the QCM.  

If the complexity of the state or decision space is ( )NO , the problem complexity in  a 

traditional QCM is ( )2NO ; since it is not equipped with the quantum searching algorithm. 

The extended QCM can reduce the complexity to ( )N NO  by using a quantum searching 

algorithm. It means, that for the searching space N, the QCM has to apply only N  steps to 
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find the solution, instead of the classical N  steps. Thus, if the QCM has N possible actions, 

where 12 2n nN −≥ ≥ , we can prepare an equally weighted superposition quantum state  

 
2

1

1
.

2

n

n
i

s i
=

= ∑  (46) 

This quantum state can be accomplished by applying the Hadamard-transformation to each 

quantum bit of the n-qubit state 00 00 .…  Then, we construct a reflection transform  

 2 .sU s s I= −  (47) 

 

If the QCM applies sU  on an arbitrary vector, it preserves the component along s  and 

flips the component orthogonal to ,s  and thus if we apply sU  to 0ψ  we get  

 

2

0 0 0 0
1

2 2 2 2 2

1 1 1 1 1

1
2 2 2

2

1 1 1
2 2 2 .

2 22

n

n n n n n

n
s in

i

n
i i i in nn

i i i i i

U s s s x

i x x i x x i

ψ ψ ψ ψ
=

= = = = =

= − = − =

⎛ ⎞
⎜ ⎟− = −
⎜ ⎟
⎝ ⎠

∑

∑ ∑ ∑ ∑ ∑
 (48) 

 

Then, we use another reflection transform  

 2 ,kU k k I= − +  (49) 

where k  is the k-th eigenstate, and by applying kU   to state 0ψ , we obtain  

 
2

0 0 0 0
1,

2 2 .

n

k k i k
i i k

U k k k x x i x kψ ψ ψ ψ
= ≠

= − + = − + = −∑  (50) 

The transformation kU  only changes the amplitude’s sign of k  in the superposition 

quantum state, and thus we can form a IU  unitary quantum iteration transformation:  

 .I s kU U U=  (51) 

If the QCM repeatedly applies the iteration transformation IU  on 0ψ , it enhances the 

probability amplitude of  ,k  while suppressing the amplitude of all other states .i k≠  By 

applying the iteration transformation enough times, the QCM can make state 0ψ  collapse 

into state k  with a probability of almost 1. In the description of the iteration process, we 

define an angle ,θ  which satisfies the equation 2 1
sin .

2n
θ =  After applying the iteration IU  

to 0ψ j  times, the probability amplitude of state k  becomes  

 ( )( )sin 2 1 .j
kx j θ= +  (52) 
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The QCM’s rotation process is illustrated in Fig. 20. In every iteration step, the QCM rotates 

state ψ  into G ψ .  

4.4.2 Changing the probability amplitude through the Iterations  

The “good” and “bad” answers to the input problem are denoted by basis states A  and 

B , respectively. In every iteration step, the QCM tries to get closer to the good answer, 

denoted by state A . 
 

 

Fig. 20. In every iteration step, the QCM rotates the initial state by a given phase. 

If the QCM applies the iteration IU  to 0ψ  
2

4
j

π θ
θ
−

=  times,  then ( )2 1
2

j
πθ+ ≈ , and thus 

 sin 1.
2

j
kx

π⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (53) 

However, the QCM must perform an integer number of iterations (Nielsen and Chuang, 
2000), and thus we have to calculate with some probability of failure, which is no more than 

1 2 ,N  if the QCM performs the iteration IU  int
4

π
θ

⎡ ⎤
⎢ ⎥⎣ ⎦

 times.  

In Fig. 21 we illustrated the searching process as a series of different rotations. The angle 

between two lines 1L  and 2L  is θ . Rotation of state ψ  by angle 2θ  can be realized by 

two reflections. We reflect ψ  first about 1L  and then about 2L , and we can conclude that 

state ψ  is rotated by angle 2θ .  
The QCM uses quantum searching to make the optimal decision, and the theoretical results 

show that QCM can reduce the complexity of ( )2NO  in traditional QCM to  

 ( )N NO  (54) 

using the quantum searching algorithm. If N is large the QCM can find the optimal decision 

with a high probability of 
1

1
N

⎛ ⎞− ⎜ ⎟
⎝ ⎠

O .  

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

144 

Using the quantum iteration, the QCM can find the needed result with a probability of 

almost 1 in N  steps. As we can conclude, the QCM dramatically reduces the complexity of 

the searching process, and it can make a suitable decision based on the current state of the 
QCM.  

 

Fig. 21. At the end of the iteration process, the QCM rotates the initial state close to the right 
basis state. 

4.5 Optimal QCM decisions  

In the searching problem, the QCM wants to find a logical path from a given network node 

A to network node B in the network environment, while no available data source tells it how 

to achieve the goal. The QCM must accumulate experience by itself and become more 

intelligent through learning from its self-organizing network environment. At a certain 

iteration step, the QCM observes the state of the environment ,tS  inside and outside the 

QCM.  

The QCM makes a decision td  in which the QCM chooses a path in the network 

environment, and afterwards the QCM receives feedback 1tg +  which reflects how good that 

selected path is. The goal of the QCM decision is to realize a mapping from states to 

decisions, and to make a connection from logical state A to logical state B in the quantum 

probabilistic self-organizing network environment, with a minimum cost. The QCM makes 

the decisions based on the policy  

 ( ) [ ]: 0,1 ,i S iS Dπ ∈×∪ →  (55) 

so that the expected (E) sum of the discounted feedback of each state will be maximized 
(Nielsen and Chuang, 2000):  

 

( ) { } ( )

( ) ( )

1

2
1 2 3 1

' '
'

, = ,

      = , ,

t

s

t t t t t ts s

d d
s ss s

d D s

V E g g g s s E g V s s

s d g p V

π π

π

γ γ π γ π

π γ

++ + + +

∈

⎡ ⎤= + + + = + =⎣ ⎦
⎡ ⎤

+⎢ ⎥
⎣ ⎦

∑ ∑

…

 (56) 

where [ ]0,1γ ∈  is the discount factor and ( ),s dπ  is the probability of selecting a given path 

in the self-organizing structure. The output of the path selection is based on decision d  
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according to state s . Under policy π , the probability of state transition is 

{ }' 1Pr ' ,d
ss t t tp s s s s d d+= = = =  and the expected one-step feedback is 

{ }1 ,d
s t t tg E g s s d d+= = = . The QCM’s quantum searching algorithm could help to find an 

optimal logical path from network node A to node B using the effects of quantum 
mechanics. The output of the controller QCM is propagated back to the classical network 
layer as we have illustrated in Fig. 22.  
 

 

Fig. 22. The QCM communicates with the classical network layer. 

The QCM can be represented as a dynamical quantum system which is controlled by the 
classical network layer (Gyongyosi et al., 2009).  

4.5.1 Finding the optimal solution 

The output of the QCM is based on a state-decision pair ( ) ( ){ },  .State t Decision t  The QCM’s 

quantum decision process uses a scalar value, named feedback, to reflect how good that 

selected path is.  

We propose a novel quantum learning method inspired by quantum superposition and 

quantum parallelism. Let SN  and dN  be the number of states and decisions of the QCM, 

and let ,m n  be numbers which are characterized by the following equations:  

 2 2 ,  2 2 .m n
S S d dN N N N≤ ≤ ≤ ≤  (57) 

The QCM uses m and n quantum bits to represent state set { }S s=  and decision set { }D d= . 

The learning procedure was inspired by the superposition principle of quantum states and 
quantum parallel computation. The occurrence probability of the eigenvalue is denoted by 
the probability amplitude of the quantum state, which is updated according to feedback. To 

realize the searching process, the QCM first initializes state ( )
P
11 1

00 0

,

m

m
S

s

s c s
=

= ∑
…

…
                          

thus mapping from states to decisions as ( ) : ,f s S Dπ= →  where ( ) ( )
P
11 1

00 0

= ,

n

n
s d

a

f s d c d
=

= ∑
…

…
                          

and sc , dc  are the probability amplitudes of state s  and decision d .  
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In the learning process, the QCM initializes the state and decision to the equal superposition 

state ( )m
s  as follows: 

 ( )
P
11 1

00 0

1
,  

2

m

m

m
s

s s
=

= ∑
…

…
 (58) 

with map function  

 ( ) ( )
P
11 1

00 0

1
.

2

n

n
s

n
s

f s d d
=

= = ∑
…

…
 (59) 

After the initialization phase, the QCM repeats for all states  

 ( )
11 1

00 0

m
S

s

s c s
=

= ∑
…

…

P
11 1

00 0

1

2

m

m
s

s
=

= ∑
…

…
 (60) 

the following algorithm:  
 

                                                                                        Algorithm  

1. Observe ( ) ( )n
sf s d=  and get decision d ; 

2. Take decision d  and observe next state ( )'
m

s  and reward 

g  from the network 

2.1. The QCM updates state value ( )V s :  

( ) ( ) ( ) ( )( )' .V s V s g V s V sα γ← + + −  

3. Update probability amplitudes by repeating the quantum 

searching iteration IU  T times:  

( ) ( )
k

Tn nT
I s x x sU d U U d⎡ ⎤= ⎣ ⎦ , and 

( )( )'r V s
x xc e c

λ +← .  

 
The initial register of the QCM is illustrated in Fig. 23. In the initial phase, the QCM’s 

quantum register contains 

 
1

0

1
0

N

x

H x
N

ψ
−

=
= = ∑ , (61) 

where every state has the same probability amplitude 
1

N
.  

In Fig. 24 we illustrate the QCM’s quantum register after the iteration steps of the searching 

process. The state which represents the answer to the question of the QCM has higher 
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probability while the “bad” states have lower probability amplitudes than the average 

probability amplitude in the initial quantum register. 

The QCM’s quantum searching algorithm is inspired by the superposition principle of 

quantum states and the power of parallel quantum computations.  
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Fig. 23. The probability amplitudes of the QCM’s initial quantum register. 
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Fig. 24. The probability amplitudes of the QCM’s states after the quantum searching process. 

4.6 Numerical analysis  

Our numerical analysis is based on the shortest path problem, in which the QCM has to find 
the shortest path in the network environment from communication element A to network 
element B. The problem can be stated as a searching problem in an unsorted database.  
In the numerical analysis we compare the performance of traditional QCM and QCM. The 
QCM has to find the shortest path in the network from a given network element to a given 
network component, determined by the classical network command. The QCM puts the 
initial input network command into a quantum register, and it applies the quantum 
searching.  The searching process is based on the classical input command and the QCM’s 
internal state. The internal state describes the actual network state, and the quantum 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

148 

searching algorithm seeks the best solution which describes the shortest path between the 
network elements.   
In Fig. 25 we illustrate the inputs of the QCM’s searching module. 
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Fig. 25. The realization of the QCM’s quantum searching process. 

In the numerical analysis, we have assumed that the shortest path between nodes A and B 
defined in the input command contains 20 network nodes.  
In Fig. 26 we illustrate the number of required steps as function iterations. As we can 
conclude, the traditional QCM converges after 2500 steps, while the QCM finds the optimal 
path after 20 steps.  
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Fig. 26. The number of iterations required to find the optimal solution with traditional and 
extended QCM. 

The QCM converges very fast to the optimal solution; however in the initial phase of the 
searching process, the number of steps per iteration is significantly higher. We can conclude 
that in the initial phase the QCM has higher uncertainty than the traditional QCM. The 
QCM finds the solution exponentially faster, and can find the solution much faster than the 
classical implementation. From the simulation results, we can conclude that the QCM’s 
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quantum searching method needs only a few iteration steps to find the optimal way in the 
network environment.  
The numerical results for the number of steps per iteration with traditional QCM are 
illustrated in Fig. 27. 
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Fig. 27. The required number of classical searches after 50 iterations is still much higher than 
the optimal one. 

 
 

We conclude that the quantum searching based QCM converges much faster than the 
classical one and the speed of the iteration process increments dramatically.    
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Fig. 28. The QCM finds the solution after 20 iterations, while the classical solution converges 
only after 2500 iterations. 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

150 

From our numerical results we can conclude that the QCM module can help to improve he 
performance of truly random networks such as the described quantum probabilistic self-
organizing networks and the overall performance of quantum probabilistic self-organizing 
communication systems and future Internet services.  
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Fig. 29. Comparison of the performance of classical searching and QCM.  

The QCM module can be used to dramatically speed up network controlling and it can be 
integrated efficiently into classical architectures.  

4.7 Conclusion and future work 

The QCM’s internal self model modifies the classical commands and the logical behaviour 
of the QCM on different levels. The QCM’s internal self model is generated on the lowest 
level, and the expressed logical behaviour is based on quantum measurements.  
In this part we constructed a truly random non-deterministic network model based on 
quantum mechanics, allowing the QCM to use quantum level communication and quantum 
searching. The speed of QCM decision mechanisms can be increased using powerful parallel 
computing and fast searching ability. In our model, we integrate quantum searching to find 
the best solution to the given problem, encoded in the input network command of the QCM. 
In the numerical analysis we showed that the quantum communication layer could improve 
the performance of classical systems. The performance of the communication elements of 
quantum probabilistic self-organizing networks could be increased dramatically by 
quantum searching. The QCM’s searching algorithm is based on the superposition principle 
of quantum states, whose behaviour cannot be described classically.  

5. Conclusions 

Quantum computing offers fundamentally new solutions in the field of computer science. 
The classical biologically inspired self-organizing systems have increasing complexity and 
these constructions do not seem to be suitable for handling the service demands of the near 
future. The cell-organized, quantum mechanics based cellular automata models have many 
advantages over classical models and circuits. As we have seen, for a quantum cellular 
machine, every cell is a finite-dimensional quantum system with unitary transformations, 
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and there is a difference between the axiomatic structure of classical and quantum versions 
of cellular automata. To see clearly the advantages of quantum information processing 
based solutions, we have discussed the parallel address mechanisms of quantum cellular 
machines.  
In Section 2, we have given a brief overview of quantum mechanics, such as the definition of 
a quantum bit, the postulates of quantum mechanics, and the basics of quantum algorithms. 
In Sections 3 and 4, we have exhibited an application of a quantum cellular automata model 
to a quantum probabilistically controlled, self-organizing biological network structure. The 
network control mechanisms of this self-organizing structure are performed by an extended 
version of a quantum cellular machine, with integrated quantum searching processes and 
built-in quantum learning algorithms. In the proposed searching process, a QCM selects the 
solutions from the quantum register, using probability amplitude amplification, and finally 
applies a Hadamard-transformation, to get the searched-for answer to the input problem. As 
we have presented, the performance of the communication of self-organizing biological 
networks could be increased dramatically by quantum searching. The QCM’s searching 
algorithm is based on the superposition principle of quantum states, which behavior cannot 
be described classically.  
As future work we would like to extend our quantum learning algorithm to other network 
elements, and we would like to integrate our method into truly random self-organizing 
networks. 

6. References 

Arrighi, P.; Nesme, V. & Werner, R. (2007). N-dimensional quantum cellular automata. 
0711.3975. 

Benioff, P. (1980). The computer as a physical system: A microscopic quantum mechanical 
hamiltonian model of computers as represented by Turing machines. Journal of 
Statistical Physics, 22:563–591. 

Curtis, D. & Meyer, D. (2004). Towards quantum template matching, pp. 134–141. 
Dam, W. (1996). Quantum cellular automata. Master’s thesis, University of Nijmegen. 
Feynman, R. (1982). Simulating physics with computers. International Journal of Theoretical 

Physics, 21:467–488. 
Gardner, M. (1970). "Mathematical Games: The fantastic combinations of John Conway's 

new solitaire game "Life"". Scientific American 223: 120–123 
Grössing, G. & Zeilinger, A. (1988). Quantum cellular automata. Complex Syst., 2:197–208. 
Gyongyosi, L.; Bacsardi, L. & Imre, S. (2009). Novel Approach for Quantum Mechanical 

Based Autonomic Communication, In FUTURE COMPUTING 2009 Proceedings, The 
First International Conference on Future Computational Technologies and 
Applications, pp. 586-590., Athen, Greece.  

Imre, S. & Balazs, F. (2005). Quantum Computing and Communications – An Engineering 
Approach, Published by John Wiley and Sons Ltd. 

Margolus, N. (1991). Parallel quantum computation. In: W. H. Zurek, editor, Complexity, 
Entropy, and the Physics of Information, Santa Fe Institute Series, pages 273–288. 
Addison Wesley, Redwood City, CA. 

Meyer, D. A. (1996). From quantum cellular automata to quantum lattice gases. Journal of 
Statistical Physics, 85:551–574. 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

152 

Miller, D. M.; Maslov, D. & Dueck, G. W. (2006). Synthesis of quantum multiple-valued 
circuits, Journal of Multiple-Valued Logic and Soft Computing, vol. 12, no. 5-6, pp. 431–
450. 

Neumann, J. (1966). Theory of Self-Reproducing Automata. University of Illinois Press, 
Champaign, IL, USA. 

Nielsen, M. A. & Chuang, I. L. (2000). Quantum Computation and Quantum Information, 
(Cambridge University Press. 

Perez-Delgado, C. A. & Cheung, D. (2005). Models of quantum cellular automata. 
Richter & Werner. (1996). Ergodicity of quantum cellular automata. Journal of Statistical 

Physics, 82:963–998. 
Toffoli, T. & Margolus, N. H. (1990). Invertible cellular automata: A review. Physica D: 

Nonlinear Phenomena, 45:229–253. 
Toth, G. & Lent, C. S. (2001). Quantum computing with quantum-dot cellular automata. 

Physical Review A, 63:052315. 
Vollbrecht, K. G. H. & Cirac (2008), J. I. Quantum simulators, continuous-time automata, 

and translationally invariant systems. Phys. Rev. Lett., 100:010501, 2008. 
Watrous, J. (1995). On one-dimensional quantum cellular automata. In: Proceedings of the 36th 

Annual Symposium on Foundations of Computer Science, pages 528–537. 
Wootters, W. K. & Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299:802–

803.  

www.intechopen.com



Cellular Automata - Innovative Modelling for Science and

Engineering

Edited by Dr. Alejandro Salcido

ISBN 978-953-307-172-5

Hard cover, 426 pages

Publisher InTech

Published online 11, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Modelling and simulation are disciplines of major importance for science and engineering. There is no science

without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for

development of both science and engineering. The main attractive feature of cellular automata is that, in spite

of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed

and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex

behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of

divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and

sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the

interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular

automata for very different purposes. In this book, a number of innovative applications of cellular automata

models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and

Image Processing are presented.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Laszlo Gyongyosi and Sandor Imre (2011). Quantum Cellular Automata Controlled Self-Organizing Networks,

Cellular Automata - Innovative Modelling for Science and Engineering, Dr. Alejandro Salcido (Ed.), ISBN: 978-

953-307-172-5, InTech, Available from: http://www.intechopen.com/books/cellular-automata-innovative-

modelling-for-science-and-engineering/quantum-cellular-automata-controlled-self-organizing-networks



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


